
����������
�������

Citation: Manor, E.; Ben-David, A.;

Greenberg, S. CORDIC Hardware

Acceleration Using DMA-Based ISA

Extension. J. Low Power Electron. Appl.

2022, 12, 4. https://doi.org/10.3390/

jlpea12010004

Academic Editor: Aatmesh

Shrivastava

Received: 10 November 2021

Accepted: 14 January 2022

Published: 15 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Low Power Electronics
and Applications

Article

CORDIC Hardware Acceleration Using DMA-Based
ISA Extension
Erez Manor 1 , Avrech Ben-David 2 and Shlomo Greenberg 1,3,*

1 Department of Electrical and Computer Engineering, Ben Gurion University, Beer-Sheva 8410501, Israel;
erezmano@post.bgu.ac.il

2 Electrical & Computer Engineering Faculty, Technion Institute, Haifa 3200003, Israel;
avrech@campus.technion.ac.il

3 Department of Electrical Engineering, Sami Shamoon College of Engineering, Beer-Sheva 8410802, Israel
* Correspondence: shlomo.greenberg@gmail.com or shlomog@bgu.ac.il or shlomgr@sce.ac.il

Abstract: The use of RISC-based embedded processors aimed at low cost and low power is becoming
an increasingly popular ecosystem for both hardware and software development. High-performance
yet low-power embedded processors may be attained via the use of hardware acceleration and
Instruction Set Architecture (ISA) extension. Recent publications of AI have demonstrated the use
of Coordinate Rotation Digital Computer (CORDIC) as a dedicated low-power solution for solving
nonlinear equations applied to Neural Networks (NN). This paper proposes ISA extension to support
floating-point CORDIC, providing efficient hardware acceleration for mathematical functions. A new
DMA-based ISA extension approach integrated with a pipeline CORDIC accelerator is proposed.
The CORDIC ISA extension is directly interfaced with a standard processor data path, allowing
efficient implementation of new trigonometric ALU-based custom instructions. The proposed DMA-
based CORDIC accelerator can also be used to perform repeated array calculations, offering a
significant speedup over software implementations. The proposed accelerator is evaluated on
Intel Cyclone-IV FPGA as an extension to Nios processor. Experimental results show a significant
speedup of over three orders of magnitude compared with software implementation, while applied
to trigonometric arrays, and outperforms the existing commercial CORDIC hardware accelerator.

Keywords: RISC; CORDIC; ISA-Extension; low-power; hardware accelerator; FPGA; neural networks

1. Introduction

In the last years, the complexity of embedded platform, such as Internet of Things (IoT)
devices, has been increasing steadily with the conflicting requirements for high performance
and real-time capabilities versus minimal amount of power and size. Typically, while
using a general-purpose RISC processor it is difficult to face all the application-specific
requirements in real-time. Extending the RISC ISA by using a specific custom instruction
allows flexible and efficient implementation in hardware. The custom ISA extension
allows for precise implementation of the instruction groups that the application needs as
optimized hardware, maximizing performance while minimizing power. Examples for
such processors that support custom ISA extension can be found in Tensilica Xtensa [1],
Intel Nios [2], and RISC-V with its open-source ISA extensions [3]. As part of the current
trend of using custom instructions in low-power processors, ARM Cortex-M33 and M55
also support the possibility of custom instructions [4]. X. Wang et al. [5] presented efficient
usage of custom instructions targeted at neural network processing. They introduced
an energy-efficient neural network running on the ARM Cortex-M series and the novel
RISC-V-based Parallel Ultra-Low-Power (PULP) platform.

The Coordinate Rotation Digital Computer (CORDIC) algorithm is a well-known
algorithm used for computing a wide range of mathematical functions and is applied to
computer vision and DSP that require heavy computational functions [6]. CORDIC is also

J. Low Power Electron. Appl. 2022, 12, 4. https://doi.org/10.3390/jlpea12010004 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12010004
https://doi.org/10.3390/jlpea12010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0002-2708-5628
https://orcid.org/0000-0002-1385-8394
https://doi.org/10.3390/jlpea12010004
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12010004?type=check_update&version=2


J. Low Power Electron. Appl. 2022, 12, 4 2 of 12

used as an efficient NN computation engine for implementing multiply-and-accumulate
(MAC) and nonlinear neuron activation function [7,8]. Efficient implementations of the
CORDIC algorithm to calculate the differential equations of the neurons in Spiking Neural
Network (SNN) are presented in [9,10].

This paper proposes a floating-point CORDIC accelerator aimed at extending the
arithmetic logic unit (ALU) instruction set for a range of extensive computation transcen-
dental functions, particularly the trigonometric family. Accelerating these functions to
perform repeated calculations on an array of values greatly contributes to meeting real-time
constraints. An analysis of several mathematical applications using the synchronous data
flow graph (SDF) shows that most of the heavy computations can be mapped into hardware
using CORDIC as ISA extensions allowing significant speedup computation while still
keeping low power [11].

The CORDIC ISA extensions are evaluated on the Nios-II/f Intel processor, which is a
general-purpose RISC processor core, implemented as a soft core in the FPGA. The Nios
core has built-in feature supporting custom instruction (CI) logic in the arithmetic logic
unit (ALU) to form ISA extensions.

The rest of this paper is organized as follows: Section 2 outlines the Nios-II pro-
cessor and the CORDIC algorithm, Section 3 presents a brief overview of related works,
while Section 4 provides the main methodology of this study. Finally, Section 5 shows
implementation and experimental results, and Section 6 concludes the paper.

2. Background

This section provides a background of the Nios-II ISA extension feature and the usage
of hardware custom instruction to accelerate time-critical software algorithms. A brief
introduction to the CORDIC algorithm and Altera hardware CORDIC module aimed at
computing a diverse range of trigonometric functions is given below.

2.1. Nios-II Custom Instruction

There are three kinds of custom instruction: combinational, multicycle, and parame-
terized mode. In a combinational custom instruction mode, an instruction is completed in
a single clock cycle. This mode requires a result output port and may have two optional
input ports (dataa and datab). The custom instructions take values from up to two source
registers and optionally write back a result to a destination register (Figure 1). Multicy-
cle custom instructions consist of a logic block that requires two or more clock cycles to
complete an operation, in either a fixed or variable number of clock cycles. The start and
done ports participate in a handshaking scheme to determine when the custom instruction
execution is complete. The multicycle custom instruction allows to add an interface to com-
municate with logic outside of the processor’s data path. An extended custom instruction
allows a single custom logic block to implement several different operations. Extended
custom instructions use an extension index n to specify which operation the logic block
performs. Ports a, b, and c specify the internal registers from which to read or to which to
write. This parameterization option can be enabled in both combinatorial and multicycle
custom instructions.

2.2. Altera Hardware CORDIC Unit

The Coordinate Rotation Digital Computer (CORDIC) algorithm [12] is a well-known
shift-add iterative algorithm, for computing a wide range of functions: trigonometric,
hyperbolic, linear, and logarithmic. The CORDIC has a simple and hardware-efficient
mapping that uses simple shift, add, subtract, and table look-up operations, instead of
using Calculus-based methods such as polynomial or rational functional approximation.
The CORDIC core provides a solution to implement and solve a diverse range of trigono-
metric functions (e.g., sine and cosine) faster than software functions [13], which use the
taylor approximation or emulation of the CORDIC algorithm to compute these functions,
thus saving significant processing time and power.



J. Low Power Electron. Appl. 2022, 12, 4 3 of 12

Multi-Cycle

Parameterized

Combinatorial
dataa

datab

clk
clk_en

reset
start

n

a

b

c

result

stall

A

B

Nios II
ALU

-
+

>>
<<

&

Custom
Logic

Figure 1. Custom instruction architecture. Intel’s website [2].

The CORDIC can be employed in two different modes: rotation mode and vectoring
mode. In the rotation mode, the coordinate components of a vector and a rotation angle
are given, and the coordinates of the original vector, after rotation, are computed. In the
vectoring mode, the coordinate components of a vector are given and the magnitude and
angular argument of the original vector are computed.

The equations of the CORDIC algorithm are given in Equations (1)–(3). Equations (1)
and (2) depict the iterative equations for the rotation mode, where i stands for the itera-
tion index, N is the number of iterations, and the rotation direction is di = sign(zi) [14].
The coordinates of the rotated vector are given in Equation (2), where Kn is the scale factor.

xi+1 = xi − yi ∗ di ∗ 2−i

yi+1 = yi − xi ∗ di ∗ 2−i

zi+1 = zi − di ∗ atan(2−i)
(1)

xN = KN(x0cosz0 − y0sinz0)
yN = KN(y0cosz0 + x0sinz0)
zN = 0

(2)

Equation (3) describes the unified CORDIC algorithm [15]. The algorithm merges both
rotation and vectoring modes, as well as the phase type (circular, linear, and hyperbolic),
where µ determines the sign bit and e(i) selects the rotation function.

xi+1 = xi − µσi ∗ yi ∗ 2−i

yi+1 = yi − σi ∗ xi ∗ 2−i

zi+1 = zi − σi ∗ e(i)
(3)

A simplified top-level block diagram of the Altera CORDIC block is shown in Figure 2.
The x, y, and z inputs and outputs are twos-complement signed numbers, while mode en-
forces vectoring mode (mode = 0) or rotation mode (mode = 1) The bit widths and number
of iterations are parameterizable. This implementation is based on ALTERA_CORDIC IP
Core. Table 1 presents a list of the 12 supported mathematical functions. When using the
CORDIC core, the user must select the required function.



J. Low Power Electron. Appl. 2022, 12, 4 4 of 12

Figure 2. The CORDIC Component Port Map.

Table 1. CORDIC Available Functions.

Function Mode x_in y_in z_in Result Phase
Type

A*cos(B) 1 A 0 B x_out Circular
A*sin(B) 1 A 0 B y_out Circular
asin(A) 1 Unit 0 A z_out Circular
atan(B/A) 0 A B 0 z_out Circular
Mag(A,B) 0 A B 0 x_out Linear
C-B/A 0 A B C z_out Hyperbolic
A*cosh(B) 1 A 0 B x_out Hyperbolic
A*sinh(B) 1 0 A B x_out Hyperbolic
A*exp(B) 1 A A B y_out Hyperbolic
atanh(B/A) 0 A B 0 z_out Hyperbolic
0.5*ln(A) 0 A + 1 A − 1 0 z_out Hyperbolic
sqrt(A) 0 A + 1

4 A − 1
4 0 x_out Hyperbolic

The CORDIC algorithm can be implemented in two different manners: (a) basic
sequential structure or (b) pipelined parallel structure [16]. The sequential implementation
assumes that only one iteration is performed per clock cycle. Figure 3 depicts the block
schematic of the main hardware elements of the CORDIC data path. The data path consists
of n-bit adders/subtractors, sign extending shifters, and a lookup table (LUT) used to
store the phase constants. The pipelined implementation is based on a parallel structure
consisting of N cascaded calculation blocks producing a new result in each clock cycle
(with a latency of N cycles).

+ -

Adder

- +

Adder

+ -

Adder

>>i >>i

Figure 3. CORDIC calculation block.



J. Low Power Electron. Appl. 2022, 12, 4 5 of 12

3. Related Work

Several approaches for hardware computation acceleration of trigonometric functions
have been presented [17,18]. The well-known CORDIC algorithm offers a variable precision
approach for varied transcendental functions. R. Andraka et al. [19] described in detail
how to drive the CORDIC core to evaluate trigonometric, exponential, logarithmic, and
other functions in fixed-point representation.

Previous work have shown the benefit of using CORDIC for AI algorithms in terms of
power and area. G. Raut et al. [7,8] presented an optimized CORDIC-based architecture
to enable computations required in the neural networks. The CORDIC engine was em-
ployed in hyperbolic rotation mode to realize both tanh and sigmoid activation functions.
M. Heidarpur et al. [9] presented a spiking neuron model (Izhikevich neuron) utilizing
spike timing-dependent plasticity (STDP) learning based on the CORDIC algorithms to
calculate Izhikevich neuron differential equations. X. Hao et al. [10] presented an imple-
mentation of a cerebellar Purkinje spiking neuron model using the CORDIC algorithm.

Accelerating the CORDIC algorithm for software–hardware acceleration was ad-
dressed by E. Liventsev et al. [18]. Liventsev presented several approaches for CORDIC
core extension of MIPS FPGA processor instruction set for the acceleration of fixed-point
calculations. The proposed accelerator contains two CORDIC modules and a fast multi-
plication core. A Uniform Driver Interface (UDI) is used to decode custom instructions
and access the processor register file. A speedup factor of 6.24 compared with software
implementation is demonstrated for matrix transform operations. The use of radix-4
CORDIC accelerator was suggested by S. Nolting et al. [20] illustrating that the processing
performance can be increased by a factor of 28.1.

A floating-point CORDIC coprocessor interfacing with a Nios processor was presented
by [21]; the authors suggested using an argument reduction algorithm as the preprocessing
and iterative CORDIC calculation followed by scaling and normalization, and demon-
strated a speedup factor of around 100. J. Zhou et al. [22] presented a compact SAR
processor composed of four FFT processing elements and a floating-point pipeline hybrid-
mode CORDIC coprocessor implemented on FPGA. A reconfigurable pipeline CORDIC
architecture that can be configured to operate in different modes to achieve single precision
floating-point arithmetic operations was presented in [23]. The CORDIC-based floating-
point arithmetic processor has been efficiently implemented on Xilinx FPGA. A pipeline-
based implementation of a CORDIC accelerator was presented by K. Nguyen et al. [24].
The CORDIC was coupled to a RISC-V microprocessor execution path, performing 414
times faster than software.

A. Buzdar et al. [25] presented a novel CORDIC accelerator integrated with an embed-
ded processor data path to improve processor performance in terms of execution time and
energy efficiency. The authors showed that a modified CORDIC data path, using custom
instruction, is 14.5 times more cycle efficient than a data path lacking a modified CORDIC
accelerator. The novelty of this design is that it takes a single iteration to compute sine and
cosine compared with the standard CORDIC algorithm, which requires N iterations. This
provides effective usage of the accelerator in which a series of values of sine and cosine are
required to be computed.

F. Sun et al. [26] proposed a hybrid approach integrating both coprocessors and
custom instructions as two different forms of hardware acceleration that can be applicable
at different levels of granularity and offer differing trade-offs. This methodology builds
upon the basic observations that coprocessors are usually good for coarse-grained tasks and
require minimal intervention or support from the processor, while custom instructions are
usually suited to fine-grained operations that are best integrated into a processor pipeline.

Contrarily to other existing CORDIC accelerators, we propose a DMA-based ISA
extension integrated with a pipeline CORDIC accelerator. The CORDIC ISA extension is
directly interfaced with a standard processor data path allowing efficient implementation
of new trigonometric ALU-based custom instructions. The proposed DMA-based CORDIC
accelerator can also be used to perform repeated calculations on an array of values offering



J. Low Power Electron. Appl. 2022, 12, 4 6 of 12

significant speedup with respect to doing the calculations in software, which is very
effective for calculating a long array of output layers in NN applications.

4. Methodology

This paper proposes and evaluates a floating-point CORDIC accelerator aimed at
extending the ALU instruction set to support a range of trigonometric functions using
multicycle custom instruction with 15-bit CORDIC. Dedicated pre and post hardware
processing units are used to convert the standard IEEE-754 floating-point input format
into a fixed-point format and vice versa. We evaluate three different hardware accelerator
implementations for the proposed CORDIC custom instruction: (a) basic approach, (b)
pipelined mode, and (c) DMA-based approach.

4.1. ISA Extension Basic Implementation

The CORDIC custom instruction implements the C standard library trigonometric
functions. The custom instruction interface has 2 input operands and one return value.
The basic function call operation will stall the software until the results are available,
thus, driving each software variable latency is equal to the latency of the hardware core.
The CORDIC core in this implementation is not pipelined since it is not needed, thus
saving logic resources. Figure 4 schematically describes the CORDIC custom instruction
block diagram.

The CORDIC custom instruction data path supports IEEE-754 floating-point con-
version with variable precision. The CORDIC has a configurable accuracy with linear
complexity for the latency and polynomial for the area. The CORDIC multiplies the out-
put amplitude with an inherent gain factor, which should be compensated somewhere
in the algorithm or ignored (if amplitude is not an issue). The CORDIC core resolution
is determined by the input/output signals’ width and the number of effective iterations.
The number of effective iterations is limited by phase word width. The flexibility of the
CORDIC core enables us to configure a nonstandard word width, for example, if only few
additional LSB bits are required to satisfy the resolution requirements.

Pipelined CORDIC

float2fix fix2float

Pipelined CIC

scaler
dataa
datab

result
done

n
start

FIFO

Figure 4. CORDIC Custom Instruction Basic Block Diagram.

The CORDIC operands are fixed-point words, with a predefined width. The z_in
word—a twos-complement signed integer—represents the continuous segment [−π, π)
with a resolution of π × 2−B, where B is the integer width. The scaler block scales the phase
periodical range [−π, π) to the integer width, multiplying z_in by 2B−1/π. The scaler
can also be configured to compensate the CORDIC gain factor. The z_in word width also



J. Low Power Electron. Appl. 2022, 12, 4 7 of 12

determines the latency of the CORDIC unit. The fixed-point conversion range of x_in and
y_in, using the float2fix and fix2float blocks, cover the range of the input vector. In this
work, we used Q2.13 binary fixed-point number format with 2 integer bits and 13 fractional
bits for both (x_in, y_in) to represent the real segment [−2, 2 − 2−13] with quantization of
2−13. This representation enables common fractional part for using the ALTERA_CORDIC
IP Core that dictates a Q2.13 presentation for the rotation, and Q3.13 for vectoring.

The scaling operation adds 5 cycles to the latency, the float2fix conversion adds another
6 cycles latency in each direction. The total latency of this component is 32 cycles. Every
additional bit to the phase word will add 1 cycle of latency to this chain. For a fixed-point-
based application, such as typical DSP applications, the extra cost due to floating-point
conversions can be saved.

A custom instruction control (CIC) block handles special instructions, for example,
the rotate function, which perform both sine and cosine function with the same input
arguments, to produce a single calculation for the (x_out, y_out) pair; so, although this
couple is computed by two sequential processing, the function call occurs only once, thus
saving valuable clock cycles. Table 2 describes the set of CORDIC functions that have been
chosen for acceleration using this ISA extension. The sigmoid function is realized using the
tanh CORDIC built-in function as shown in Equation (4).

sigmoid(z) =
1

1 + e−z =
1 + tanh(z/2)

2
(4)

The CORDIC core is configured with 15 bit for phase width, adding 15 cycles to
the latency of the processing chain. The CORDIC custom instruction latency extends
32 clock cycles, including the conversion and scaling operations. We tested the Nios
using Tightly Coupled Memory (TCM). The Nios requires approximately 22 clock cycles
per operation call. Ultimately, the throughput of cosine operation is one per 54 clock
cycles. This is 90 times faster than the C Standard Library Function (using floating-point
hardware component).

4.2. ISA Extension Using Pipelined Approach

The proposed pipeline mode is characterized by a pipeline flow that enables providing
the next input arguments concurrently with the calculation of the current arguments.
Therefore, new arguments can be fetched in parallel with the current calculation. We
suggest implementing a pipelined CORDIC architecture within the custom instruction
module. The pipeline mode can significantly speed up calculations of arrays of arguments
compared with the basic CORDIC ISA extension of the Nios core, which calculates a
single argument.

The implementation of the pipelined CORDIC custom instruction is based on the
basic architecture depicted in Figure 4. The implementation of the CORDIC accelerator is
based on a unique pipeline architecture, and an additional FIFO is required for temporary
storing the resulted arguments until they are fetched by the CPU. All the CORDIC functions
described in Table 2 are supported in this pipeline mode. The CIC unit includes support
for pipeline control and synchronization. The average execution time for computing a
sine array is 16 cycles per array element. This pipelined implementation outperforms
the basic CORDIC by a factor of about ×3. However, processing of larger arrays that are
located in an external memory results in approximately 45 cycles per array element due
to the high memory latency. Moreover, the software loop overhead of a single-issue RISC
core [27] requires an additional five cycles to update the data pointers, although this can be
improved by a zero overhead loop controller [28].



J. Low Power Electron. Appl. 2022, 12, 4 8 of 12

Table 2. CORDIC Direct Addressing Custom Instruction.

Macro C Equivalent Function

CORDIC_COS(phase) cos(phase)
CORDIC_SIN(phase) sin(phase)
CORDIC_AMPCOS(amp,phase) amp*cos(phase)
CORDIC_AMPSIN(amp,phase) amp*sin(phase)
CORDIC_ROTATEX(x,y,phase) x*cos(phase) − y*sin(phase)
CORDIC_ROTATEY(x,y,phase) y*cos(phase) + x*sin(phase)
CORDIC_SIGMOID(x) sigmoid(x)

4.3. ISA Extension Using DMA Approach

We propose to integrate a DMA controller within the custom instruction module for
efficient external data access. The DMA controller handles all the data transfers between
memory and the CORDIC using two DMA channels (READ and WRITE). The CORDIC
generates a DMA request on its read channel, upon which the DMA controller fetches an
argument from memory. When the CORDIC finishes the first calculation, it generates a
DMA request on the write channel.

Figure 5 depicts the block diagram of the DMA-based CORDIC custom instruction,
which consists of three main components: (a) DMA CIC—This unit implements the interface
to the CPU via the Altera Custom Instruction Slave (CIS) interface. The CIC is responsible
for the DMA configuration with the required transfer parameters (i.e., address pointers,
input/output array size, and operation type). The CIC is connected to the AVM through a
custom status registers (CSR) standard interface. The CIC monitors the DMA operation
and returns done to the CPU when the transaction finished. (b) Pipelined CORDIC Data
Path—This acceleration unit adapts the pipeline data path as described in Section 4.2,
and performs the CORDIC trigonometric functions. (c) Avalon-based Interface—The
Avalon-based interface has multiple DMA channels using the Avalon Memory-Mapped
interface (AVM) to access external memory device. The Avalon stream interface handles the
data input (ASI) and output (ASO) to and from the pipelined CORDIC. The DMA-based
custom instruction approach can perform functions based on both direct and indirect
addressing (using pointers).

Pipelined CORDIC Data 
Path

ASO

DMA CIC

ASI

n
start
dataa
datab

AVM

Avalon Interface

Read 
Controller

Write 
Controller

AVM

result
done

Figure 5. DMA-Based CORDIC Custom Instruction.

The functions described in Table 3 use indirect addressing mode, thus transferring a
pointer through the ISA I/F. The DMA CORDIC accesses the arguments using this pointer,
or by direct addressing as in Table 2. The DMA module is customized to handle 3 read and



J. Low Power Electron. Appl. 2022, 12, 4 9 of 12

2 write addresses with a relatively small latency. The DMA design is scalable and can be
extended and adapted to other hardware acceleration using ISA extensions; for example,
the unique DMA_CORDIC_NEURON function implements the neuron computational unit
including the MAC operation and a sigmoid activation function, as shown in Figure 6.
Performance simulations show that the DMA-based custom instruction utilizes the full
memory bandwidth. The DMA approach enables a throughput of two cycles per array
element for sine operation, and five cycles for rotate and a neuron operation.

Figure 6. Single neuron with multiple inputs followed by activation function [7].

Table 3. CORDIC Indirect Addressing Custom Instruction.

Macro Functionality

DMA_CORDIC_COS(z_in*,x_out*,size) x_out = cos(z_in)
DMA_CORDIC_SIN(z_in*,y_out*,size) y_out = sin(z_in)
DMA_CORDIC_AMPCOS
(z_in*,x_in*,x_out*,size)

x_out = x_in*cos(z_in)

DMA_CORDIC_AMPSIN
(z_in*,x_in*,y_out*,size)

y_out = x_in*sin(z_in)

DMA_CORDIC_ROTATEXY
(z_in*,x_in*,y_in*,x_out*,y_out*,size)

x_out = x_in*cos(z_in) − y_in*sin(z_in)
y_out = y_in*cos(z_in) + x_in*sin(z_in)

DMA_CORDIC_NEURON
(x_in*,y_in*,y_out*,size)

y_out = sigmoid(∑n
i=1 x_ini ∗ y_ini)

5. Results

Performance evaluation of the proposed ISA extension approach using custom instruc-
tion design was carried out for the CORDIC trigonometric functions. The three suggested
ISA accelerators approaches was tested and compared with a commercial CORDIC hard-
ware accelerator (STM32). To accurately evaluate the program execution time using the
proposed hardware custom instruction module, the ALTERA performance counter profiler
was used. The seven CORDIC functions described in Table 2 were examined with and
without ISA extension acceleration.

Figure 7 depicts the average execution time for sine and rotate functions, for the three
ISA hardware accelerations, and for two software implementations using math library and
CORDIC emulation. Results show that the DMA approach outperforms the pipeline and
the basic ISA extension approaches, allowing efficient memory interfacing. For example,
for the sine function, the DMA requires average execution time of only 2 clock cycles
(for array size of 2048 elements) compared with 54 and 21 clock cycles for the basic and
pipeline implementation, respectively. This demonstrates a speedup factor of 112, 289,
and 3037 for the basic, pipeline, and DMA implementations, respectively, compared with
the basic math library software implementation. A significant speedup of up to a factor
of 466 is also demonstrated compared with the CORDIC software emulator. It can be
seen that the superiority of the DMA-based ISA accelerator is more significant as the
array size increases. Similar results are demonstrated for the rotate function. The average



J. Low Power Electron. Appl. 2022, 12, 4 10 of 12

execution time using DMA is only 5 clock cycles compared with 122 clock cycles for
the basic implementation. A speedup factor of 5148 is demonstrated compared with the
math library software implementation. The sigmoid and neuron operations shows similar
execution time to the rotate function; although a similar work [21] showed slightly better
acceleration for the pipeline approach, our proposed DMA approach outperforms the
related method by a factor of about ×10.

DMA (sine)

DMA (rotate/neuron)

pipeline (sine)

basic (sine) 

basic (rotate/sigmoid) 

CORDIC software emualtor (sine)

software math library (sine)

software math library (rotate)

C
yc

le
s 

pe
r 

A
rr

ay
 E

le
m

en
t

Array Size

Figure 7. Comparison of sine and rotate Average Execution Time.

The proposed DMA-based ISA acceleration was also compared to a commercial
STM32G4 MCU [29] integrating a CORDIC hardware accelerator with DMA channels.
Our proposed CORDIC acceleration outperformed the STM32G4 CORDIC, demonstrating
54 cycles for a single-element sine calculation and 2 cycles on average for large sine arrays
(over 128 elements), compared with 79 cycles and 8 cycles for the STM CORDIC, respec-
tively. The main reason for the performance improvement compared with the STM32G4 is
due to our efficient pipeline implementation of the custom instruction acceleration. The
STM32G4 CORDIC can process a value in 6 clock cycles results in an average process time
of 8 cycles per value (including one cycle for write contents into the CORDIC and another
cycle to transfer the result into a data register), while the proposed DMA-based pipeline
can process a value in only 2 clock cycles.

Table 4 describes the detailed hardware cost for each of the following system imple-
mentations: Nios with FPU, Basic implementation, pipeline, and DMA approaches. Both
the maximum frequency and resource utilization (in terms of required memory, LUT, regis-
ters, and DSP) are demonstrated using Altera Cyclone-IV FPGA. The three proposed ISA
accelerators implementation achieve a high synthesizable frequency of around 150 MHz
compared with the 115 MHz achieved with Nios FPU combinational custom instruction.
The DMA custom instruction power estimation is 35 mW for 115 MHz and doubles at
150 MHz. The extra logic elements required for the implementation of the proposed ISA
accelerators are minor in regards to the demonstrated speedup, and power overhead should
be saved by the reduced Nios toggle rate.



J. Low Power Electron. Appl. 2022, 12, 4 11 of 12

Table 4. Synthesis Results on Altera FPGA device.

LUTs Registers Memory DSP Speed (MHz)

Component

Nios-II/f Core 1290 376 10,240 6 -
FPU Accelerator 415 198 144 7 -
CORDIC 1099 170 0 0 -
scaler 126 148 0 0 -
float2fix 261 257 0 0 -
fix2float 192 238 0 0 -
Basic CIC 634 1039 768 4 -
Pipelined CIC 658 1071 1280 6 -
DMA CIC (+Avalon I/F) 1790 2382 4096 6 -

System

Nios with FPU 1819 717 10,453 13 114
Basic Implementation 4933 2463 12,032 10 145
Pipelined Approach 4955 2495 12,544 12 143
DMA Approach 6089 3796 15,360 12 146

6. Summary and Conclusions

This paper demonstrates an efficient hardware implementation of CORDIC acceler-
ation using the ISA extension approach for a RISC architecture. The proposed CORDIC
ISA extension can directly interface any standard processor data path, allowing efficient
implementation of new trigonometric ALU-based custom instructions. Contrarily to other
existing CORDIC accelerators, we propose a DMA-based ISA extension integrated with a
pipeline CORDIC accelerator. Performance evaluation of the proposed DMA-based ISA
extension approach demonstrates significant speedup while keeping low power. The pro-
posed ISA acceleration also outperforms some existing commercial CORDIC hardware
accelerators. A speedup of three orders of magnitude is presented compared with software
implementation. The proposed CORDIC accelerator can also be efficiently applied to DSP
and Deep Neural Network applications requiring the support of large data arrays and
repeated calculations.

Author Contributions: All authors (E.M., A.B.-D. and S.G.) contributed equally to this work. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the High-tech scholarship award and the Israel
Innovation Authority GenPro Consortium.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cadence. Tensilica Customizable Processors. Available online: https://ip.cadence.com (accessed on 9 November 2021).
2. Intel. Nios II Processors. Available online: https://www.intel.com (accessed on 9 November 2021).
3. Davide Schiavone, P.; Conti, F.; Rossi, D.; Gautschi, M.; Pullini, A.; Flamand, E.; Benini, L. Slow and steady wins the race?

A comparison of ultra-low-power RISC-V cores for Internet-of-Things applications. In Proceedings of the 2017 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS), Thessaloniki, Greece, 25–27 September
2017; pp. 1–8. [CrossRef]

4. Joseph Yiu, A. Innovate by Customized Instructions, but without Fragmenting the Ecosystem. Available online: https://armkeil.
blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf (ac-
cessed on 9 November 2021).

5. Wang, X.; Magno, M.; Cavigelli, L.; Benini, L. FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network
Inference at the Edge of the Internet of Things. arXiv 2019, arXiv:1911.03314.

https://ip.cadence.com
https://www.intel.com
http://doi.org/10.1109/PATMOS.2017.8106976
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/arm-custom-instructions-without-fragmentation-whitepaper.pdf


J. Low Power Electron. Appl. 2022, 12, 4 12 of 12

6. Sharma, N.K.; Rathore, S.; Khan, M.R. A Comparative Analysis on Coordinate Rotation Digital Computer (CORDIC) Algorithm
and Its use on Computer Vision Technology. In Proceedings of the 2020 First International Conference on Power, Control and
Computing Technologies (ICPC2T), Raipur, India, 3–5 January 2020; pp. 106–110. [CrossRef]

7. Raut, G.; Rai, S.; Vishvakarma, S.K.; Kumar, A. A CORDIC Based Configurable Activation Function for ANN Applications.
In Proceedings of the 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Limassol, Cyprus, 6–8 July 2020;
pp. 78–83. [CrossRef]

8. Raut, G.; Rai, S.; Vishvakarma, S.K.; Kumar, A. RECON: Resource-Efficient CORDIC-Based Neuron Architecture. IEEE Open J.
Circuits Syst. 2021, 2, 170–181. [CrossRef]

9. Heidarpur, M.; Ahmadi, A.; Ahmadi, M.; Rahimi Azghadi, M. CORDIC-SNN: On-FPGA STDP Learning with Izhikevich Neurons.
IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2651–2661. [CrossRef]

10. Hao, X.; Yang, S.; Wang, J.; Deng, B.; Wei, X.; Yi, G. Efficient Implementation of Cerebellar Purkinje Cell With the CORDIC
Algorithm on LaCSNN. Front. Neurosci. 2019, 13, 1078. [CrossRef] [PubMed]

11. Manor, E.; Greenberg, S. Efficient Hardware/Software partitioning for Heterogeneous Embedded Systems. In Proceedings of the
2018 IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE), Eilat, Israel, 12–14 December 2018;
pp. 1–4. [CrossRef]

12. Volder, J.E. The Birth of Cordic. J. VLSI Signal Process. Syst. 2000, 25, 101–105. [CrossRef]
13. Lin, K.J.; Hou, C.C. Implementation of trigonometric custom functions hardware on embedded processor. In Proceedings of the

2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 14 November 2013; pp. 155–157.
14. Walther, J.S. A Unified Algorithm for Elementary Functions. In Proceedings of the Spring Joint Computer Conference—AFIPS ’71

(Spring), Atlantic City, NJ, USA, 18–20 May 1971; Association for Computing Machinery: New York, NY, USA, 1971; pp. 379–385.
[CrossRef]

15. Walther, J.S. A Unified Algorithm for Elementary Functions; AFIPS ’71; Spring: Berlin/Heidelberg, Germany, 1971.
16. Nguyen, H.; Nguyen, X.; Pham, C.; Hoang, T.; Le, D. A parallel pipeline CORDIC based on adaptive angle selection. In Pro-

ceedings of the 2016 International Conference on Electronics, Information, and Communications (ICEIC), Danang, Vietnam,
27–30 January 2016; pp. 1–4. [CrossRef]

17. Detrey, J.; de Dinechin, F. Floating-Point Trigonometric Functions for FPGAs. In Proceedings of the 2007 International Conference
on Field Programmable Logic and Applications, Amsterdam, The Netherlands, 27–29 August 2007; pp. 29–34.

18. Liventsev, E.; Silantiev, A.; Primakov, E.; Telminov, O. Extending MIPSfpga instruction set for navigation data processing.
In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus),
St. Petersburg and Moscow, Russia, 1–3 February 2017; pp. 480–484. [CrossRef]

19. Andraka, R. A Survey of CORDIC Algorithms for FPGA Based Computers. In Proceedings of the 1998 ACM/SIGDA Sixth
International Symposium on Field Programmable Gate Arrays—FPGA ’98, Monterey, CA, USA, 22–24 February 1998; Association
for Computing Machinery: New York, NY, USA, 1998; pp. 191–200. [CrossRef]

20. Nolting, S.; Payá-Vayá, G.; Schmeadecke, I.; Blume, H. Evaluation of a Generic Radix-4 CORDIC Coprocessor Tightly Coupled
with a Generic VLIW-SIMD ASIP Architecture. 2012. Available online: https://www.researchgate.net/profile/Guillermo-Paya-
Vaya/publication/260614052_Evaluation_of_a_Generic_Radix-4_CORDIC_Coprocessor_Tightly_Coupled_with_a_Generic_
VLIW-SIMD_ASIP_Architecture/links/570121bb08aea6b7746a78b1/Evaluation-of-a-Generic-Radix-4-CORDIC-Coprocessor-
Tightly-Coupled-with-a-Generic-VLIW-SIMD-ASIP-Architecture.pdf (accessed on 9 November 2021).

21. Ibrahim, M.; Chen, K.T.; Idroas, M.; Yahya, Z. The implementation of a pipelined floating-point CORDIC coprocessor on NIOS II
soft processor. Int. J. Electr. Electron. Data Commun. 2015, 3, 15–20.

22. Zhou, J.; Dong, Y.; Dou, Y.; Lei, Y. Dynamic Configurable Floating-Point FFT Pipelines and Hybrid-Mode CORDIC on FPGA.
In Proceedings of the 2008 International Conference on Embedded Software and Systems, Chengdu, China, 29–31 July 2008;
pp. 616–620.

23. Li, B.; Fang, L.; Xie, Y.; Chen, H.; Chen, L. A unified reconfigurable floating-point arithmetic architecture based on CORDIC
algorithm. In Proceedings of the 2017 International Conference on Field Programmable Technology (ICFPT), Melbourne, VIC,
Australia, 11–13 December 2017; pp. 301–302. [CrossRef]

24. Nguyen, K.D.; Kiet, D.T.; Hoang, T.T.; Quynh, N.Q.N.; Tran, X.T.; Pham, C.K. A trigonometric hardware acceleration in 32-bit
RISC-V microcontroller with custom instruction. IEICE Electron. Express 2021, 18, 20210266. [CrossRef]

25. Buzdar, A.; Sun, L.; Khan, S.; Buzdar, A. Area and Energy efficient CORDIC Accelerator for Embedded Processor Datapaths. Inf.
Midem Ljubl. 2016, 46, 197–208.

26. Sun, F.; Ravi, S.; Raghunathan, A.; Jha, N.K. A Synthesis Methodology for Hybrid Custom Instruction and Coprocessor Generation
for Extensible Processors. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2007, 26, 2035–2045. [CrossRef]

27. Wolf, M. Chapter 2 -Instruction Sets. In Computers as Components, 3rd ed.; Wolf, M., Ed.; The Morgan Kaufmann Series in
Computer Architecture and Design; Morgan Kaufmann: Boston, MA, USA, 2012; pp. 51–93. [CrossRef]

28. Kavvadias, N.; Masselos, K. Efficient Hardware Looping Units for FPGAs. In Proceedings of the 2010 IEEE Computer Society
Annual Symposium on VLSI, Lixouri, Greece, 5–7 July 2010; pp. 35–40. [CrossRef]

29. STMicroelectronics. AN5325 Getting Started with the CORDIC Accelerator Using STM32CubeG4 MCU Package. Available
online: https://www.st.com/en/embedded-software/stm32cubeg4.html#documentation (accessed on 9 November 2021).

http://dx.doi.org/10.1109/ICPC2T48082.2020.9071514
http://dx.doi.org/10.1109/ISVLSI49217.2020.00024
http://dx.doi.org/10.1109/OJCAS.2020.3042743
http://dx.doi.org/10.1109/TCSI.2019.2899356
http://dx.doi.org/10.3389/fnins.2019.01078
http://www.ncbi.nlm.nih.gov/pubmed/31680818
http://dx.doi.org/10.1109/ICSEE.2018.8646107
http://dx.doi.org/10.1023/A:1008110704586
http://dx.doi.org/10.1145/1478786.1478840
http://dx.doi.org/10.1109/ELINFOCOM.2016.7563034
http://dx.doi.org/10.1109/EIConRus.2017.7910596
http://dx.doi.org/10.1145/275107.275139
https://www.researchgate.net/profile/Guillermo-Paya-Vaya/publication/260614052_Evaluation_of_a_Generic_Radix-4_CORDIC_Coprocessor_Tightly_Coupled_with_a_Generic_VLIW-SIMD_ASIP_Architecture/links/570121bb08aea6b7746a78b1/Evaluation-of-a-Generic-Radix-4-CORDIC-Coprocessor-Tightly-Coupled-with-a-Generic-VLIW-SIMD-ASIP-Architecture.pdf
https://www.researchgate.net/profile/Guillermo-Paya-Vaya/publication/260614052_Evaluation_of_a_Generic_Radix-4_CORDIC_Coprocessor_Tightly_Coupled_with_a_Generic_VLIW-SIMD_ASIP_Architecture/links/570121bb08aea6b7746a78b1/Evaluation-of-a-Generic-Radix-4-CORDIC-Coprocessor-Tightly-Coupled-with-a-Generic-VLIW-SIMD-ASIP-Architecture.pdf
https://www.researchgate.net/profile/Guillermo-Paya-Vaya/publication/260614052_Evaluation_of_a_Generic_Radix-4_CORDIC_Coprocessor_Tightly_Coupled_with_a_Generic_VLIW-SIMD_ASIP_Architecture/links/570121bb08aea6b7746a78b1/Evaluation-of-a-Generic-Radix-4-CORDIC-Coprocessor-Tightly-Coupled-with-a-Generic-VLIW-SIMD-ASIP-Architecture.pdf
https://www.researchgate.net/profile/Guillermo-Paya-Vaya/publication/260614052_Evaluation_of_a_Generic_Radix-4_CORDIC_Coprocessor_Tightly_Coupled_with_a_Generic_VLIW-SIMD_ASIP_Architecture/links/570121bb08aea6b7746a78b1/Evaluation-of-a-Generic-Radix-4-CORDIC-Coprocessor-Tightly-Coupled-with-a-Generic-VLIW-SIMD-ASIP-Architecture.pdf
http://dx.doi.org/10.1109/FPT.2017.8280166
http://dx.doi.org/10.1587/elex.18.20210266
http://dx.doi.org/10.1109/TCAD.2007.906457
http://dx.doi.org/10.1016/B978-0-12-388436-7.00002-7
http://dx.doi.org/10.1109/ISVLSI.2010.63
https://www.st.com/en/embedded-software/stm32cubeg4.html#documentation

	Introduction
	Background
	Nios-II Custom Instruction
	Altera Hardware CORDIC Unit

	Related Work
	Methodology
	ISA Extension Basic Implementation
	ISA Extension Using Pipelined Approach
	ISA Extension Using DMA Approach

	Results
	Summary and Conclusions
	References

