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Abstract: Object detection is a predominant challenge in computer vision and image processing to
detect instances of objects of various classes within an image or video. Recently, a new domain of
vehicular platforms, e-scooters, has been widely used across domestic and urban environments. The
driving behavior of e-scooter users significantly differs from other vehicles on the road, and their
interactions with pedestrians are also increasing. To ensure pedestrian safety and develop an efficient
traffic monitoring system, a reliable object detection system for e-scooters is required. However,
existing object detectors based on IoU loss functions suffer various drawbacks when dealing with
densely packed objects or inaccurate predictions. To address this problem, a new loss function,
balanced-IoU (BIoU), is proposed in this article. This loss function considers the parameterized
distance between the centers and the minimum and maximum edges of the bounding boxes to
address the localization problem. With the help of synthetic data, a simulation experiment was
carried out to analyze the bounding box regression of various losses. Extensive experiments have
been carried out on a two-stage object detector, MASK_RCNN, and single-stage object detectors
such as YOLOv5n6, YOLOv5x on Microsoft Common Objects in Context, SKU110k, and our custom
e-scooter dataset. The proposed loss function demonstrated an increment of 3.70% at APS on the
COCO dataset, 6.20% at AP55 on SKU110k, and 9.03% at AP80 of the custom e-scooter dataset.

Keywords: CNN; e-scooter; neural network; small objects; COCO; SKU110K; YOLO; YOLOv5

1. Introduction

The automotive industry plays a vital role in shaping human transportation history [1,2].
The motor industry has evolved exponentially since the introduction of two-wheel drive to
the latest self-driving cars [3]. However, at the same time, pollution, traffic, and parking
are major problems in the urban environment caused by motorized vehicles [4]. Urban
transport planners have embraced e-scooters as a disruptive innovation with the potential
to reshape the urban mobility system and conquer the last mile. The global electric scooter
market size was broadly evaluated at USD 19.4 billion in 2021, and the market is expected
to grow further [5]. E-scooters are manufactured to travel at a maximum speed of 15 to
17 miles per hour (24–28 km/h), complicating the traffic rules [6]. They also pose challenges
for urban transport planners to design effective regulation for the growing alternative
transportation system [7,8]. The interaction of pedestrians and e-scooters has introduced
concerns over speed, safety, and user behavior, and e-scooters contest over pedestrian and
cyclist spaces. Additionally, the lack of infrastructure for driving and parking e-scooters
leads to users as well as independent contractors scattering the e-scooters on pavements or
sidewalks, which obstructs the path designated for pedestrians and bicycles and exposes
the physically challenged to a greater risk of accident due to safety issues raised by e-
scooters driven on pavements [7]. E-scooters are generally smaller than cars and motorbikes,
and identification/detection of e-scooters is a difficult challenge. To solve these problems,
traffic monitoring systems with efficient algorithms are required to detect e-scooters.
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In recent years, computer vision (CV) algorithms have been widely used in the au-
tonomous and automotive industry [9]. There are several computer vision applications,
such as image classification, object detection, and image segmentation. Object detection is a
fundamental challenge of computer vision since it shapes the basis for computer vision tasks
like instance segmentation, object tracking, and image captioning [10–12]. Most computer
vision tasks do not demand a very significant degree of accuracy, so it is a rational thought
to trade off accuracy for faster-to-train methods [13]. In 2015, R. Joseph et al. introduced a
single-stage object detector model, You Only Look Once (YOLO), which has demonstrated a
peak performance as compared to other object detection networks such as DPM (Deformable
Part Models) and R-CNN (Region-based Convolutional Neural Network) [14]. Various deep
learning and computer vision applications have recently used YOLO networks owing to
their smaller network size and higher performance [15]. Bounding box regression is crucial
in almost all object detection and tracking algorithms. Bounding box regression rectifies
the predicted bounding box, which helps facilitate locating the targeted object. Most of
the popular object detectors, like the SSD [16], Faster R-CNN [17], and YOLOv3 [13] use
ln normalization loss to calculate the overall localization errors [18]. The disadvantage of
using ln-norm based loss is an undesired increase in regression loss as the proportions of the
bounding boxes expand, even if their relative position is not altered [19]. Object detection
models like YOLOv3 and Faster R-CNN achieve better precision using Generalized IoU
(GIoU) loss instead of ln-norm-based losses [20].

During bounding box regression, the state-of-art IoU-based loss functions suffer
various drawbacks such as poor convergence and incorrect regression [21]. This research
focuses on developing an efficient object detector model by addressing drawbacks in
existing IoU-based loss functions and evaluating the performance in COCO [22], an e-
scooter dataset and SKU110K [23]. The organization of the research article is explained
briefly in this section.

• The research begins with a background study on object detection and bounding box
regression losses in Section 2.

• Section 3 provides a brief survey on existing IoU losses and their drawbacks. Section 4
outlines the proposed loss function to address the drawbacks of bounding box regres-
sion problems.

• Section 5 provides an overview of the datasets utilized in this research study.
• Simulation experiments and their results are detailed in Section 6.1.
• Section 6.2 provides background on the experimental setup and deep learning archi-

tecture chosen for this research.
• The performance of the proposed BIoU loss is evaluated in Section 7.

2. Literature Review
2.1. Object Detection

The main function of object detection is to discover all the targets of interest from the
given input image, classify the targeted objects, and utilize bounding boxes for positioning.
Detecting such various objects in so many different conditions brings new challenges. Ob-
ject detection can be split into two categories, namely, the traditional object detection period
(before year 2014) and the deep-learning-based detection period (after year 2014) [10,24].
Some of the famous object detectors from the traditional object detection period (before
the year 2014) are the Histogram of Oriented Gradients (HOG) detector [25] and the im-
proved Deformable Part Model Detector (DPM) detector [26]. The HOG detector was
originally proposed in 2005, an upgrade of the scale-invariant feature transform methods of
its time. HOGs are well known for their initial implementation in detecting pedestrians [27].
Deep-learning-based object detection methods can be broadly divided into two categories:
two-stage algorithms and single-stage algorithms. Various two-stage object detectors, such
as RCNN [11], Fast R-CNN [28], and Faster R-CNN [17], utilize a regional proposal network
(RPN), where the candidate regions are realized, and subsequently, these regions are classi-
fied by the neural network. A Faster R-CNN network achieved 48.4% mAP on the COCO
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validation set by replacing the VGG-16 backbone layer with ResNet-101 and 73.2% on the
PASCAL VOC datasets. Experimental results from two-stage object detectors demonstrated
superior performance compared to traditional object detectors. However, the two-stage
detectors were computationally expensive and unsuitable for real-time implementation.

To address these issues, single-stage object detectors were introduced [16]. There are
two prominent single-stage algorithms: YOLO [14] and the Single Shot detector (SSD) [16],
both of which rely on convolutional neural networks to extract useful features and predict
categories and positions. An SSD network was able to achieve 77.2% mAP on the PASCAL
VOC dataset and 46.5% on the COCO test-dev dataset [16]. The single-stage algorithms
have the advantage of fast detection rates but at the expense of precision. Faster inference
speeds while maintaining comparatively similar performance to the RCNN algorithms
gives YOLO an edge over other trending object detection neural networks [29]. Since
the launch of its initial version in 2016, the YOLO network has evolved over the period
of time. Batch normalization, higher resolution, and the concept of anchor boxes were
introduced in YOLOv2 [30]. YOLOv2 outperformed other architectures by running faster
and maintaining high accuracy simultaneously. In YOLOv3, an objectness score was
introduced to enhance the bounding box prediction, and predictions were carried out at
separate levels to improve the performance in detecting smaller objects [13]. YOLOv5
is one of the latest developments in the YOLO family, offering different models such as
YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), and YOLOv5l (large).

The trending deep learning object detection methods involve performing two tasks:

1. Loss functions to find the bounding box coordinates to localize target objects;
2. Classification to identify the target object;
3. The first task relies on the loss functions, which give the error between the predicted

and ground truth bounding box [31].

2.2. Remote Sensing

In recent years, many research activities have been carried out to utilize one- and two-
stage object detectors in remote sensing. However, this poses a myriad of challenges since
the optical remote sensing images significantly differ from natural scenes [32]. Since most
optical images are captured from UAVs or satellites from an aerial view, optical images con-
tain many degrees of deformation, scale variation, dynamic orientation, and occlusion [33].
In this research [34], the drawbacks of faster region-based convolutional neural networks
(FRCN) were addressed with large-scale variability and concatenation modules. Ref. [35]
addressed these challenges by regressing the multilevel features of the backbone layers
to regress the offsets between the anchors and ground truths. This refinement of anchors
aids in improving the model performance. In [36], aspect-ratio-constrained non-maximum
suppression (arcNMS) was utilized to reduce the noise in very-high-resolution (VHR)
remote sensing images.

Recently, graph theory has been utilized to establish the relationships between objects
in the form of pixels. melshark@iupui.edu [37] explored different approaches to fuse
CNN and GCN network layers to improve the classification model. With the help of the
fusion technique, graph convolution networks (GCN) are currently utilized to provide
classification in hyperspectral (HSI) images. For geospatial object detection applications,
Ref. [38] extracted channel features from spatial frequencies. Various fusion architectures
were studied and fused to generate a multi-model deep learning (MDL) framework [39].
In addition to pixel-wise information, spatial information is also being utilized with CNN
layers in MDL. Ref. [40] addressed the problems in hyperspectral imagery by considering
various spectral variability in addition to the principal scaling factor. However, many
complex objects exist in urban and rural areas, and identifying individual objects brings
additional challenges since the objects may have similar spectral responses. The authors
of this research [41] proposed the usage of LiDAR sensors to obtain elevation information
of objects followed by classification/detection tasks. Infrared (IR) camera images can be
studied for 3D fusion with LiDAR data points to enrich the available information further.
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2.3. Bounding Box Regression Loss

The well-known object detection and tracking methods predominantly use ln-norm
loss for bounding box regression, but this is not customized to adapt to the evaluation
metric, i.e., the intersection over union (IoU) [18]. In response, IoU loss [42] was proposed
to favor the IoU metric, while focal loss [21] takes a different approach by addressing
class imbalance and prohibiting the easy negatives from overwhelming the model by
training on a sparse set of hard examples. Meanwhile, the generalized IoU (GIoU) [43]
algorithm resolved the bounding box regression issue for situations when the bounding
boxes of the ground truth and prediction do not overlap. Hence, GIoU improved the
IoU loss function as IoU does not reflect the proximity of two shapes. However, the IoU
and GIoU losses had slow convergence and inaccurate regression, whereas the Distance-
IoU (DIoU) loss [31] combines the normalized distance in-between the predicted box and
the target box, which converges much faster in training. Other notable loss functions
such as the CIOU [31] achieve improved performance over their predecessors by merging
three geometric components, overlap area, central point distance, and aspect ratio, which
influence the regression loss value calculation. While efficient IOU loss (EIoU) improved
the convergence speed and localization accuracy significantly, Focal EIoU [44] modified the
parameter used to evaluate the consistency of the indispensable aspect ratio between the
predicted and real boundary boxes to enhance performance further.

Meanwhile, the ICIoU [45] refined the localization accuracy and bounding box re-
gression by including a penalty function that uses the ratio of the corresponding width
and height of the bounding box for the given ground truth and the calculated prediction.
Another attempt to improve the CIoU loss function was scale-sensitive IoU (SIoU) [46],
which aimed to differentiate all the estimated bounding boxes in theory and enhance the
overall optimization procedure. SIoU introduced an additional geometric factor, area-
difference, when calculating the regression loss values to generate a more reasonable
calculation. Additionally, SIoU improved the accuracy of multi-scale object detection in
the conventional bounding box and the oriented bounding box for broader applicability.
A recent improvement to the IoU-based loss function is LCornerIoU [18], which normal-
ized the corner distance and parameterized the width-height difference penalty term to
boost the prediction of the boundary box position. Ref. [47] considered the area difference
between the boxes to increase the optimal performance. To improve the correlation be-
tween classification and localization loss, IoU-balance [48] loss assigns higher weights for
positive samples with high IoU. This significantly increases localization accuracy but does
not improve the classification loss [49]. PIoU maximizes the relationship between angle
error and IoU of two oriented bounding boxes [50]. In this research, IoU [51] is computed
for two rotated bounding boxes for 3D bounding boxes. Ref. [52] utilizes the Gaussian
Wasserstein distance to optimize the bounding box regression problem. Ref. [19] proposes
an asymmetry of loss function based on the IoU metric. When the boxes do not overlap,
the proposed loss function also suffers from a symmetry trap since it does not account for
the aspect ratio of the boxes. This would account for the same value of the loss function
even if the boxes are altered in their position.

3. Survey on Axis-Aligned Loss Functions

This section details a survey on existing loss functions for axis-aligned object detection.
During the training phase of the object detector, bounding box regression (BBR) calculates
the loss between ground truth, bG, and predictions developed by the neural network model,
bP. Bounding boxes are rectangular and are mathematically represented by (x, y, w, h),
where x and y represent the centers of the x and y-axis. In contrast, w and h represent the
height and width of the box, as shown in Figure 1. The objective of an object detector is



J. Low Power Electron. Appl. 2022, 12, 51 5 of 16

to refine the bP during training phase to match bG by calculating the offsets (x
′
, y
′
, w

′
, h
′
)

between (xG, yG, wG, hG) and (xP, yP, wP, hP). The offsets are calculated as follows:

x
′
=

xP − xG

wG (1)

y
′
=

yP − yG

yG (2)

w
′
= ln

wG

wP (3)

h
′
= ln

hG

hP (4)

These sections briefly describe various IoU functions utilized to optimize the regression of
bounding boxes.

Figure 1. Sample relationships between ground truth (blue) and prediction boxes (red).

IoU executes a simple approach in estimating the intersection/overlap regions between
bG and bP. The overlap region is calculated as the IoU area. The mathematical formula for
the loss equation of the IoU loss is expressed as

LIoU = 1− |b
P ∩ bG|
|bP ∪ bG|

(5)

However, the IoU fails to converge when boxes do not overlap. GIoU loss addresses
these shortcomings by considering a convex region proposed as

LGIoU = 1− IoU +
|C− (bP ∪ bG)|

|C| (6)

where C indicates the minimum convex region enclosing both prediction and ground truth
boxes. This approach considers the entire area between the boxes and provides better loss
convergence, even in non-overlapping cases.

From Equation (5), we can observe that the intersection area is the deciding factor in
estimating the IoU loss. There could be various cases in which predictions developed by
the network are located far away from the ground truth or cases where they are closer but
do not overlap. During these cases, bP ∩ bG → 0, LIoU becomes 1, indicating a very high
loss for the prediction. Additionally, the training dataset would contain various objects
of different scales, sizes, areas, and aspect ratios. For instance, two cases, one where the
prediction box is smaller than the ground truth, and the second where the ground truth is
smaller than the prediction, might have the same overlap and corresponding LIoU ranging
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between 0 and 1. This loss provides no additional information in the above cases and affects
the network convergence rate.

The GIoU loss function addresses the drawbacks of IoU when there is no overlap
between the boxes. A minimum convex area, C, enclosing both the prediction and ground
truth boxes, is considered. The ratio of the area difference between C and bP ∩ bG would
provide an additional penalty term in loss estimation and helps the network to regress
faster. However, in the cases of complete inclusion, GIoU degrades to the IoU because the
C equals bP ∩ bG. As a result, network convergence is still affected.

The DIoU and CIoU loss have been recently proposed to overcome the shortcomings
of IoU and GIoU losses [31]. DIoU loss overcomes the drawbacks of IoU and GIoU by
carefully estimating the distance between the centers of two rectangles. c in (7) is the
diagonal distance of the convex area enclosing the two boxes.

LDIoU = 1− IoU +
d2(bP, bG)

c2 (7)

In addition, aspect ratios can also be considered for better regression. CIoU provides
one step further in considering the aspect ratio of the width and height of the boxes.

LCIoU = 1− IoU +
d2(bP, bG)

c2 + αv (8)

v =
4

pi ∗ pi
(arctan

wG

hG − arctan
wP

hP )2 (9)

In general, DIoU and CIoU seem to address the shortcomings of IoU and GIoU losses,
but they also face drawbacks. From (7) and (8), we can observe that the distance between
the centers plays a crucial role in loss estimation. However, in the event of inclusion
and centers aligned with each other, DIoU degrades to IoU loss. This leads to poor loss
estimation. CIoU losses exhibit the same behavior, where it highly depends upon the αv
parameter from (9) and the aspect ratio of width and height of the boxes are considered.
However, the width and height of ground truth could also be similar to the ratio of the
prediction box, even when the prediction box is smaller or larger. This would lead to cases
where wG/hG = wP/hP , thus making the v→ 0.

4. Proposed BIoU Loss Function

In this research, we propose an enhanced loss function by considering the distance
between the central regions and edges of the boxes as

LbP ,bG = 1− IoU(bP, bG) + R(bP, bG) (10)

R(bP, bG) =
(WC + HC + MNE + MXE)

c2 (11)

R(bP, bG) indicates the regression loss estimation between the ground truth and pre-
diction box values. To address the drawbacks of the IoU, GIoU, DIoU and CIoU losses,
the proposed loss function considers four different geometric factors to solve the bounding
box regression problem. In (11), WC and HC represent the distance between the centers
of the x- and y-axis of the boxes with a balance factor γ. γ estimates the width and height
ratio of bP and bG and is multiplied with WC and HC values. This γ factor controls the re-
gression rate of bounding boxes and prevents gradient explosion. MNE and MXE represent
the distance between minimum and maximum edges of bP and bG, displayed in Figure 2.
MNE and MXE are calculated by estimating the Euclidean distance between (xmin, ymin)
points and (xmax, ymax) coordinates of the ground truth and prediction boxes. Our previous
work [53] addresses the stability of considering WC and HC, and consideration of γ with
MNE and MXE aids in stable convergence.
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Figure 2. The geometric representation of the distance between the centers and corners of prediction
and ground truth boxes. MNE and MXE indicate the minimum and maximum edges of the boxes
and are diagonally located opposite each other. The distance between the central regions is indicated
by WC and HC diagonals.

To provide further understanding and observe the differences between proposed and
existing ones, Figure 3 can be utilized. Figure 3a presents a scenario where the bounding
boxes have the same centres and same aspect ratio and one of the boxes is inclusive to

another. In this state, there is a convex area equal union area, and so
|C− (bP ∪ bG)|

|C| → 0.

Since the distance between the centres equals zero,
d2(bP, bG)

c2 → 0. Additionally, the boxes

have same aspect ratio,
wG

hG =
wP

hP , causing α v→ 0. This causes GIoU, DIoU and CIoU to

degrade to IoU. However, the proposed loss addresses the above drawbacks by examining
the distance between centres and edges individually and calculates the loss value between
the boxes. Similar reasoning could be observed in Figure 3d. In Figure 3b, the boxes
have the same aspect ratios, leading the CIoU to degrade to DIoU, and in Figure 3c,
the same centers degrade DIoU to IoU. However, in all cases, the loss value calculated by
the proposed method is higher than others, which would help reduce the regression errors
and minimize the loss values even in difficult cases. An ablation study has been carried out
in Section 6.1 to visualize the performance of different loss functions.

Figure 3. Loss estimation between ground truth and prediction boxes across various loss functions.
The green colored box indicates the ground truth, and the red box indicates the prediction box.
The convex area is represented by a dotted line.
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5. DataSet Preparation

Developing neural network models that learn specific features about a target object
is crucial to making computer vision applications possible. With the rapid increase in
data volume, this practice of gaining insights from data has increased the popularity
of supervised machine learning in recent years. This research uses multiple datasets,
including the COCO (2015), SKU-110k dataset [23] and a custom dataset consisting of over
600 unprocessed images of e-scooters in natural settings. The variety of datasets provides
the network with good quality training samples to improve its accuracy. A brief description
of the dataset as mentioned above is provided in the following paragraphs. Sample images
from the datasets are shown in Figures 4 and 5.

Figure 4. Sample image from SKU110k dataset.

Figure 5. Sample images from E-scooter dataset.

5.1. Common Objects in Context (COCO)

The COCO dataset serves as a benchmark for various object detection and segmenta-
tion tasks [17,28,29,54]. It contains 80 categories of objects, with more than 122k images.
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The wide variety of objects in various surroundings presents a complicated challenge for
the object detectors.

5.2. SKU-110K

The SKU110K dataset was released in 2019 and contains 11,762 images with densely
packed objects [23]. The dataset was collected from supermarkets worldwide and has about
147 objects/images. The objects in this dataset are significantly smaller in size and densely
packed. This dataset contains 600 classes and approximately 2.3 classes/images. The train-
ing dataset contains 8k images with 90k bounding boxes, and the validation dataset contains
2.9k images with 432k bounding boxes. SKU110k has an average of 147 objects/image
compared to PASCAL, with 2.71 and COCO (2015) with 7.7 objects/image [55].

5.3. Custom Dataset

To further experiment and evaluate our results, we prepared a custom dataset in two
phases; in the first phase, e-scooter images were web-scrapped from the internet. The second
phase of data collection was carried out due to the limited number of diverse images
available online. In this phase, e-scooter images were captured manually across different
urban landscapes such as school zones, parking spaces, and street walks. The dataset
comprises images with the target object, e-scooters in various orientations, and different
daylight conditions. Data augmentation was carried out by applying Gaussian noise, rotation
of images, and adjusting brightness or a combination of these methods to the collected images
to increase the results’ robustness further. These data augmentation methods helped diversify
the data during the training and evaluation phases.

Annotation plays an essential role in the dataset preparation stage. A simple and
effective annotation tool widely used for object detector modules is LabelImg. LabelImg is
a graphical image annotation tool written in Python that uses Qt for its graphical interface.
The dataset was manually annotated using the LabelImg tool, which supports various
formats. Annotation was performed on a single class to target e-scooters in the augmented
images. The training and testing images were split in an 80:20 ratio from the total images
in the dataset. In this research, all the input images were originally resized to 640 × 640
pixels before implementing annotation for detecting e-scooters.

6. Experimental Setup

To evaluate the performance of the proposed BIoU loss and to compare the perfor-
mance with various other losses, a simulation experiment was carried out first, followed by
an implementation of loss function in the YOLOv5 and Mask_RCNN [54] object detectors.

6.1. Ablation Study

To completely understand and evaluate the performance of the loss functions, we first
carried out a simulation experiment with synthetic data, similar to [31]. This step is crucial to
understanding how the bounding box regression occurs in dynamic cases where prediction
and ground truth boxes are of different sizes, aspect ratios, or scales. This experiment
helped to analyze and understand the performance of different loss functions under the
same control variables.

• The center coordinates of the ground truth box were fixed at (10, 10). The width-to-
height ratio was kept at one, and various aspect ratios were considered, such as 1:4,
1:3, 1:2, 1:1, 2:1, 3:1, and 4:1.

• Five thousand data points of uniformly distributed anchor boxes were chosen with
seven aspect ratios and scales. The anchor boxes also had a similar range of aspect
ratios compared to ground truths and various areas, such as 0.5, 0.67, 0.75, 1, 1.33, 1.5,
and 2.

• A total of 1,715,000 (7 aspect ratios × 7 different scales × 7 different areas × 5000
data points) regression cases and 200 iterations were carried out in the simulation
experiment.
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Bounding box regression was calculated at each step using the gradient descent
algorithm as below:

Bt
n,s = Bt−1

n,s + α(2− IoUt−1
n,s )∇Bt

n,s (12)

where ∇Bt
n,s denotes the gradient loss at iteration (t − 1). To aid in the convergence,

α(2− IoUt−1
n,s ) was utilized a multiplication factor. l1-norm was utilized to calculate the

regression error, and gradient descent was utilized to optimize the algorithm.
From Figure 6a, we can observe that IoU loss optimizes well near the initial point

(10, 10) and the cases where bounding boxes overlap. The regression curve of GIoU loss
is slightly better than IoU, shown in Figure 6b, but suffers many errors in horizontal and
vertical cases. From Figure 6c,d, we can observe that DIoU and CIoU can optimize the
initial bounding boxes but perform poorly towards the edge of the basin. This could be
due to cases of inclusion, where one box is inside another with the same aspect ratios
or centers. On the other hand, the proposed BIoU has much fewer regression errors
throughout the distribution of data points and at any given random point, as seen in
Figure 6e. The cumulative regression error at the end of 200 iterations was observed
as follows: IoU had a total regression error of 2.345e9, whereas GIoU, DIoU, and CIoU
were 1.9e9, 5.827e8, and 3.431e8. The newly proposed BIoU loss had the least cumulative
regression error, 2.77e8.

(a) LIoU (b) LGIoU (c) LDIoU

(d) LCIoU (e) LBIoU

Figure 6. Illustration of various regression curves of IoU, GIoU, DIoU, CIoU, and BIoU at the 200th
iteration in three dimensions.

6.2. Evaluation on Object Detectors

The performance of the proposed BIoU loss was investigated on both two-stage object
detectors (Mask_RCNN) [56] and a single-stage detector (YOLOv5). Resnet 101 was chosen
as a backbone for Mask_RCNN. YOLOv5 is one of the latest advancements in single-stage
object detection due to its tiny network structure and higher performance in benchmark
datasets [22,53,57]. The network structure utilized CSPDarknet as a backbone, which aids
in building feature maps. Fewer network parameters also increase the network’s overall
performance in real-time detection [58]. To provide a fair comparison between different
loss functions, hyper-parameters and other factors were kept constant during the network
training phase. Carbonate, an initiative by Indiana University to provide a computer cluster
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equipped with Intel Xeon Gold 6126 12-core CPUs and Tesla V100 GPUs, was utilized
for training and evaluating the performance. Mask_RCNN was trained and evaluated on
the COCO dataset with a batch size of 2 and image size of 1024 × 1024. The YOLOv5n6
network with 3.2 million parameters was used to train and assess the SKU110k dataset,
whereas YOLOv5x with 86.7 million parameters was chosen to train and evaluate the
custom e-scooter dataset. The YOLOv5 networks were trained with a batch size of 128
and image size of 512 × 512. All the loss functions were evaluated using the IoU metric,
and their respective results are tabulated in terms of various levels of average precision
(AP), such as AP50 to AP95. AP50 indicates 50% overlap, and AP95 indicates 95% overlap
between the predicted and ground truth bounding boxes. AP50:95 indicates an average
of overlaps between 50 and 95%. APS, APM, APL indicate average precision for small,
medium and large objects in the test dataset. Separate evaluation scripts were executed for
IoU, GIoU, DIoU, CIoU, and BIoU losses, and results are tabulated in Tables 1–3. Absolute
improvement is denoted as A.I, and relative improvement (R.L) in percentage is calculated
for each loss.

Table 1. Experimental evaluation of MASK_RCNN trained using LIoU , LGIoU , LDIoU , LCIoU and
LBIoU . The results are reported on COCO dataset.

Loss Eval AP50:95 AP50 AP75 APS APM APL

LIoU 20.2 35.5 21.1 6.2 24.8 34.2

LGIoU 22.0 41.6 21.7 8.9 25.9 34.5

A.I% 1.80 6.10 0.59 2.70 1.09 0.29

LDIoU 20.8 40.6 19.3 9.3 27.3 31.0

A.I% 0.60 5.10 −1.80 3.10 2.50 −3.20

LCIoU 21.7 40.7 21.9 10.2 25.8 33.7

A.I% 1.50 5.20 0.79 3.99 1.0 −0.5

LBIoU 22.3 41.5 22.2 9.9 27.7 33.00

A.I% 2.10 6.00 1.09 3.70 2.89 −1.20

Table 2. Experimental evaluation of YOLOv5n6 trained using LIoU , LGIoU , LDIoU , LCIoU and LBIoU .
The results are reported on SKU 110 K.

Loss Eval AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95

LIoU 75.00 70.90 66.20 60.00 51.10 38.60 23.30 9.44 2.20 1.40

LGIoU 72.50 68.60 64.10 58.00 49.40 37.50 22.90 9.33 2.16 1.23

R.L% −3.33 −3.24 −3.17 −3.33 −3.32 −2.85 −1.71 −0.74 −1.81 −12.1

LDIoU 73.50 69.60 65.00 58.80 50.00 38.00 23.00 9.30 2.16 1.10

R.L% −2.00 −1.83 −1.81 −2 −2.15 −1.55 −1.28 −1.06 −1.81 −21.4

LCIoU 73.70 69.60 64.90 58.80 50.20 38.00 23.10 9.44 2 1.20

R.L% −1.73 −1.83 −1.96 −2.00 −1.76 −1.55 −0.85 0.42 −9.09 −14.2

LBIoU 79.40 75.30 70.10 63.00 53.20 39.90 24.00 9.69 2.22 1.16

R.L% 5.86 6.20 5.89 5.00 4.10 3.36 3.00 3.08 0.909 −17.1
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Table 3. Experimental evaluation of YOLOv5x trained using LIoU , LGIoU , LDIoU , LCIoU and LBIoU .
The results are reported on e-scooter.

Loss Eval AP50 AP55 AP60 AP65 AP70 AP75 AP80 AP85 AP90 AP95

LIoU 89.80 89.50 87.90 85.80 82.20 72.90 63.10 37.20 6.47 0.06

LGIoU 91.00 89.40 88.60 85.10 83.60 78.70 66.50 32.20 7.73 1.08

R.L% 1.33 −0.11 0.79 −0.81 1.70 7.96 5.38 −13.4 19.47 17.00

LDIoU 89.60 87.40 84.80 82.80 79.90 73.40 63.00 32.70 5.53 1.20

R.L% −0.22 −2.34 −3.52 −3.49 −2.79 0.68 −0.16 −12.1 −14.5 19.00

LCIoU 90.90 90.10 87.80 86.40 82.40 75.70 61.50 28.00 3.70 1.60

R.L% 1.22 0.67 −0.11 0.69 0.24 3.84 −2.5 −24.7 −42.8 25.7

LBIoU 91.80 89.10 86.20 84.30 82.50 77.10 68.80 38.20 7.72 1.70

R.L% 2.22 −0.44 −1.93 −1.74 0.36 5.76 9.03 2.68 19.31 27.3

7. Performance Evaluation

In Table 1, the proposed LBIoU performs remarkably well for AP 50:95 and AP_S, with
gain values of 2.10% and 3.70% as compared to LIoU . From Table 2, we can see that LBIoU
gains peak performance at AP50 with 79.4%, and the gains gradually reduce as the overlap
ratio increases. The losses LGIoU , LDIoU , LCIoU do not perform well and have significantly
lower AP gains compared to LIoU in the majority of the cases. This behavior could be
because the number of objects in an image in the SKU110k dataset is very high and the
smaller objects are densely packed in closer proximity. This creates more inclusion cases
where bounding boxes of ground truth and prediction boxes partially or completely overlap
with each other. Since LGIoU , LDIoU , and LCIoU suffer drawbacks in the cases of inclusion,
the overall performance of the network is reduced. On the other hand, the proposed
LBIoU has attained a peak performance at AP50 with 79.4% with a relative improvement of
5.86%. In particular, LBIoU has a significant improvement in RL of 6.20% at AP55. We could
observe a consistent increase in gains across all APs when compared with other losses.

Table 3 shows LIoU gains of 89.8% at AP50 and 72.9% at AP75. With LIoU as the bench-
mark, LGIoU increases the accuracy by 1.33% at AP50 and 7.96% at AP70. However, LDIoU
performs poorly as compared to LIoU and LGIoU at these APs. LCIoU also performs slightly
better than LIoU by 1.22% and 3.84%, but they are still lesser than the performance of LGIoU
at these AP values. LBIoU shows a peak performance at AP50 with an increase of 2.22%
compared to LIoU and improved detection accuracies from AP70 to AP95. By comparing
between Tables 1–3, we could visualize the increase in performance with proposed LBIoU
ranges between 1.09% to 9.03%, wherein LGIoU , LDIoU , LCIoU demonstrated the highest
increments of 5.38%, 5.10%, and 5.20%. The reason for this phenomenon is because the
proposed loss function considers additional edge cases where centers are aligned and the
aspect ratio is equal. The number of such edge cases vastly depend on the type of dataset,
number of objects and location of the objects in an image.

Additional Observations

The space complexity of LBIoU is O(1), so the loss function does not incur additional
computational resources. We also compared the proposed LBIoU with various loss functions
such as scale-sensitive IoU (SIoU) and scale-balance IoU, and their performance was evalu-
ated. On the SKU 110 K dataset, SIoU attained values of 74.4%, 70.4%, and 65.6% for AP50,
AP55, and AP60, as compared to LBIoU precision values of 79.40%, 75.30%, and 70.10%.
LBIoU demonstrates a 5% increase in precision values compared to SIoU. On the MS COCO
dataset, when using the YOLOv3 network, scale-balance IoU achieves a 58.27% accuracy at
AP50, where the proposed LBIoU was able to attain 61.7%, demonstrating a 2.94% improve-
ment. The trained model weights of LIoU , LCIoU and LBIoU from Mask_RCNN network
were individually evaluated on test images of the COCO dataset and are displayed in
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Figures 7 and 8. As we can visualize from Figure 7, the network with the proposed loss
function could detect even smaller objects that are very far and closely located with each
other. The number of objects detected with LBIoU is significantly higher than LIoU . Figure 8
displays a similar behavior where LBIoU has successfully detected more objects with higher
confidence as compared to LIoU and LCIoU .

(a) LIoU (b) LBIoU

Figure 7. Detection results from MS COCO using Mask_RCNN trained using LIoU and LBIoU .

Figure 8. Detection results from MS COCO using Mask_RCNN trained using LIoU , LCIoU and LBIoU .

8. Conclusions

In this research article, the drawbacks of existing IoU-based losses were studied, and a
new loss function, LBIoU , which considers the parameterized distance between the centers
and the minimum and maximum edges to address the bounding box regression problem,
was proposed. The efficiency of the network across various geometric factors such as
aspect ratio, area, and scale were studied with the help of a simulation experiment. Experi-
ments on COCO, SKU110K and the e-scooter dataset displayed state-of-art performance,
and LBIoU was able to improve the localization accuracy of the MASK_RCNN, YOLOv5n6
and YOLOv5x models. The future scope of this research involves the usage of LiDAR and
camera sensors together to develop an efficient 3D object detection and tracking system
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to monitor e-scooter traffic. This system is to be installed in high-traffic areas to regulate
e-scooter traffic and ensure the safety of pedestrians.
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