
Journal of

Low Power Electronics
and Applications

Review

Rediscovering Majority Logic in the Post-CMOS Era:
A Perspective from In-Memory Computing

John Reuben

Chair of Computer Science 3—Computer Architecture, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; johnreuben.prabahar@fau.de

Received: 5 August 2020; Accepted: 2 September 2020; Published: 4 September 2020
����������
�������

Abstract: As we approach the end of Moore’s law, many alternative devices are being explored to
satisfy the performance requirements of modern integrated circuits. At the same time, the movement
of data between processing and memory units in contemporary computing systems (‘von Neumann
bottleneck’ or ‘memory wall’) necessitates a paradigm shift in the way data is processed. Emerging
resistance switching memories (memristors) show promising signs to overcome the ‘memory wall’ by
enabling computation in the memory array. Majority logic is a type of Boolean logic which has been
found to be an efficient logic primitive due to its expressive power. In this review, the efficiency of
majority logic is analyzed from the perspective of in-memory computing. Recently reported methods
to implement majority gate in Resistive RAM array are reviewed and compared. Conventional CMOS
implementation accommodated heterogeneity of logic gates (NAND, NOR, XOR) while in-memory
implementation usually accommodates homogeneity of gates (only IMPLY or only NAND or only
MAJORITY). In view of this, memristive logic families which can implement MAJORITY gate and
NOT (to make it functionally complete) are to be favored for in-memory computing. One-bit full
adders implemented in memory array using different logic primitives are compared and the efficiency
of majority-based implementation is underscored. To investigate if the efficiency of majority-based
implementation extends to n-bit adders, eight-bit adders implemented in memory array using
different logic primitives are compared. Parallel-prefix adders implemented in majority logic can
reduce latency of in-memory adders by 50–70% when compared to IMPLY, NAND, NOR and other
similar logic primitives.

Keywords: memristor; memristive logic; Non-Volatile Memory (NVM); Resistive RAM; in-memory
computing; majority logic; adder; Boolean logic; parallel-prefix adder

1. Introduction

Extraordinary innovation in the field of Integrated circuits is the last 50 years was based on
Moore’s law scaling and predominantly the Complementary Metal Oxide Semiconductor (CMOS)
technology. Whether we have reached the end of Moore’s law or approaching it in the near future
(an issue being debated), it is evident that some signs are clear. The processor clock frequency, a key
measure of performance has plateaued [1], the regular doubling of integration density has slowed
down in 14 nm and 10 nm CMOS [2] and 2D lithography has reached its limits [3]. Beyond-CMOS
research has been underway in the last decade to find an alternative device which is better than
CMOS in its characteristics. This includes CMOS-like devices (tunnel FET, GaN TFET, Graphene
ribbon pn junction, Ferroelectric FET) [4], quantum-dot cellular automata (QCA), nanomagnet logic,
resistance-switching devices (Resistive RAM, Phase Change Memory, conductive bridge RAM),
spin-based devices, and plasmonic-based devices [5]. Although some of these post-CMOS devices
possessed valuable features like low-voltage operation and non-volatility, recent bench-marking efforts
seem to suggest that none of these devices could outperform CMOS in the most critical aspects of

J. Low Power Electron. Appl. 2020, 10, 28; doi:10.3390/jlpea10030028 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-7891-4975
http://www.mdpi.com/2079-9268/10/3/28?type=check_update&version=1
http://dx.doi.org/10.3390/jlpea10030028
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2020, 10, 28 2 of 15

computing (energy, latency and area) [4,6]. Hence it is envisaged that post-CMOS devices will augment
and enhance CMOS-based computational fabrics and will not completely replace CMOS technology.

Majority logic, a type of Boolean logic, is defined to be true if more than half of the n inputs are
true, where n is odd. Hence, a majority gate is a democratic gate and, it can be expressed in terms
of Boolean AND/OR as MAJ(a, b, c) = a.b + b.c + a.c, where a, b, c are Boolean variables. Although
majority logic was known since 1960, there has been a rediscovery in using it for computation in many
post-CMOS devices. A majority gate based on spin waves [7], Quantum-Dot cellular automata [8],
nano magnetic logic [9], and Single Electron Tunneling [10] have been demonstrated and in some
of these technologies, it is more efficient to implement a majority gate [11] than other other logic
primitives (NAND, NOR, XOR). Recent research [6,12–14] has confirmed that majority logic is to be
preferred not only because a particular nanotechnology can realize it, but also because of its ability
to implement arithmetic-intensive circuits with less gates, i.e., in a compact manner. For arithmetic
intensive benchmarks, it has been proved that Majority-Invert Graphs (MIGs) can achieve up to 33%
reduction in logical depth compared to And-Invert Graphs (AIGs) produced by Berkeley’s ABC
synthesis tool [12]. Such findings from research in logic synthesis implies that circuits implemented
using majority logic will be better regardless of the post-CMOS device used. In this review, we limit
our discussion to how majority logic could be implemented using RRAM technology since in-memory
computing is the focus of this review. A review of how a majority gate could be implemented using
other post-CMOS devices is presented in [15,16].

The movement of data between processing and memory units is the major cause for the degraded
performance of contemporary computing systems, often referred to as the ‘von Neumann bottleneck’
or ‘memory wall’ [17,18]. ‘Computation energy’ is dominated by ‘data movement energy’ since the
energy for memory access grows exponentially along the memory hierarchy (from cache to off-chip
DRAM). There has been an ongoing effort (for 10-15 years) to combat the memory wall by bringing
the processor and memory unit closer to each other. Resistive RAMs are two terminal devices
(usually a Metal-Insulator-Metal structure [19]) capable of storing data as resistance. Although RRAM
(memristor) was initially experimented as a non-volatile memory technology, it was later discovered
that certain Boolean logic operations (IMPLY logic [20,21] and NOR [22] were the first logic gates
that were explored) can be implemented in the memory array. Boolean gates were implemented by
modifying the structure of the memory array or modifying the peripheral circuitry or a combination
of these. In-memory computing (also called ‘processing-in-memory’) refers to any effort to process
data at the residence of data (i.e., in the memory array) without moving it out to a separate processing
unit. ‘Processing/computing’ could mean a wide variety of operations from arithmetic operations
to cognitive tasks like machine learning and pattern recognition [23]. In this review, the focus is on
arithmetic operations and how majority logic can enable efficient in-memory computing.

The rest of this review is structured as follows. In Section 2, we first give a brief overview on
‘memristive logic’, the methodology of designing logic circuits using memristors. This is followed by a
discussion on how majority gate is implemented in RRAM array in Section 3. Three possible ways
are discussed. In Section 4, we analyse the latency of in-memory one-bit adder using different logic
primitives and highlight the latency reduction obtained by majority logic. To investigate if majority
logic can be efficient for n-bit adders, 8-bit adders implemented using different logic primitives and
different types (ripple carry, carry look-ahead, parallel-prefix) are analysed and compared, followed
by conclusion in Section 6

2. Memristive Logic

A short introduction to memristors and different array configurations of such non-volatile
memories is appropriate before the introduction of memristive logic. Memristors are a class of
emerging Non-Volatile Memories (NVMs) which store data as resistance. Under voltage/current
stress, the resistance can be switched between a Low Resistance State (LRS) and a High Resistance
State (HRS). The word ‘memristor’ is used because such a device is basically a ‘resistor’ with a

J. Low Power Electron. Appl. 2020, 10, 28 3 of 15

‘memory’. Depending on what causes the change in resistance, a memristor can be classified as follows:
Resistive Random Access Memory (RRAM) where the change in resistance is due to the formation and
rupture of a conductive filament [24]; Phase Change Memory (PCM) where the change in resistance is
due to the amorphous or crystalline state of the chalcogenide phase-change material; Spin Transfer
Torque-Magnetic RAM (STT-MRAM) where the change in resistance is due to the magnetic polarization.
To construct a memory array using such devices, two configurations are common: 1Transistor-1 Resistor
(1T–1R) and 1Selector-1 Resistor (1S–1R), as illustrated in Figure 1a. The 1T–1R configuration uses a
transistor as an access device for each memory cell, allowing one to access a particular cell without
interfering with its neighbours in the array [25,26]. The 1S–1R configuration uses a two-terminal device
called a ‘selector’ which has a diode-like characteristic. The selector is assembled in series with the
memristive device. Different types of selectors have been experimentally demonstrated in [27–30].
The 1S–1R is area-efficient, but suffers from sneak–path problem because it is not possible to program
(read or write to a cell) a cell without interfering with its neighbours [22].

BL1

SL1

WL2

BL2

SL2

WL
D

S

BL

SL

 RRAM

WL1

BL1 BL2

WL1

WL2

 RRAM

 Selector

 1T-1R

 1S-1R

(a)

 Input Output
a b

R
es

is
ta

n
ce

, Ω

R
es

is
ta

nc
e,

 Ω

Logic 1

Logic 0

Logic 1

Logic 0

 STATEFUL LOGIC
 (R-R)

V
ol

ta
ge

, V

R
es

is
ta

nc
e,

 Ω

Logic 1

Logic 0

Logic 1

Logic 0

 NON-STATEFUL
 (V-R)

V
ol

ta
ge

, V

R
es

is
ta

nc
e,

 Ω

Logic 1

Logic 0

Logic 1

Logic 0

 NON-STATEFUL
 (R-V)

(b)

A

C
in

B

Sum

Carry

NOR: 7 levels

A
B

C
in

Sum

Carry

NAND: 6 levels

A
B

C
in

Sum

Carry
Majority: 4 levels

 Sum = A⊕B⊕C
in

 Carry = AB+BC
in
+AC

in

(c)

Figure 1. (a) 1S–1R and 1T–1R configuration of memristive memory array (b) If resistance is the only
state variable, a memristive logic is said to be stateful. If voltage is also used in addition to resistance,
it is said to be non-stateful (c) 1-bit full adder in terms of NOR gates [31], NAND gates [32,33] and
majority gates [34]; Majority logic achieves less logical depth than NAND/NOR for 1-bit full adder.

Memristive logic is the art of designing logic circuits using memristors [17,18]. Conventionally,
arithmetic circuits have been implemented using logic gates built from CMOS transistors. In contrast,
a memristive logic family formulates a ‘functionally complete’ Boolean logic using a memristive device
(RRAM/PCM/STT-MRAM) as the primary switching device (CMOS circuitry may also be used, but in
a peripheral manner). For example, NOR is ‘functionally complete’ since any Boolean logic can be
expressed in terms of NOR gates. Therefore, if a NOR gate can be designed using memristive devices,
any Boolean logic can be implemented using memristive devices. Furthermore, most researchers
try to make their logic gates executable in an array configuration so that they can be exploited for
in-memory computing. NAND, IMPLY+FALSE [35] and Majority+NOT [12] are also functionally
complete. From the perspective of the state variable used for computation, memristive logic family
can be classified as either stateful or non-stateful. A memristive logic family is said to be stateful
if the Boolean variable is represented only as the internal state of the memristor (i.e., its resistance)
and computation is performed by manipulating this state [36]. If voltage is also used in addition to
resistance, the logic family is said to be non-stateful (Figure 1b). Some logic families are classified on
this criteria in [18].

A characteristic of memristive logic families is that, with certain modifications to the conventional
memory, a particular logic primitive can be implemented and, other logic primitives have to be realized

J. Low Power Electron. Appl. 2020, 10, 28 4 of 15

in terms of that logic primitive. For example, in the NOR-based memristive family (MAGIC [31]),
all other gates (AND, OR, XOR) have to be expressed in terms of NOR gates and then mapped to the
memory array. It must be noted that even the NOR logic primitive is implemented with modifications
to the peripheral circuitry of the conventional memory array, namely the row decoder (modified
to bias the rows at ‘isolation voltage’ to prevent unintended NOR operation in those rows) and
the WRITE circuitry (modified to apply the MAGIC execution voltage which is twice the WRITE
voltage). Similarly, in the NAND-based logic family reported in [37], XOR gate is implemented
as a sequence of four NAND operations. This implies that if the fundamental logic primitive of a
memristive logic family is weak, all in-memory computation performed using that logic family will
be in-efficient (requiring long sequences of operations). To illustrate, Figure 1c depicts a 1-bit full
adder expressed in terms of a particular logic primitive (NOR/NAND/Majority), as required for
in-memory implementation. For a 1-bit adder, majority logic (together with NOT gates) can achieve
33–43% reduction in logic levels compared to NAND/NOR, while for bigger circuits, this percentage
may vary. Research in logic synthesis suggests that circuits synthesized in terms of majority and
NOT gates (Majority-Invert-Graphs) can achieve up to 33% reduction in logical depth compared to
And-Invert-Graphs (AIGs) for arithmetic intensive circuits [12]. It must be emphasized that for any
memristive logic, the number of cycles/steps to execute a circuit in-memory will be larger than the
number of logic levels, i.e, n levels of Boolean logic will require n + x cycles in-memory, where x
depends on the memristive logic family and its capability to execute gates in parallel. Therefore,
it is evident that to reduce the latency of in-memory computing, the synthesized logic must be latency
optimized (before mapping to CMOS or a post-CMOS device). Stronger logic primitives like majority
can minimize latency and the purpose of this review is to highlight the efficiency of memristive logic
family with majority as the fundamental logic primitive (complemented with NOT since majority as a
sole logic primitive is functionally incomplete).

3. In-Memory Majority Logic

In literature, there are two viable ways in which a majority gate is implemented in Resistive
RAM array. Both are non-stateful logic families. Following the naming convention introduced in [38]
(‘input state variable-output state variable’ logic), a non-stateful logic family can be V–R logic (input
state variable is voltage and the output is resistance) or R–V logic (input state variable is resistance
and output is voltage), as illustrated in Figure1b. In this section, the principle of implementing a
in-memory majority gate in V–R and R–V logic is reviewed and the advantages and disadvantages are
analysed. In addition to the aforementioned methods, a in-memory minority gate (inverse of majority
gate) is also theoretically proposed in [39]. The minority gate is realized by exploiting voltage division
between three RRAMs (which store the inputs) and an output RRAM. However, the correct functioning
of such a gate is not guaranteed since recent research has shown that variability is intrinsic to RRAM
technology and cannot be completely eradicated [40,41]. In the presence of variations (in RRAM’s
switching voltages and resistive states), such a minority gate is not feasible in RRAM array, and hence
it is not discussed in detail in this review.

3.1. V–R Majority Logic

In [42–44], majority gate is implemented in RRAM array (1S–1R) by applying two inputs of the
majority gate as voltages at WL and BL of the array (the third input being the initial state of the RRAM)
and the output is the new non-volatile state of the device. Hence this way of implementing majority
can be called V–R logic, though in the strict sense, it should be VandR–R logic since the third input is
resistance (initial state of the RRAM). However, it can be justified to be simply called V–R logic since
the output (switching of resistance) is triggered on the applications of voltages. The fourth column
of Table 1 depicts M3(A, B, C), the 3-input majority function of the first three columns. Note that
M3(A, B, C) = AB + BC + AC. To understand how a Resistive RAM cell can implement the majority
function, consider a situation in which the Boolean variable C of Table 1 is the initial state of a memory

J. Low Power Electron. Appl. 2020, 10, 28 5 of 15

cell (following the convention used in this field, logic 0 is HRS and logic 1 is LRS). Let us assume that
the RRAM cell holding C has a symmetric switching characteristic, i.e., its internal resistance value
changes from HRS to LRS when a voltage VSET is applied across its terminals and from LRS to HRS
when -VSET is applied. As in the CMOS realm, logic 1 is a high voltage, which we will fix as VSET ,
and logic 0 corresponds to ground.

Table 1. Establishing the link between the majority function and Resistive RAM.

A B C M3(A, B, C) B M3(A, B, C) RM3(A, B, C)

0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 1 0 0 0
1 0 0 0 1 1 1
1 0 1 1 1 1 1
1 1 0 1 0 0 0
1 1 1 1 0 1 1

If A and B are applied across the two terminals of the RRAM cell, its state will either switch or
remain the same in accordance with the initial state. Figure 2 illustrates the different combinations of
(A, B, C) on a RRAM cell. When A is logic 1 and B is logic 0, the applied voltage across the RRAM
cell is VSET , triggering a transition from HRS to LRS and vice versa. When both A and B are (0,0)
or (1,1), the state of the memristor will not change. This specific behavior can be captured as a new
functionally complete Boolean function, called ‘Resistive Majority’, RM3(A, B, C), which describes the
new nonvolatile state of the cell as a function of an initial internal state C and the voltages A and B
applied across the terminals of the device. Note that RM3(A, B, C) = M3(A, B, C), as listed in Table 1.
Complex functions can be easily expressed and manipulated as RM3 operators using Majority-Inverter
Graphs (MIG), a recently introduced logic manipulation structure consisting of three input majority
nodes and regular/complemented edges [12]. In [18], the authors elaborate how an eight-bit adder
is expressed in MIGs and then mapped to the memristive memory array using the aforementioned
resistive majority function.

HRS
C=0

LRS
C=1

Resistance
C

A

B

A, B
0, 0
0, 1
1, 1

A, B
0, 0
1, 0
1, 1

A, B
1, 0

A, B
0, 1

Voltage

Figure 2. Illustration of V–R majority logic. Arrow indicates the state transition, which depends on the
initial state of the RRAM cell C and the voltage applied across its terminals (A, B); dotted lines indicate
the state variable of C, which is resistance, while A and B are voltages [18].

3.2. R–V Majority Logic

In [45,46], a majority gate is implemented while reading from a 1T–1R array, i.e., the inputs of
the majority gate are the resistances of the cells and the output is sensed as a voltage, a R–V logic.
Consider an array of RRAM cells arranged in a 1T-1R configuration, as depicted in Figure 3. Each cell
can be individually read/written into by activating the corresponding wordline (WL) and applying
appropriate voltage across the cell (BL and SL). Now, if three rows are activated simultaneously
during read operation (Rows 1 to 3 in Figure 3a, the resistances in column 1 are in parallel (neglecting

J. Low Power Electron. Appl. 2020, 10, 28 6 of 15

the parasitic resistance of BL and SL). The effective resistance between BL and SL will therefore
be Re f f = (RA + rDS)||(RB + rDS)||(RC + rDS) ≈ (RA||RB||RC), if the drain-to-source resistance of
transistor (rDS) is small compared to LRS. A Sense Amplifier (SA) which can accurately sense the
effective resistance implements a ‘in-memory’ majority gate. Table 2 lists the truth table of a 3-input
majority gate (M3(A, B, C)) and the effective resistance for all the eight possibilities. If we assume a
LRS and HRS of 10 kΩ and 133 kΩ, respectively (IHP’s RRAM), the crucial aspect of the proposed gate
is to be able to differentiate between R001

e f f (two LRS and one HRS) and R110
e f f (two HRS and one LRS).

In other words, resistance ≤ 4.8 kΩ must be sensed as ‘0’ and resistance ≥ 8.7 kΩ must be sensed as
‘1’ (shaded grey in Table 2). If we call the resistance to be differentiated as sensing window (8.7 kΩ
− 4.8 kΩ = 3.9 kΩ), any sense amplifier which can differentiate this sensing window can be used to
implement the majority gate. A current-mode SA is used in [45] and a time-based SA is used in [46] to
verify the correct functioning of majority gate, even in the presence of reasonable RRAM variations.
It must be noted unlike NAND and NOR, majority as a logic primitive is not functionally complete.
However, it forms a functionally complete logic when used together with NOT, i.e., any Boolean logic
can be expressed in terms of majority and NOT gates [12]. Therefore, a NOT gate is implemented by
latching the inverted output of the SA, as illustrated in Figure 3b.

WL1

BL1 BL64

SL64

WL64

WL2

WL3

BL2 BL3

SL2 SL3

R
A

R
eff

 = R
A
 || R

B
 || R

C

R
B

R
C

WL4

WL5

I
READ

EN

D
out

 Time-Based
Sense Amp.

EN M
1-3

M
4

M
5

M
6

D Q

Q

V
BL

V
BL

t
delay

EN
delay

I
FF D

out

current-starved

(a)

AWL
0

WL
1

WL
2

WL
3

BL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 B
C

C
 D
E

SA

F

SA

A B C D E F F
E

1 2

3 4

m
1

m
2

m
3

m
4

m
1

m
2

WRITE (m
2
 ,m

2
) at (WL

0
,BL

1
) and (WL

0
,BL

9
)

WRITE (m
1
) at (WL

1
,BL

1
)

AWL
0

WL
1

WL
2

WL
3

BL 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 B
C

C
 D
E

SA

F

SA

F
E

m
3

m
4

m
1

m
2

m
2

EN Q

Q

SL

SA

WL

BL

READ NOT gate Majority gate

A

A

Maj(A,B,C)

0

1
A

INVI
READ

EN Q

Q

SL

SA

WL

BL

A

0

1

INVI
READ

EN Q

Q

SL

SA

WL

BL

B

0

1

INVI
READ

A

C

READ

READ

(b)

Figure 3. (a) In-memory majority gate proposed in [45,46]: When three rows are activated (WL1−3)
simultaneously in a 1T-1R array, the three resistances RA, RB, RC will be in parallel (Inputs of the
majority gate A, B, C are represented as resistances RA, RB, RC). An ‘in-memory’ majority gate can
be implemented by accurately sensing the effective resistance Re f f during READ. (b) NOT operation
implemented with a 2:1 multiplexer at the output of the SA. With majority and NOT gate implemented
as READ, multiple levels of logic can be executed by writing the data back to the array, simplifying
computing to READ and WRITE operations in memory. Multiple majority gates can be executed in
parallel in the memory array, thereby reducing latency of in-memory computation.

J. Low Power Electron. Appl. 2020, 10, 28 7 of 15

Table 2. Precisely sensing Re f f results in majority: Logic ‘0’ is LRS (10 kΩ) and logic ‘1’ is HRS
(133.3 kΩ). Sense amplifier distinguishes between rows shaded grey and those that are not.

A B C M3(A, B, C) Re f f Re f f

0 0 0 0 LRS
3 3.3 kΩ

0 0 1 0 HRS·LRS
LRS+2·HRS 4.8 kΩ

0 1 0 0 HRS·LRS
LRS+2·HRS 4.8 kΩ

0 1 1 1 HRS·LRS
HRS+2·LRS 8.7 kΩ

1 0 0 0 HRS·LRS
LRS+2·HRS 4.8 kΩ

1 0 1 1 HRS·LRS
HRS+2·LRS 8.7 kΩ

1 1 0 1 HRS·LRS
HRS+2·LRS 8.7 kΩ

1 1 1 1 HRS
3 44.4 kΩ

A comparison between V–R logic and R–V logic is presented pictorially in Figure 4.
In the V–R implementation [42–44] in memory, the inputs of the majority gate are applied as voltages
at WL/BL. This manner of computation complicates the row/column decoders of the memory array,
which were conventionally used to select rows/columns. Thus the peripheral circuitry will get
complicated, i.e., the row/column decoders have to be significantly modified to do row selection
(during memory operation) and apply inputs (during majority operation). In contrast, in the R–V
implementation [45,46], the row/column decoders retain their functionality as in a conventional
memory, with a minor modification (the row decoder must be enhanced to select three rows during
majority operation, which can be achieved by interleaving decoders [46]). Furthermore, the R–V
implementation [45,46] is conducive for parallel-processing since multiple gates can be mapped to
the same set of rows, as illustrated in in Figure 4. This will aid the implementation of in-memory
parallel-prefix adders (Section 5) and ternary computing [47].

WL1

BL1

SL1

WL2

WL3

BL2 BL3

SL2
SL3

A

B

C

M3(A,B,C)EN Q
SA

I
READ

WL1

BL1

WL3

M3(A,B,C)

A B C

B BL3

M3(A,B,C)

A B CA

B

C

C

A

(a) (b)
A B C D E F G H K

(c)

Peripheral ckt.

Mapping for (a)

Mapping for (b)

Figure 4. (a) V–R majority gate [42–44] (b) R–V majority gate [45,46] (c) When multiple gates have to
be executed in parallel, the majority gates of [42–44] have to be mapped diagonally because two gates
cannot be executed in the same row/column.

J. Low Power Electron. Appl. 2020, 10, 28 8 of 15

4. In-Memory One-Bit Full Adders Using Different Logic Primitives

As stated, in-memory addition is achieved by a sequence of Boolean logic operations executed
in memory. To compute in memory, the circuit must first be expressed in terms of the logic gates the
particular memristive logic family implements. A one-bit full adder in memristive logic family based
on NOR [48], NAND [49] and MAJORITY [45] is compared in Figure 5. It is evident that the number of
steps (memory cycles) to compute in memory is larger than the number of logic levels. When mapped
to the memory array, n levels of logic will require n + x cycles, where x depends on the characteristics
of the memristive logic family. This includes attributes like statefulness, capability to executes gates
in parallel etc. In a non-stateful logic family, the output of the gate may be a voltage and it may be
needed as resistance for the next level of logic, requiring an additional WRITE operation. In a stateful
logic family, the output of the gate needs to be aligned with the inputs of following gate (next logic
level), requiring an additional WRITE operation. In this manner, the interconnecting wires between
logic levels contribute to additional cycles in memory. Furthermore, a memristive logic family should
have the capability to execute multiple gates simultaneously. Consequently, multiple gates in a logic
level can be mapped to the memory array in a single cycle. If the memristive logic family does not
support the simultaneous execution of multiple gates, x will increase. Thus the parallel-friendliness of
the logic family is also an important characteristic to minimize latency.

A

C
in

B

Sum

Carry

NOR: 7 levels

A
B

C
in

Sum

Carry

NAND: 6 levels

A
B

C
in

Sum

Carry
Majority: 4 levels

ONE-BIT ADDER: Logic levels IN-MEMORY

10 cycles

10 cycles

6 cycles

Mapping to the
memory array

Figure 5. n levels of Boolean logic will require n + x cycles in-memory, where x depends on the
memristive logic family. It must be noted that the number of cycles required (10 cycles for NOR,
NAND and 6 cycles for MAJORITY) is already optimized by executing multiple gates in parallel (see
the mapping for NOR [31], NAND [49] and MAJORITY [45]).

To evaluate the effectiveness of majority logic for in-memory computing, one-bit adders using
different logic primitives are analysed from literature. Table 3 lists the latency of one-bit adders.
IMPLY logic primitive was the most researched logic primitive because of it’s stateful nature.
IMPLY was explored in different array configurations (1S–1R, 1T–1R) and the full adder, expressed
in terms of XOR and AND gates was implemented as sequence of IMPLY operations. However, all
the adders using IMPLY primitive have a latency of at least 13 cycles, implying a weak primitive.
As summarized in Table 3, the number of steps to compute in an array, reduces from IMPLY to
NAND/NOR logic primitive, and, further from NAND/NOR to MAJORITY, proving the strength of
majority as a logic primitive.

J. Low Power Electron. Appl. 2020, 10, 28 9 of 15

Table 3. Latency of in-memory one-bit full adders.

Primitive Structure Latency Ref

IMPLY 1D–1R 43 steps [50]

IMPLY 1R 35 steps [32]

IMPLY 1R 27 steps [51]

IMPLY 1R 23 steps [52]

IMPLY(semi-parallel) 1T–1R 17 steps [53]

IMPLY 1T–1R 13 steps [54]

ORNOR 1T–1R 17 steps [55]

NOR 1S–1R 10 steps [48]

NAND 1S–1R 10 steps [49]

XOR+NAND (unipolar memristors) 1S–1R 8 steps [56]

MAJORITY+NOT 1T–1R 6 steps [45]

5. In-Memory Eight-Bit Adders Using Different Logic Primitives

Will the reduced latency obtained by majority logic for 1-bit full adder translate to n-bit adders?
In this section, eight-bit adders using different logic primitives are analysed and compared to answer
this question. From Figure 5, it is evident that to minimize in-memory latency, the number of
logic levels which is mapped to the memory array must be minimized. Parallel-prefix (PP) adders
are a family of adders originally proposed to overcome the latency incurred by the rippling of
carry in ripple carry adders. Such adders have the capability to minimize the latency to O(log n),
for n-bit adders. PP adders are conventionally expressed as “propagate” (ai ⊕ bi) and “generate”
terms (ai.bi). Hence, they are implemented as AND, OR and XOR gates. As already stated,
a memristive logic family cannot implement such a heterogeneity of gates. As illustrated in Figure 6,
the XOR gate has to be implemented as NAND gates [37,49], increasing the logic levels to 12.
Such an eight-bit PP adder (Sklansky) is expressed in OR/AND logic primitive and implemented
in the memory array in 37 cycles [57]. Using majority logic, an 8-bit PP adder is implemented in
memory in [46]. Since majority gate is the basic building block for many emerging nanotechnologies,
prior works [13,14] have formulated such PP adders in majority logic. The majority-based eight-bit
adder depicted in Figure 7 is derived from [13,14]. For an eight-bit adder, the logical depth is six levels
of majority gates and one level of NOT gates, and at most eight gates are needed simultaneously in
each level. Since multiple majority gates can be executed in parallel (Figure 4), they can be mapped to
the array in 19 cycles, as elaborated in [46].

 XOR

 XOR

b

0
a

0
b

1
a

1
b

2
a

2
b

3
a

3
b

4
a

4
b

5
a

5
b

6
a

6
b

7
a

7

C

out
S

7
S

6
S

5
S

4
S

3
S

2
S

1
S

0

 8
 L

og
ic

 L
ev

el
s

Figure 6. An eight-bit parallel-prefix adder (Ladner-Fischer) has 8 logic levels of AND, OR and XOR
gates. If the logic family cannot execute XOR gate, it must be expressed as NAND gates, increasing the
logic levels to 12.

J. Low Power Electron. Appl. 2020, 10, 28 10 of 15

A detailed comparison of the latency of 8-bit in-memory adders based on different logic primitives
and the corresponding adder configuration is presented in Table 4. Since IMPLY logic incurred highest
latency for 1-bit addition, the trend continues for 8-bit addition which is to be expected. In ripple
carry configuration, IMPLY logic based adders incur a latency of at least 54 steps and parallel-prefix
configuration could reduce it to 25 steps. It may be safe to conclude that for the same logic primitive,
parallel-prefix configurations results in lower latency, although the mapping of the parallel-prefix
adder to the memory array is not clearly elaborated in [58]. Regarding NOR, a carry look-ahead
configuration incurs 48 steps while a computerised algorithm is used to map 8-bit NOR-based adder
to the memory array in 38 steps. OR/AND-based logic primitive could achieve a latency of 37 steps in
parallel-prefix configuration. An eight-bit parallel-prefix adder in majority logic could achieve a latency
of 19 steps [46]. Finally, a XOR-based adder [59] could achieve a latency of 16 steps even in ripple
carry configuration, but it must be emphasized that [59] used multiple arrays since multiple XOR
gates could not be executed simultaneously in the same array. To conclude, the latency minimization
achieved by majority logic for 1-bit addition does extend to 8-bit addition. Majority logic used in
synergy with parallel-prefix configuration is one of the best performing in-memory adders. Finally,
any comparison among in-memory adders is not complete without considering energy consumption
and area of the memory array and the peripheral circuitry needed to implement the logic operations in
memory. Such a holistic comparison is beyond the scope of this work. However, latency can be a good
measure of performance if the individual logic operations are achieved in an energy efficient manner
and sneak-path energy leakage is avoided (in 1S–1R configuration). Note that there are other works
implementing adders using memristors along with CMOS in a non-array configuration. However,
such works are not included in the comparisons performed in this work since they cannot be exploited
for in-memory computing.

Table 4. Latency of in-memory 8-bit adders.

Primitive Array Adder Type Latency Comment/Ref

IMPLY 1S-1R Ripple carry 58 Each step is IMPLY operation [35]

IMPLY+OR 1S-1R Ripple Carry 54 Each step is IMPLY/OR/NOR operation [60]

IMPLY – Parallel-prefix 25 Each step is IMPLY operation [58]

NOR/NOT 1T-1R Look-Ahead 48 Each step has one or more NOR/NOT
operations [61]

NOR 1S-1R algorithm 38 Each step has one or more NOR operations [18]

OR/AND 1S-1R Parallel-prefix 37 Each step has one or more OR/AND
operation [57]

ORNOR 1S-1R Parallel-clocking 31 Each step has one or more ORNOR/IMPLY
operation [55]

MAJORITY+NOT 1T-1R Parallel-prefix 19 Each step is Majority/NOT or WRITE [46]

XOR 1T-1R Ripple carry 16 * Each step is XOR [59]

* XOR gate proposed in [59] is not parallel-friendly and consequently multiple gates cannot be executed
in parallel in the array (to circumvent this, multiple arrays have been used in [59]). Furthermore, XOR is
not functionally complete and has to be used in conjunction with other gates to implement other arithmetic
circuits. In contrast, majority+NOT is functionally complete.

Latency is a big hurdle for mainstream adoption of in-memory arithmetic. As noted in
Tables 3 and 4, in-memory adders require tens of steps for addition operations. Even if a single
step takes 5 ns (RRAMs can switch in a few ns), this would be much larger than the latency incurred
in CMOS technology (32-bit addition operation can be performed in 4 ns in CMOS technology [62]).
However, in in-memory arithmetic, the energy and latency (hundreds of ns) for data movement is
avoided (the numbers to be added have to be moved from DRAM memory to processor in conventional
approach). Therefore, in-memory arithmetic can still be beneficial, provided the latency to compute

J. Low Power Electron. Appl. 2020, 10, 28 11 of 15

in memory is minimized. The power of majority logic lies in reducing this latency to compute
in memory array.

a
0
b

0
a

1
b

1 C
in

a
3

b
3

a
2
b

2
a

5
b

5a
6
b

6
a

4
b

4a
7
b

7

 C
out

 c
7

c
6

c
5

c
4

c
3

c
2

c
1

 a
0
b

0

 C
in

 S
0

 a
1
b

1

 S
1

 c
1

 a
2
b

2

 S
2

 c
2

 a
3
b

3

 S
3

 S
4

 c
4

 c
3

 a
4
b

4 a
5
b

5

 S
5

 a
6
b

6

 S
6 S

7

 c
7

 c
6

 a
7
b

7

 c
5

 C
out

1 2 3 4 5 6 7 8

 9 10

 11 12 13 14 15 16

 17 18 19 20

 21 22 23 24 25 26 27 28

 29 30 31 32 33 34 35 36

 C
in

 a
0

 b
0

19 cycles

mapping

 7
 L

og
ic

 L
ev

el
s

Figure 7. Eight-bit parallel-prefix adder (Ladner-Fischer) expressed as 7 levels of Majority+NOT
gates. By executing multiple gates in parallel, the adder can be implemented in memory in 19 cycles,
as elaborated in [46].

6. Conclusions

Majority logic did not become the dominant logic to compute in CMOS technology because
it was more efficient to implement NAND/NOR gate than a majority gate (12 transistors for an
inverted majority gate compared to 6 transistors for NAND3/NOR3). However, in many emerging
post-CMOS devices, a majority gate can be implemented efficiently and therefore, majority logic needs
to be re-evaluated for its computing efficiency. This review attempted to investigate the efficiency of
majority logic from the perspective of in-memory computing. When the logic levels are minimized and
mapped to the memory array using a memristive logic family (which can implement an in-memory
majority gate), it leads to a latency optimized in-memory adder. Unlike CMOS implementation
which accommodated a heterogeneity of logic gates, in-memory computing favours a homogeneous
implementation of logic gates because peripheral circuitry of the array needs to be enhanced with
capability to execute a particular logic primitive (different logic primitives necessitate different
modifications to the peripheral circuitry). Therefore, majority-based memristive logic may be all
the more preferred since they can implement any logic succinctly when used together with NOT gates.
Comparisons with different logic primitives revealed that majority logic incurs least latency for 1-bit
adders. For n-bit adders, majority logic has the potential to achieve a latency reduction of 70% and
50% when compared to IMPLY and NAND/NOR logic primitives, if implemented in a parallel-prefix
configuration in the memory array. Minimizing latency also aids in lowering the power consumption
since the array will be powered for a shorter time. Latency is a significant disadvantage in in-memory
addition and the power of majority logic lies in reducing this latency. Therefore, majority logic and its
advantages needs to be rediscovered in the era of in-memory computing.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Theis, T.N.; Wong, H.P. The End of Moore’s Law: A New Beginning for Information Technology.
Comput. Sci. Eng. 2017, 19, 41–50. [CrossRef]

2. Bohr, M.T.; Young, I.A. CMOS Scaling Trends and Beyond. IEEE Micro 2017, 37, 20–29. [CrossRef]
3. Shalf, J.M.; Leland, R. Computing beyond Moore’s Law. Computer 2015, 48, 14–23. [CrossRef]

http://dx.doi.org/10.1109/MCSE.2017.29
http://dx.doi.org/10.1109/MM.2017.4241347
http://dx.doi.org/10.1109/MC.2015.374

J. Low Power Electron. Appl. 2020, 10, 28 12 of 15

4. Nikonov, D.E.; Young, I.A. Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated
Circuits. IEEE J. Explor. Solid State Comput. Devices Circuits 2015, 1, 3–11. [CrossRef]

5. Testa, E.; Soeken, M.; Amar, L.G.; De Micheli, G. Logic Synthesis for Established and Emerging Computing.
Proc. IEEE 2019, 107, 165–184. [CrossRef]

6. Young, I.A.; Nikonov, D.E. Principles and trends in quantum nano-electronics and nano-magnetics for
beyond-CMOS computing. In Proceedings of the 2017 47th European Solid-State Device Research
Conference (ESSDERC), Leuven, Belgium, 11–14 September 2017; pp. 1–5.

7. Ciubotaru, F.; Talmelli, G.; Devolder, T.; Zografos, O.; Heyns, M.; Adelmann, C.; Radu, I.P. First experimental
demonstration of a scalable linear majority gate based on spin waves. In Proceedings of the 2018 IEEE
International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 36.1.1–36.1.4.
[CrossRef]

8. Imre, A.; Csaba, G.; Ji, L.; Orlov, A.; Bernstein, G.H.; Porod, W. Majority Logic Gate for Magnetic
Quantum-Dot Cellular Automata. Science 2006, 311, 205–208. [CrossRef] [PubMed]

9. Breitkreutz, S.; Kiermaier, J.; Eichwald, I.; Ju, X.; Csaba, G.; Schmitt-Landsiedel, D.; Becherer, M. Majority Gate
for Nanomagnetic Logic With Perpendicular Magnetic Anisotropy. IEEE Trans. Magn. 2012, 48, 4336–4339.
[CrossRef]

10. Oya, T.; Asai, T.; Fukui, T.; Amemiya, Y. A Majority-Logic Nanodevice Using a Balanced Pair of
Single-Electron Boxes. J. Nanosci. Nanotechnol. 2002, 2, 333–342. [CrossRef]

11. Amarú, L.; Gaillardon, P.; De Micheli, G. Majority-based synthesis for nanotechnologies. In Proceedings
of the 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macau, China,
25–28 January 2016; pp. 499–502. [CrossRef]

12. Amarú, L.; Gaillardon, P.E.; Micheli, G.D. Majority-Inverter Graph: A New Paradigm for Logic Optimization.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 806–819. [CrossRef]

13. Jaberipur, G.; Parhami, B.; Abedi, D. Adapting Computer Arithmetic Structures to Sustainable
Supercomputing in Low-Power, Majority-Logic Nanotechnologies. IEEE Trans. Sustain. Comput. 2018,
3, 262–273. [CrossRef]

14. Pudi, V.; Sridharan, K.; Lombardi, F. Majority Logic Formulations for Parallel Adder Designs at Reduced
Delay and Circuit Complexity. IEEE Trans. Comput. 2017, 66, 1824–1830. [CrossRef]

15. Amarú, L.; Gaillardon, P.; Mitra, S.; De Micheli, G. New Logic Synthesis as Nanotechnology Enabler.
Proc. IEEE 2015, 103, 2168–2195. [CrossRef]

16. Parhami, B.; Abedi, D.; Jaberipur, G. Majority-Logic, its applications, and atomic-scale embodiments.
Comput. Electr. Eng. 2020, 83, 106562. [CrossRef]

17. Reuben, J.; Ben-Hur, R.; Wald, N.; Talati, N.; Ali, A.; Gaillardon, P.E.; Kvatinsky, S. Memristive Logic:
A Framework for Evaluation and Comparison. In Proceedings of the Power And Timing Modeling,
Optimization and Simulation (PATMOS), Thessaloniki, Greece, 25–27 September 2017; pp. 1–8.

18. Reuben, J.; Talati, N.; Wald, N.; Ben-Hur, R.; Ali, A.H.; Gaillardon, P.E.; Kvatinsky, S. A Taxonomy and
Evaluation Framework for Memristive Logic. In Handbook of Memristor Networks; Chua, L., Sirakoulis, G.C.,
Adamatzky, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1065–1099. [CrossRef]

19. Simmons, J.G.; Verderber, R.R. New conduction and reversible memory phenomena in thin insulating films.
Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1967, 301, 77–102. [CrossRef]

20. Borghetti, J.; Snider, G.S.; Kuekes, P.J.; Yang, J.J.; Stewart, D.R.; Williams, R.S. ‘Memristive’ switches enable
‘stateful’ logic operations via material implication. Nature 2010, 464, 873–876. [CrossRef]

21. Zhou, F.; Guckert, L.; Chang, Y.F.; Swartzlander, E.E.; Lee, J. Bidirectional voltage biased implication
operations using SiOx based unipolar memristors. Appl. Phys. Lett. 2015, 107, 183501. [CrossRef]

22. Talati, N.; Ben-Hur, R.; Wald, N.; Haj-Ali, A.; Reuben, J.; Kvatinsky, S. mMPU—A Real Processing-in-Memory
Architecture to Combat the von Neumann Bottleneck. In Applications of Emerging Memory Technology: Beyond
Storage; Suri, M., Ed.; Springer: Singapore, 2020; pp. 191–213. [CrossRef]

23. Rahimi Azghadi, M.; Chen, Y.C.; Eshraghian, J.K.; Chen, J.; Lin, C.Y.; Amirsoleimani, A.; Mehonic, A.;
Kenyon, A.J.; Fowler, B.; Lee, J.C.; et al. Complementary Metal-Oxide Semiconductor and Memristive
Hardware for Neuromorphic Computing. Adv. Intell. Syst. 2020, 2, 1900189. [CrossRef]

24. Chang, K.C.; Chang, T.C.; Tsai, T.M.; Zhang, R.; Hung, Y.C.; Syu, Y.E.; Chang, Y.F.; Chen, M.C.; Chu, T.J.;
Chen, H.L.; et al. Physical and chemical mechanisms in oxide-based resistance random access memory.
Nanoscale Res. Lett. 2015, 10. [CrossRef]

http://dx.doi.org/10.1109/JXCDC.2015.2418033
http://dx.doi.org/10.1109/JPROC.2018.2869760
http://dx.doi.org/10.1109/IEDM.2018.8614488
http://dx.doi.org/10.1126/science.1120506
http://www.ncbi.nlm.nih.gov/pubmed/16410520
http://dx.doi.org/10.1109/TMAG.2012.2197184
http://dx.doi.org/10.1166/jnn.2002.108
http://dx.doi.org/10.1109/ASPDAC.2016.7428061
http://dx.doi.org/10.1109/TCAD.2015.2488484
http://dx.doi.org/10.1109/TSUSC.2018.2811181
http://dx.doi.org/10.1109/TC.2017.2696524
http://dx.doi.org/10.1109/JPROC.2015.2460377
http://dx.doi.org/10.1016/j.compeleceng.2020.106562
http://dx.doi.org/10.1007/978-3-319-76375-0_37
http://dx.doi.org/10.1098/rspa.1967.0191
http://dx.doi.org/10.1038/nature08940
http://dx.doi.org/10.1063/1.4934835
http://dx.doi.org/10.1007/978-981-13-8379-3_8
http://dx.doi.org/10.1002/aisy.201900189
http://dx.doi.org/10.1186/s11671-015-0740-7

J. Low Power Electron. Appl. 2020, 10, 28 13 of 15

25. Reuben, J.; Fey, D.; Wenger, C. A Modeling Methodology for Resistive RAM Based on Stanford-PKU Model
With Extended Multilevel Capability. IEEE Trans. Nanotechnol. 2019, 18, 647–656. [CrossRef]

26. Golonzka, O.; Arslan, U.; Bai, P.; Bohr, M.; Baykan, O.; Chang, Y.; Chaudhari, A.; Chen, A.; Clarke, J.;
Connor, C.; et al. Non-Volatile RRAM Embedded into 22FFL FinFET Technology. In Proceedings of the 2019
Symposium on VLSI Technology, Kyoto, Japan, 9–14 June 2019; pp. T230–T231. [CrossRef]

27. Hsieh, C.C.; Chang, Y.F.; Chen, Y.C.; Shahrjerdi, D.; Banerjee, S.K. Highly Non-linear and Reliable
Amorphous Silicon Based Back-to-Back Schottky Diode as Selector Device for Large Scale RRAM Arrays.
ECS J. Solid State Sci. Technol. 2017, 6, N143–N147. [CrossRef]

28. Lin, C.Y.; Chen, P.H.; Chang, T.C.; Chang, K.C.; Zhang, S.D.; Tsai, T.M.; Pan, C.H.; Chen, M.C.; Su, Y.T.; Tseng,
Y.T.; et al. Attaining resistive switching characteristics and selector properties by varying forming polarities
in a single HfO2-based RRAM device with a vanadium electrode. Nanoscale 2017, 9, 8586–8590. [CrossRef]
[PubMed]

29. Kim, S.; Lin, C.Y.; Kim, M.H.; Kim, T.H.; Kim, H.; Chen, Y.C.; Chang, Y.F.; Park, B.G. Dual Functions of
V/SiOx/AlOy/p++Si Device as Selector and Memory. Nanoscale Res. Lett. 2018, 13. [CrossRef]

30. Chen, C.; Lin, C.; Chen, P.; Chang, T.; Shih, C.; Tseng, Y.; Zheng, H.; Chen, Y.; Chang, Y.; Lin, C.; et al.
The Demonstration of Increased Selectivity During Experimental Measurement in Filament-Type Vanadium
Oxide-Based Selector. IEEE Trans. Electr. Devices 2018, 65, 4622–4627. [CrossRef]

31. Ben-Hur, R.; Ronen, R.; Haj-Ali, A.; Bhattacharjee, D.; Eliahu, A.; Peled, N.; Kvatinsky, S. SIMPLER MAGIC:
Synthesis and Mapping of In-Memory Logic Executed in a Single Row to Improve Throughput. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2019. [CrossRef]

32. Adam, G.C.; Hoskins, B.D.; Prezioso, M.; Strukov, D.B. Optimized stateful material implication logic for
three- dimensional data manipulation. Nano Res. 2016, 9, 3914–3923. [CrossRef]

33. Kumar, A.P.; Aditya, B.; Sony, G.; Prasanna, C.; Satish, A. Estimation of power and delay in CMOS circuits
using LCT. Indones. J. Electr. Eng. Comput. Sci. 2019, 14, 990–998.

34. Rumi, Z.; Walus, K.; Wei, W.; Jullien, G.A. A method of majority logic reduction for quantum cellular
automata. IEEE Trans. Nanotechnol. 2004, 3, 443–450. [CrossRef]

35. Kvatinsky, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. Memristor-Based Material
Implication (IMPLY) Logic: Design Principles and Methodologies. IEEE Trans. Very Larg. Scale Integr.
(VLSI) Syst. 2014, 22, 2054–2066. [CrossRef]

36. Lehtonen, E.; Poikonen, J.H.; Laiho, M. Memristive Stateful Logic. In Handbook of Memristor Networks;
Chua, L., Sirakoulis, G.C., Adamatzky, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
pp. 1101–1121, doi:10.1007/978-3-319-76375-0_38. [CrossRef]

37. Shen, W.; Huang, P.; Fan, M.; Han, R.; Zhou, Z.; Gao, B.; Wu, H.; Qian, H.; Liu, L.; Liu, X.; et al. Stateful Logic
Operations in One-Transistor-One- Resistor Resistive Random Access Memory Array. IEEE Electr. Device Lett.
2019, 40, 1538–1541. [CrossRef]

38. Ielmini, D.; Wong, H.S.P. In-memory computing with resistive switching devices. Nat. Electr. 2018, 1, 333–343.
[CrossRef]

39. Gupta, S.; Imani, M.; Rosing, T. FELIX: Fast and Energy-efficient Logic in Memory. In Proceedings of the
International Conference on Computer-Aided Design (ICCAD ’18), San Diego, CA, USA, 5–8 November
2018; pp. 55:1–55:7. [CrossRef]

40. Reuben, J.; Fey, D. A Time-based Sensing Scheme for Multi-level Cell (MLC) Resistive RAM. In Proceedings
of the 2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC), Helsinki, Finland, 29–30 October 2019; pp. 1–6. [CrossRef]

41. Reuben, J.; Biglari, M.; Fey, D. Incorporating Variability of Resistive RAM in Circuit Simulations Using the
Stanford–PKU Model. IEEE Trans. Nanotechnol. 2020, 19, 508–518. [CrossRef]

42. Gaillardon, P.; Amaru, L.; Siemon, A.; Linn, E.; Waser, R.; Chattopadhyay, A.; De Micheli, G.
The Programmable Logic-in-Memory (PLiM) computer. In Proceedings of the 2016 Design, Automation
Test in Europe Conference Exhibition (DATE), Dresden, Germany, 14–18 March 2016; pp. 427–432.

43. Shirinzadeh, S.; Soeken, M.; Gaillardon, P.; Drechsler, R. Logic Synthesis for RRAM-Based In-Memory
Computing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 1422–1435. [CrossRef]

44. Bhattacharjee, D.; Easwaran, A.; Chattopadhyay, A. Area-constrained technology mapping for in-memory
computing using ReRAM devices. In Proceedings of the 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017; pp. 69–74. [CrossRef]

http://dx.doi.org/10.1109/TNANO.2019.2922838
http://dx.doi.org/10.23919/VLSIT.2019.8776570
http://dx.doi.org/10.1149/2.0041709jss
http://dx.doi.org/10.1039/C7NR02305G
http://www.ncbi.nlm.nih.gov/pubmed/28636031
http://dx.doi.org/10.1186/s11671-018-2660-9
http://dx.doi.org/10.1109/TED.2018.2862917
http://dx.doi.org/10.1109/TCAD.2019.2931188
http://dx.doi.org/10.1007/s12274-016-1260-1
http://dx.doi.org/10.1109/TNANO.2004.834177
http://dx.doi.org/10.1109/TVLSI.2013.2282132
https://doi.org/10.1007/978-3-319-76375-0_38
http://dx.doi.org/10.1007/978-3-319-76375-0_38
http://dx.doi.org/10.1109/LED.2019.2931947
http://dx.doi.org/10.1038/s41928-018-0092-2
http://dx.doi.org/10.1145/3240765.3240811
http://dx.doi.org/10.1109/NORCHIP.2019.8906921
http://dx.doi.org/10.1109/TNANO.2020.3004666
http://dx.doi.org/10.1109/TCAD.2017.2750064
http://dx.doi.org/10.1109/ASPDAC.2017.7858298

J. Low Power Electron. Appl. 2020, 10, 28 14 of 15

45. Reuben, J. Binary Addition in Resistance Switching Memory Array by Sensing Majority. Micromachines 2020,
11, 496. [CrossRef]

46. Reuben, J.; Pechmann, S. A Parallel-friendly Majority Gate to Accelerate In-memory Computation.
In Proceedings of the 2020 IEEE 31st International Conference on Application-Specific Systems, Architectures
and Processors (ASAP), Manchester, UK, 6–8 July 2020; pp. 93–100.

47. Fey, D.; Reuben, J. Direct state transfer in MLC based memristive ReRAM devices for ternary computing.
In Proceedings of the 2020 European Conference on Circuit Theory and Design (ECCTD), Sofia, Bulgaria,
7–10 September 2020; pp. 1–5.

48. Hur, R.B.; Wald, N.; Talati, N.; Kvatinsky, S. SIMPLE MAGIC: Synthesis and In-memory Mapping of
Logic Execution for Memristor-aided Logic. In Proceedings of the 36th International Conference on
Computer-Aided Design (ICCAD ’17), Irvine, CA, USA, 13–16 Novenber 2017; pp. 225–232.

49. Huang, P.; Kang, J.; Zhao, Y.; Chen, S.; Han, R.; Zhou, Z.; Chen, Z.; Ma, W.; Li, M.; Liu, L.; et al. Reconfigurable
Nonvolatile Logic Operations in Resistance Switching Crossbar Array for Large-Scale Circuits. Adv. Mater.
2016, 28, 9758–9764. [CrossRef] [PubMed]

50. Chang, Y.; Zhou, F.; Fowler, B.W.; Chen, Y.; Hsieh, C.; Guckert, L.; Swartzlander, E.E.; Lee, J.C.
Memcomputing (Memristor + Computing) in Intrinsic SiOx-Based Resistive Switching Memory: Arithmetic
Operations for Logic Applications. IEEE Trans. Electr. Devices 2017, 64, 2977–2983. [CrossRef]

51. Cheng, L.; Zhang, M.Y.; Li, Y.; Zhou, Y.X.; Wang, Z.R.; Hu, S.Y.; Long, S.B.; Liu, M.; Miao, X.S.
Reprogrammable logic in memristive crossbar for in-memory computing. J. Phys. D Appl. Phys. 2017,
50, 505102. [CrossRef]

52. Teimoory, M.; Amirsoleimani, A.; Shamsi, J.; Ahmadi, A.; Alirezaee, S.; Ahmadi, M. Optimized
implementation of memristor-based full adder by material implication logic. In Proceedings of the
2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), Marseille, France,
7–10 December 2014; pp. 562–565.

53. Rohani, S.G.; Taherinejad, N.; Radakovits, D. A Semiparallel Full-Adder in IMPLY Logic. IEEE Trans. Very
Larg. Scale Integr. (VLSI) Syst. 2019; 28, 297–301. [CrossRef]

54. Kim, K.M.; Williams, R.S. A Family of Stateful Memristor Gates for Complete Cascading Logic. IEEE Trans.
Circuits Syst. I Regul. Pap. 2019, 66, 4348–4355. [CrossRef]

55. Siemon, A.; Drabinski, R.; Schultis, M.J.; Hu, X.; Linn, E.; Heittmann, A.; Waser, R.; Querlioz, D.; Menzel, S.;
Friedman, J.S. Stateful Three-Input Logic with Memristive Switches. Sci. Rep. 2019, 9, 14618. [CrossRef]

56. Xu, L.; Yuan, R.; Zhu, Z.; Liu, K.; Jing, Z.; Cai, Y.; Wang, Y.; Yang, Y.; Huang, R. Memristor-Based Efficient
In-Memory Logic for Cryptologic and Arithmetic Applications. Adv. Mater. Technol. 2019, 4, 1900212.
[CrossRef]

57. Siemon, A.; Menzel, S.; Bhattacharjee, D.; Waser, R.; Chattopadhyay, A.; Linn, E. Sklansky tree adder
realization in 1S1R resistive switching memory architecture. Eur. Phys. J. Spec. Top. 2019, 228, 2269–2285.
[CrossRef]

58. Revanna, N.; Swartzlander, E.E. Memristor based adder circuit design. In Proceedings of the 2016 50th
Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016;
pp. 162–166.

59. Wang, Z.; Li, Y.; Su, Y.; Zhou, Y.; Cheng, L.; Chang, T.; Xue, K.; Sze, S.M.; Miao, X. Efficient Implementation
of Boolean and Full-Adder Functions with 1T1R RRAMs for Beyond Von Neumann In-Memory Computing.
IEEE Trans. Electr. Devices 2018, 65, 4659–4666. [CrossRef]

60. Cheng, L.; Li, Y.; Yin, K.S.; Hu, S.Y.; Su, Y.T.; Jin, M.M.; Wang, Z.R.; Chang, T.C.; Miao, X.S.
Functional Demonstration of a Memristive Arithmetic Logic Unit (MemALU) for In-Memory Computing.
Adv. Funct. Mater. 2019, 29, 1905660. [CrossRef]

http://dx.doi.org/10.3390/mi11050496
http://dx.doi.org/10.1002/adma.201602418
http://www.ncbi.nlm.nih.gov/pubmed/27717010
http://dx.doi.org/10.1109/TED.2017.2699679
http://dx.doi.org/10.1088/1361-6463/aa9646
http://dx.doi.org/10.1109/TVLSI.2019.2936873
http://dx.doi.org/10.1109/TCSI.2019.2926811
http://dx.doi.org/10.1038/s41598-019-51039-6
http://dx.doi.org/10.1002/admt.201900212
http://dx.doi.org/10.1140/epjst/e2019-900042-x
http://dx.doi.org/10.1109/TED.2018.2866048
http://dx.doi.org/10.1002/adfm.201905660

J. Low Power Electron. Appl. 2020, 10, 28 15 of 15

61. Kim, Y.S.; Son, M.W.; Song, H.; Park, J.; An, J.; Jeon, J.B.; Kim, G.Y.; Son, S.; Kim, K.M. Stateful In-Memory
Logic System and Its Practical Implementation in a TaOx-Based Bipolar-Type Memristive Crossbar Array.
Adv. Intell. Syst. 2020, 2, 1900156. [CrossRef]

62. Xiao, T.P.; Bennett, C.H.; Hu, X.; Feinberg, B.; Jacobs-Gedrim, R.; Agarwal, S.; Brunhaver, J.S.; Friedman, J.S.;
Incorvia, J.A.C.; Marinella, M.J. Energy and Performance Benchmarking of a Domain Wall-Magnetic Tunnel
Junction Multibit Adder. IEEE J. Explor. Solid State Comput. Devices Circuits 2019, 5, 188–196. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/aisy.201900156
http://dx.doi.org/10.1109/JXCDC.2019.2955016
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Memristive Logic
	In-Memory Majority Logic
	V–R Majority Logic
	R–V Majority Logic

	In-Memory One-Bit Full Adders Using Different Logic Primitives
	In-Memory Eight-Bit Adders Using Different Logic Primitives
	Conclusions
	References

