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Abstract: We consider Big Data as a phenomenon with acquired properties, similar to collective
behaviours, that establishes virtual collective beings. We consider the occurrence of ongoing
non-equivalent multiple properties in the conceptual framework of structural dynamics given by
sequences of structures and not only by different values assumed by the same structure. We consider
the difference between modelling and profiling in a constructivist way, as De Finetti intended
probability to exist, depending on the configuration taken into consideration. The past has little
or no influence, while events and their configurations are not memorised. Any configuration of
events is new, and the probabilistic values to be considered are reset. As for collective behaviours, we
introduce methodological and conceptual proposals using mesoscopic variables and their property
profiles and meta-profile Big Data and non-computable profiles which were inspired by the use of
natural computing to deal with cyber-ecosystems. The focus is on ongoing profiles, in which the
arising properties trace trajectories, rather than assuming that we can foresee them based on the past.
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1. Introduction

This article’s purpose is to contribute to the introduction of fresh understandings of and
approaches to Big Data to allow multiple comprehensions that are suitable for the realisation
of clues and tendencies that are appropriate for conjecture, identify processes, properties, and
forecasts. As we introduce later, Big Data are not only considered to be representative of well-defined
phenomena [1], but also as having autonomously acquired properties that are detectable at the
mesoscopic (or topological) level, such as collective behaviours [2].

We consider the possibility of different definitions compared to the usual ones under which
Big Data are collected and without the use of an a priori hypothesis [3], like the classic definition of
belonging for sets. However, Big Data are collections of such size and dynamical variety that classical
analytic approaches are unsuitable.

New understandings can aid in the development of more complex research and modelling, in
addition to searching for properties considered hidden by the large amount of data and undergoing
detection with, for example, statistical and data mining methods [4]. Basically, it is a matter of
sophisticating the research strategy with new hypotheses. For example, we move away from the vision
of IBM data scientists, where Big Data is broken into four dimensions: volume, variety, velocity, and
veracity [5].

We continue to consider Big Data as large amounts of data that are not based on any model, but
we introduce some possible conceptual variations, for example, Big Data as a digital accumulation
of untreated waste from other processes that are not currently considered due to the usual ‘no data
deletion’ concept. Furthermore, we consider Big Data not as representative of a phenomenon, but as a
phenomenon to be possibly studied, which has autonomous properties similar to collective behaviours.

Systems 2019, 7, 8; doi:10.3390/systems7010008 www.mdpi.com/journal/systems

http://www.mdpi.com/journal/systems
http://www.mdpi.com
http://dx.doi.org/10.3390/systems7010008
http://www.mdpi.com/journal/systems
https://www.mdpi.com/2079-8954/7/1/8?type=check_update&version=2


Systems 2019, 7, 8 2 of 22

We assume that dealing with Big Data as a phenomenon contains not only traces of past events, but
also the assumption of having properties that are independent from the original event, when studied
as a virtual collective being [6]. Thus, we consider the occurrence of ongoing, non-equivalent, multiple
properties with any initial temporal beginning, duration, and variable combination in conceptual
correspondence with the nature of quasi-systems, which occur when a system is not always the same
system and or even a system at all [7,8].

We then mention the criticality of the level of description, as well as the scalarity assumed to detect
the properties as well as the conceptual ineffectiveness of increasing the quantity of data available.
Before proposing new approaches allowed by the conceptual ‘definitions’ mentioned above, we
consider the differences between models and profiles. Models (especially ideal) are expected to support
understanding, while profiling is intended to represent non-ideal, data-driven models, and their
emergent, ongoing properties, for example, correlations and coherences [9]. Another differentiation
considered is between forecasting and understanding. Forecasting is based on the importance of the
past, is based on analogies and repetitiveness, and takes some contextual conditions into account.
Understanding is considered to be the ability to conjecture, hypothesise, speculate, and, finally, realise
the nature of the phenomenon under study, for instance, chaotic, hosting bifurcations, fluctuations,
and the presence of multiple dynamic coherences.

We specify that the differences introduced above should be considered in a constructivist
conceptual framework in which, instead of trying to find how a phenomenon ‘really’ is, one looks for
the most effective way to think of it (multiple modelling) [10]. For instance, we consider the conceptual
framework of the theoretical physical principles of uncertainty, complementarity, indeterminacy, and
epistemological incompleteness [11] of the so-called Dynamic Usage of Models (DYSAM), which is
suitable when the complexity of the phenomenon under study is such that different and non-equivalent
models should be simultaneously applied, like for the usage of logical openness [12,13].

This also relates to the Subjective Theory of Probability introduced by De Finetti. Probability
is not intended to be objectivistic and observer-independent. Probability is computed based on the
expectancies and configurations of events considered by the observer. The past has little or no influence,
since any configuration of events is new and the probabilistic values to be considered are reset [14].

Furthermore, we consider the differences between dynamics and structural dynamics. In the first
case, dynamics refers to well-studied dynamical systems modelled by time-dependent variables
and parameters considered by dynamical systems theory, such as analytical models, the concepts of
equilibrium, limit cycles, and chaos.

We consider structural dynamics to be changes within the systems under study that do not relate
only to variables and are parametric of the same temporal analytical representations, that is, the
same structure ([8], pp. 87–117). Structural dynamics considers sequences of both structural and
non-structural changes together with the properties of such sequences, as in collective behaviours.
Examples include the occurrence of coherence among properties of sequences of singularities, such as
phase transitions and singularities.

Based on what was discussed and introduced previously, we introduce methodological and
conceptual proposals, using both mesoscopic variables and their properties to profile and meta-profile
(infra properties) Big Data, as well as non-computable profiles inspired by natural computing dealing,
for instance, with ecosystems and machine learning.

We finally mention a possible mesoscopic understanding of Big Data that is suitable for the realisation
of tendencies and ongoing properties.

The focus is on ongoing profiles, when they emerge, and the properties of their emergence that
trace the trajectories rather than assuming that we can foresee the past within Big Data. It is a matter
of an ongoing mesoscopic understanding that is equivalent to mesoscopic profiling.

We mention the approaches considered by the Topologic Data Analysis (TDA) in this
meta-analysis-based framework [15].

We conclude by mentioning some possible related future research.
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2. Big Data

IBM researchers estimated that around 2.5 quintillion (1030) bytes of data are generated daily.
Such data are generated, for instance, from cell phone signals; digitalised pictures and videos; financial
transactions, purchase transaction records (in real time economy as well where purchases and sales
are made by algorithms, for example, in stock exchange); posts to social media sites; email messages
and attachments; sensors used to gather environmental information; in security systems and traffic
controllers; and in words typed in documents, printed in newspapers and books or transmitted
through telephone networks and broadcasts [1]. These data are named Big Data [16–18]. Within this
data, we must distinguish between those that are publicly available and those that are unavailable for
any reason, such as confidentiality or technical reasons. We should consider the quality of Big Data, for
example, their reliability, non-duplication, completeness, and spatial and temporal alignment.

Furthermore, we should also consider how reliable the spatial and temporal alignments of data
are to allow for consistent comparability and classification. On the other hand, the quantity of the data
available and its redundancy may allow for the predominance of some properties, even in fuzzy ways,
that is sufficient to make consistent inferences.

Having said this, we move on from both considering Big Data only as large amounts of data
without any a priori assumptions and from the concept of the four Vs [5]. In this section, we consider
Big Data in different ways. For instance, it is considered to be digital, accumulated, untreated waste
generated by processes that are not currently considered and by the usual ‘no data deletion’ which
has the effect of indefinite accumulation. Furthermore, we consider Big Data as an autonomous
phenomenon that acquires rather than possesses properties for, for example, emergent collective
behaviours and phase transitions. We mention the crucial role of the level of scalarity and description
at the mesoscopic level. We consider multiple properties and their infra-properties among mesoscopic
properties like correlations and coherence.

2.1. Big Data as Large Amounts of Data Not Based on Any Model

On the other hand, we may consider the different, but in some ways similar, case of the availability
of microscopic data related to a phenomenon where the data are unable to be explained or modelled.
The fact is that it is impossible [18,19] to model, reconstruct, nor deduce significant semantic [20] levels
from such data. Contrary to what was assumed by the reductionist illusion, it is eventually only possible
to make constructivist ex post hypothesises. More is not better.

Examples include microscopic, molecular information of material makeup, for instance, machines,
electronic devices, and biological living entities. The increase in the amount of data is useless since
the data are meaningless, per se, if not coupled with hypotheses or theories. In this regard, we
limit ourselves to only mentioning how some authors [21] have introduced the topic relating to the
possibility of theory-less knowledge being replaced by suitable concordances, correspondences, and
correlations within Big Data. However, “...the problem relates to a cognitive research strategy to
produce knowledge. There are more and more cases of knowledge produced without the search for, or
availability of, theories, by using concordances and correspondences in a data deluge often termed Big
Data [18], using data-driven approaches within very large databases” [22].

However, the assumption that “correlation supersedes causation and theorising” has been
demonstrated to be mathematically wrong [18].

Other cases include ecosystems (see note 7; in our case, cyber ecosystems), for which microscopic
information is not available, while it is possible to obtain macroscopic information, for example,
the temperature and volumetric measurements for ponds. A similar case is given by the collective
behaviours (such as flocks) for which macroscopic information is obtainable, for example, the average
speed, altitude, and direction, while only in particular cases is the microscopic information available
(such as when the constituting agents are equipped with Global Positioning System (GPS), for example,
car traffic and herds). Other cases include astrophysical data detected from the universe for which
microscopic information is almost undetectable and intractable, for example, from biological and
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chemical systems of molecules, networks of neurons, or atmospheric or geological phenomena (for
example, lava eruptions) [23].

2.2. Big Data as Accumulated on Treated Digital Waste

We refer here to the enormous collections of continuously produced waste. We may consider items
of any kind, such as compost, glass bottles, packaging, paper, plastics, and sewage treatment plants.

There are various stages of collection.
In the absence of treatment and recycling, there is an accumulation of garbage, such as depositions

in possibly temporary landfills. In the latter case, some microscopic information is maintained or
recoverable, for instance, traces of the packed and bottled material; information written on paper, for
example, the language, handwriting, and dates; and plastic types. Some direct reuses are also possible,
such as for deposits for car wreckers and junk dealers.

We also consider the ideal cases of shredder treatments for documents and cryptography, which
produce virtual waste by reducing the reversibility as much as possible, although it is theoretically
still possible.

After the very initial stage of waste collection, while maintaining the microscopic nature of the
items, the following accumulation stages and treatments irreversibly increase the macroscopic nature,
leading to the loss of origin information such as temporal information, information related to usage,
geographical information, and correlational information. The focus is rather on the material properties
of the waste to be processed.

However, the second macroscopic aspect also adds some acquired cumulative information such as
the daily amount of selected waste produced and the geographical temporally accumulated information.

Metaphorically, Big Data can be considered digital accumulated untreated waste. Such accumulations
also allow for some microscopic reversibility, for instance, when dealing with timed documents, such
as receipts, tickets, and invoices. This relates to the usual ‘no data deletion’ accompanied by an increasing
irretrievability over time.

Treatments considered for Big Data are usually finalised to extract, find correlative information,
and verify assumptions. Is it possible to conceptually consider reuses? Possible reuses relate to
simulations of scenarios with partial previous Big Data available. Reuses may consider the reoccurrence
in similar frameworks of complete scenarios when some partial aspects take place.

2.3. Conceptual Understanding

A very important point is that Big Data does not come after any process, inquiry, or measurement.
We do not look for them as specifying models, measurements, parameters, or hypotheses. Big Data are,
in some way, self-generated, and they constitute the phenomenon. We may model or measure them, but
we need to take into account that the more information they have and the older they are, the weaker and fuzzier
the connections with the generating phenomena become. The increase in the quantity, mixture, and time make
Big Data acquire autonomous properties such as those of their sequences, for example, correlational, ergodic,
periodical, and statistical.

In our case, the data are the items in, for example, a train ticket, such as the emission time, the
price, the place number, and the arrival and departure stations, no matter whether they are recorded
on a mobile telephone or printed. We understand Big Data to be a collective entity, a collective being
of data (see Section 1), established by dynamical combinations, sequences, superimpositions, and
multiple systems of data as virtual entities.

Big Data occur with or without possible different temporary materialisations. They fluctuate
in the sense that they can have different materialisations, limited durations, accumulations, and
sedimentations, either because they are not removed or because they are registered as well as
purposely reconstructed.



Systems 2019, 7, 8 5 of 22

Big Data are intended in the following to describe virtual phenomena whose macroscopic
properties, such as those related to correlation, equilibrium, and statistics, partially or completely lose
correspondence with the microgenerating phenomena.

2.4. Multiple Properties of Big Data as a Virtual Phenomenon

We consider here the alternative approaches to profiling by using measurements and constitutive
data, as mentioned above, from the perspective of using the past to foresee the future (for instance,
to predict and explain by analogy with the past), and search for lucky cases due to, for instance, the
discovery of diffused mathematical regularities and statistics [24,25].

Rather, we consider here the approaches to suitably profile Big Data, understood as large amounts
of data constitutive of the phenomenon [26] (that is, Big Data is the phenomenon; metaphorically, Big
Data is an emergent1 swarm). The inhomogeneity of the variables may be intended to relate to the
same phenomenon as a kind of emergent collective being [26], of which we consider different aspects,
variables, and measurements.

Rather than relying on assumptions to deal with different temporally changing values presumed
to refer to the same property, we consider here the occurrence of ongoing, non-equivalent, multiple
properties that have any initial temporal beginning, duration, and variable combination.

This is conceptually equivalent to approaches considering the collective behaviours as being
established by the occurrence of multiple interactions, each with a different duration and beginning.
Multiple interactions may apply to any sequence and involve the same entities belonging, at the same
or any time, to different systems (for the concept of multiple systems, see note 3, in [8,26].

We consider the use of the approaches introduced to model collective behaviours to also profile
Big Data in regard to the conceptual correspondence between interactions (in collective behaviours)
and properties (in Big Data). Accordingly, we propose properties of the mesoscopic variables used to
model collective behaviours (real phenomena) to profile Big Data (virtual phenomena of data).

We consider the ongoing aspects as being constructivist choices made by the observer.

2.5. The Role of the Level of Description

In some disciplines, such as physics, it is possible to adjust the level of description when assuming,
for instance, a microscopic or macroscopic level. In these cases, general, formal adjustment of scaling
occurs through the introduction of new variables to allow microscopic information to be ignored and
new macroscopic information to be considered.

It is a bit like adjusting the focus of a lens.
A completely different problem is dynamical adjusting that looks for meaningful semantic

representation(s). For instance, when dealing with Gestalt figures, the observer must adjust multiple
levels that are being driven by the search for meaning. Another case occurs when dealing with
the incompleteness [11] of Basso Continuo and Impressionism, where the observer gives cognitive shape
through meaning.

The prospect of determining the structures, meanings, and values of semantic variables seems to
be not easily (even theoretically?) reducible to procedures and computations [30].

1 Let us consider the case of populations of interacting entities as it is well-known that the process of interaction takes place
when one’s properties and behaviours influence the another’s. Interactions may occur though the exchange of energy
and information to be elaborated. Inside such interacting populations, different processes may occur. We mention the
occurrence of self-organisation, where sequences of properties acquired in a phase transition-like manner have regularities
and repetitiveness. As examples, we may consider the repetitiveness of the formation and behaviours in queues in traffic;
swarms of mosquitoes around a light; pelicans around stacks of trash; and self or remote synchronisations. Another
process is the one intended to establish emergence when regularities and repetitiveness occurring for self-organisation are
substituted by coherence. In this case, sequences dynamically acquire multiple different synchronisations and correlations.
We may consider the formation and better emergence of flocks, shoals of fish, and swarms with multiple and changing
shapes, densities, and directions as examples. However, over time, they continuously acquire and maintain coherence, scale
invariance, and long-range correlations in such a way that they become recognisable as the same flock, shoal, or swarm [27–29].
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The microscopic pulverisation is such that the microscopic data are almost all
semantically equivalent.

However, when dealing with a large amount of data that have some homogeneity, it is possible to
use statistical approaches and data mining procedures.

Techniques of data mining are also available as processes of discovering patterns in large datasets.
Topological Data Analysis (TDA) is an approach to the analysis of large datasets using techniques from
topology [31].

Metaphorically speaking, disordered datasets given by words of a story or notes of a symphony
seem intractable from this point of view when looking to resume their coherences to represent meaning.

When dealing with Big Data, we face the conceptual ineffectiveness of increasing the quantity of
data available, leading to one of two possibilities, that is, the rise of redundancy or the rise of noise;
neither of these converge to give meaning.

3. Models and Profiles

We first consider some introductory differences between models and profiles that occur even if
there are areas of conceptual overlap, for example, when using random and fuzzy variables.

In the first case, we consider models, in short, as variables and their structures, for example,
equations suitable to not just imitate, but represent and understand the phenomenon under study
(distinction introduced by Turing, see, for instance [32,33]. Understanding allows simulation, but
this is not the case for the converse. On the other side, the incompleteness [11,30] of a model relates to
the non-explicit representation (for example, the impossibility of zipping everything into a model of
equations and using ideal models given by general principles assumed to be valid for any phenomenon);
to the need to use non-equivalent models simultaneously; to the validity of uncertainty principles
(accuracy in measuring one variable is at the expense of another); the validity of principles of
complementarity (for example, wave particles); the establishment of singularities (for example,
defects); and the need to operate in the context of logical openness characterised by the theoretical
unavailability (because of multiple non-equivalences) of a complete and explicit model of the system
and its interactions with what is considered its environment ([8], p. 16, [34], pp. 47–51).

Examples of model properties occur when following the same analytical representations. It is a
matter of possessing the same analytical properties.

In contrast, we may consider non-ideal models (conceptually close to profiles) to be intended as
mixtures of general principles and specific choices, for instance, data-driven approaches that are
statistically and retrospectively clustered.

We have experienced very large databases in different disciplinary fields. Usually, there are
stable, well-defined configurations of sources assumed to be generators of data when the data relate
to observables, variables, and measures that are specified by the observer and the observation process.
Research is able to introduce new sources corresponding to new models, as used to happen historically;
for instance, in physics, when changing models from mechanical to thermodynamic, electromagnetic,
optical, and quantum.

In previous cases, researchers considered data as being related to specific phenomena and
their models.

Models come first. Data populate models after measurements.
In the second case, we consider profiles—in short, as data of different natures that are not related

to models.
In the case of profiles, we consider data-driven, emergent, ongoing properties, for example, correlations

and coherences—both properties of data representing real events and properties of data constituting the
phenomenon, such as the case of Big Data considered above.

It is a matter of searching properties within the available data. The data are possibly ordered
collections of classifiable information. Classifications take place, for instance, because of presumed
homogeneity, for example, measures of the same variable, and because of properties, for example, the
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‘same’ correlation and ranges of validity. Correlations are data-driven, that is, not explicitly stated
through fitting with models and analytical representations.

Related possible approaches are given by data mining [4], which is devoted to the discovery of
embedded, supposedly hidden patterns through, for instance, suitable computerised data analyses, for
example, cluster analysis. The assumption is that the presence of formal regularities is hidden by their
possible irregular combinations, randomness, and unsuitable scaling.

Examples of traditional profiles in databases include patterns, correlations, and the statistical
properties of the data under study [35–39].

Moreover, other approaches include using the network properties of networked available data and
using fuzzy logic, as mentioned below. For profiling, it is a matter of possessing the same non-analytical properties.

Data come first. Properties should be recognised. The main reason for profiling phenomena is to
allow for structural forecasting.

4. Constructivist Approach

The situation is reminiscent, in some ways, of some constructivist understandings about research.
It is well-known that objectivism relates to research as an attempt to find the truth, the reality as it is,
and to answer questions and solve problems, that is, to find the solution ([8,12], pp. 193–194).

This seems to be, at least, an elementary strategy that is unsuitable for dealing with complexity
where processes of emergence occur that require the use of multiple non-equivalent models to allow
the establishment of new, unexpected, coherent properties (see the case of DYSAM below).

Within the constructivist conceptual framework, we stress how experiments are understandable,
like questions that are metaphorically posed to nature. In turn, metaphorically, nature responds by
making the experiments happen. However, continuing the metaphor, we get no answers if there are
no questions.

Furthermore, events may turn into answers if we invent the appropriate questions to which the
answers may be considered. Objectivism is just a particular case ([6], p. 6) where it is assumed that
the questioning occurs in steps and converges at the truth and not as a multidimensional evolutionary
process of non-equivalent knowledge.

When dealing with Big Data, we may consider two generically corresponding approaches: trying
to find and discover the hidden properties possessed by Big Data or trying to invent questions and
question Big Data.

In the first case, we implicitly assume that hidden regularities will be discovered, such as the
fractal nature, Fibonacci rules, and regular distributions. Statistical approaches, data mining, and
Topological Data Analysis are examples of related searching approaches.

In the second case of constructivist nature, questioning Big Data, we take an abductive approach.
The concept of abduction was introduced by Charles Sanders Peirce (1839–1914) as a process of forming
explanatory hypotheses. Furthermore, abduction is considered to be a logical operation that is able to
introduce any new idea, i.e., non-equivalent to previous ones [40]. We also mention Foerster [41], who
considers that anomalies (e.g., strange, unexpected behaviours and irregularities) in the environment
are not objective, but rather are given by the inappropriateness of the approaches, concepts, and
models used to understand the phenomenon under consideration. Abduction is intended to be the
cognitive process of hypothesising, inventing, and formulating new models that are suitable for
“normalising” what were previously considered anomalies. Furthermore, abduction can be considered
as the adaptation, selection, and multiple usage of the most suitable options that are already available.

We consider the constructivist approach in the conceptual framework, for instance, of
the theoretical physical principles of uncertainty, complementarity, and indeterminacy, and the
epistemological incompleteness of the Dynamic Usage of Models (DYSAM). This is suitable for
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cases where the complexity of the phenomenon under consideration is so high that the use of different
non-equivalent models is necessary2 (see ([6], pp. 64–75) and there is need for logical openness [12,34,42].

In conceptual correspondence with the invention of experiments as questions, both to inquire and
to interpret the available data, as considered by constructivism, we propose a modus operandi that
combines ideal and non-ideal approaches.

We mention how this approach is consistent with considering the observer as the generator not of
simple relativism, but rather of the cognitive reality, such as the hypotheses, models, and configurations
that we consider to be probabilities, as introduced by De Finetti (1906–1985) [14,43]. This is taken into
account in the following section.

5. Foreseeing and Understanding in Structural Dynamics

Following the previous sections, our understanding of Big Data and the role of the level of
description was presented, the differences between models and profiles were mentioned, and the
principles of the constructivist approach considered in the following text were detailed; we now take
into account the differences, if any, between forecasting and understanding.

The possible differences are considered here when differentiating between dynamics and
structural dynamics.

In the case of dynamics, we refer to the well-known properties of dynamical systems and
modelling by time-dependent variables and parameters that are considered by dynamical systems
theory, such as analytical models, the concepts of equilibrium, limit cycles, and chaos [44,45]. Such
systems have been studied by dynamical systems theory ([9,26], pp. 64–65).

Rather, our interest is on structural dynamics, where changes occurring within the systems under
study do not relate only to the variables and parametric characteristics of the same temporal analytical
representations (simplified: to the same structure). Structural dynamics considers sequences of both
structural and non-structural changes together with the properties of such sequences. Structural
dynamics is considered with reference to complex systems ([6], pp. 64–87).

As an example, we may consider sequences of phase transitions occurring on the same materiality.
Generic structural dynamics is intended to be given by such sequences. An interesting case takes place
when considering properties of such sequences, for instance, when acquiring coherences for particular
complex systems [9].

The establishment of collective beings [6] and quasi-systems [8] moving between the statuses of
system and non-system and keeping significant levels of coherence is a generic example. Actually,
collective beings as collective behaviours emerge from coherent structural changes. Specific examples
include anthills, car and signal traffic, flocks, herds, industrial districts, social systems such as cities
and markets shoals of fish, swarms, telephone and transportation networks, and termite mounds.

However, the concept of structural dynamics applies to several cases and processes, such as

1. Change, acquisition, loss, and non-linear combinations of structures;
2. Multiple systems3;
3. Adaptation and learning;
4. Radical changes due to processes of emergence;

2 An example occurs when considering that a medical problem may simultaneously have biochemical and psychological
components. Furthermore, economic, political, and sociological aspects of any social system are simultaneously present.
Another case is given by business problems of different nature, such as financial, managerial, and organisational. However,
the non-equivalence of models does not imply a lack of interdependence among related effects. We mention the difference
with interdisciplinarity where the same approaches and models are applied in different contexts by changing the meanings
of the variables (e.g., chaotic behaviour from the climate to economics and the Lotka–Volterra equations from prey–predator
systems to generic competition in economy and electronics).

3 The concept of a multiple system is considered in ([6], pp. 110–137) as set of systems whose components simultaneously
belong to more systems. In this case, the set of systems is coherent, i.e., correlated. In the same way, there are multiple
networks where the same nodes belong to different and simultaneous networks [45].
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5. Changes in properties.

We initially introduced this comment to the discussion about forecasting and understanding since
Big Data should tend, by its nature, to have structural dynamics generated by a dynamic variety of
phenomena, as mentioned in Section 1.

The ability to forecast probably does not necessarily demand the ability to understand. As a matter
of fact, the ability to forecast may come from reasoning based on analogies and repetitiveness, and
by taking into account some contextual conditions. In the latter case, forecasting is, however, based
on the past and not on structural characteristics and properties. Furthermore, the ability to deal with
probabilities considered in a constructivist way, as introduced by Bruno De Finetti, was mentioned
above as a specific case.

Forecasting may be partial, as it refers only to some aspects of the phenomenon and has a
probabilistic nature [46].

We should also ask what we are interested in forecasting. In the context of structural dynamics, the
forecasts to look for should be structural, such as establishing, increasing, maintaining, and weakening
general properties acquired by sequences of structural changes.

Examples include coherence; properties of patterns, for example, topological properties; their
similarities; their compatibilities and incompatibilities; predispositions; and dominions. Such
properties are very similar to those used to model structural dynamics of collective behaviours,
as introduced in Sections 6.3 and 6.4.

As for forecasting, we consider the special cases of structural dynamics and the subjective theory
of probability. Accordingly, we consider understanding as not being coincident with classical modelling
which looks for the best, most effective one. Rather, we consider multiple and non-equivalent
approaches when using approaches such as DYSAM and logical openness (as introduced above),
and the theoretical incompleteness for non-ideal models considered above are used when it is not
possible to zip everything into a single model of equations.

Following the above, we can say that we consider the structural prediction capability.
We consider, for instance, the understanding of the possible chaotic nature of phenomenon, which

the high dependency on the initial conditions. The possible complex nature of the phenomenon helps
us consider the occurrence of bifurcations (changes in the topological structure of the system and
the number or type of attractors), symmetry breaking (when the form of evolution equations remains
invariant after a transformation, e.g., rotation, but the form of their solutions changes), and the role
of fluctuations (deviations of the actual time evolution from its average evolution within a system
subject to random forces). In particular, fluctuations may induce catastrophic consequences within
systems that have critical points, as determined by the Self-Organised Criticality (SOC) display of scale
invariance, where examples include geological phenomena.

Such an understanding helps to realise and hypothesise compatibilities and incompatibilities and
equivalences and non-equivalences, and identifies evolutionary modalities that are able, in this case,
to eliminate impossible evolutions and circumscribe possible developments.

In sum, we may tentatively say that the ability to understand aids in the ability to structurally
forecast, and the ability to forecast aids in (in a minor way) the ability to structurally understand.

We concentrate on profiling Big Data for such structural understanding and forecasting in
Section 6.

6. Profiling Structural Dynamics

In this section, we present approaches and comments which converge to a final methodological
proposal that has different levels of possible implementations.

In Section 6.1, we outline the differences between top-down and deductive profiling.
In Section 6.2, for the benefit of the following discussion, we introduce the concept of mesoscopic

levels of representation and clustering and discuss the related concepts and approaches that are used
to foresee and understand collective behaviour.
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In Section 6.3, we mention approaches based on mesoscopic variables to model the structural
dynamics of collective behaviours.

In Section 6.4, we consider the properties of mesoscopic variables as profiles. We then propose
considering the properties of multiple mesoscopic variables as properties of populations of profiles (with
the meta-profile as the profile of profiles).

Finally, in Section 6.5, we propose the approaches for non-computable profiles, for example,
learning through Artificial Neural Networks (ANN), which is used for ecosystems (ecosystems of
profiles in our case). This will further be elaborated in future research as explained in Section 7.

6.1. Top-Down and Deductive Profiling

In traditional approaches, a first very important methodological distinction is between the following:

• Top-down profiling (supervised learning) from available data. This involves testing, for instance,
hypothesised correlations and statistical properties. It is a method of quantifying how many
entities respect the property. This is related to ideal modelling.

• Deductive profiling (unsupervised learning) to detect, by suitable techniques (for example, data
mining), not yet hypothesised properties when exploring a database. It is a method of generating
hypotheses, for instance, through correlations and the general peculiar properties of specific
entities. This is related to non-ideal modelling. As we mentioned, the usual approaches have the
purpose of finding the profiles as data properties that are able to represent categories. This is related to the
deduction of profiles.

Although it is possible to consider profiles as a dynamic mixture, by using a combination of
the two previous approaches (both top-down, for example, selecting the variables, properties, and
thresholds to be considered), and deducing the properties from the data available, for example, through
data mining, statistics, and correlations, we focus on bottom-up approaches, as even phenomenological
aspects related to the behaviour of complex systems clearly have a bottom-up nature.

6.2. Mesoscopic Levels of Representations and Clustering

As introduced below, we consider the possibility of identifying suitable mesoscopic variables
(introduced in Section 6.3) and their properties for the constructivist findings within the data available
regarding emergent ongoing properties, for example, coherences. These are considered as profiles.

To introduce the concept of the profiles that we have in mind, we must first remind ourselves of
some necessary concepts: microscopic, macroscopic, mesoscopic, and fuzzy.

The definitions are given below:

• Microscopic: Focusing on single, indistinguishable, equivalent entities, for example, atoms, generic
passengers, customers, and members of flocks or swarms;

• Macroscopic: Ignoring microscopic properties and focusing on global properties, for example,
dimension, shape, density, and temperature. This is assumed by any aggregation of microscopic
entities, for example, the volume, weight, and temperature of a glass of water and dimensions,
such as the weight and temperature of a billiard ball, regardless of its molecular composition;

• The mesoscopic level: Unlike the macroscopic level, this level does not completely ignore the
microscopic level, but rather considers only some of the microscopic properties available that
are suitable to be quantitatively clustered. Examples include cars in traffic that cannot increase
their speed (we consider cars standing still in the queue, cars slowing down, and cars running
at constant speed in the queue); people standing, uphill, or downhill on the stairs; and the
belonging of boids in the same spatial volume (whatever their direction, speed, and altitude
are). We underline how the mesoscopic level can be considered a conceptual implementation
of fuzziness by replacing degrees of belonging with values of aggregation.
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The three levels of descriptions allow for the corresponding microscopic, macroscopic, and
mesoscopic understanding in the sense that the reasoning occurs by using the variables of such natures.

The subgroups considered by the mesoscopic levels are clusters. We have clustering when
aggregation is allowed by suitable criteria and approaches, such as the similarities among the
measurements. For instance, the statistical techniques of multivariate analysis [47] are finalised
to select the homogeneous elements with respect to the measurements of the same variable, for
instance, by optimising the differences in values. Clusters may be eventually represented by average
values, centroids, and the arithmetic mean of all the values. An example is given by the clusters of
elements with similar (that is, a minimum difference) speeds among the different elements.

This clustering is possible through the use of suitable and available computational techniques,
such as k-means [48], where the objective is to minimise the total intra-cluster variance.

For reasons of comparability, the number of clusters should be obviously constant with regard
to time. The number of clusters to be considered may be decided with appropriate computational
approaches, such as the Elbow and Silhouette criteria (see, for instance, [49,50]).

Here, we also consider fuzzified clustering, a form of clustering in which each item can belong to
more than one cluster [51].

Examples of cluster properties are the number of elements, the distribution of elements within
the cluster (for example, close to the min, max, average, or randomly spread out), and the thresholds
computed ex post (after procedures of clustering). For each cluster, we consider (for instance, the
calculation ex post of percentiles) the min and max values that allow for cluster density and centroids
to be computed.

We may consider sequences of the same clustering (for example, per price, per speed, or per
age) along the time dimension and consider their properties, such as their distributions, correlations,
and statistics.

We may consider the different mesoscopic variables that are constituted of the same elements
(for example, customers), though related to different properties and clustered, for instance, by the per
amount of expense, the quantity of purchase, or the amount of time taken to purchase (see matrix M(t)
in Section 6.4).

6.3. Approaches to the Model Structural Dynamics of Collective Behaviours

At the microscopic level, that is, when considering the properties of the composing interacting
agents, such as boids, customers, and internet users, the emergent coherence of collective behaviours
as complex systems has been modelled in the literature by considering their scale-free correlations, for
instance, long-range correlations ([8], pp. 80–87), that occur when the number of correlated elements is
equal to the total number of elements. Examples of other properties that have been considered are
network properties, power laws, and statistics.

A usual approach may consider the vectors of variables such as V(t) = [v1(t),v2(t),..., vn(t)] which,
in social systems examples of vn, include variables such as the number of purchase transaction records
using cards, the number of classified telephone calls, the number of internet accesses, the quantity of
energy consumption, and the number of tickets for travel services, all per instant. In this case, vn are
quantities or numbers suitable for the searching of properties like above.

At the mesoscopic level of description, the meta-structure project ([8], pp. 111–128) is aimed at
finding the properties of mesoscopic variables in collective behaviours.

Mesoscopic variables along time are intended as vectors per instant whose scalars contain, for
instance, the number of elements or thresholds related to the corresponding clusters.

More precisely, we consider the mesoscopic variable Wp(t) = [wp1(t),wp2(t),..., wpn(t)], where p is
the property considered. For instance, p = 1 and W1(t) = [w11(t),w12(t),..., w1n(t)] relates to the clustering
of different numbers of purchase transactions, n identifies the clusters in which the transactions are
aggregated by the amount of similarity, and the value of w1n(t) is equal to the number of elements
contained in the cluster n or the value of the corresponding thresholds computed ex post.
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In addition, the fuzziness, as in fuzzy sets, fuzzy logic, and fuzzy systems, is also considered [52–55].
As is well-known in classical set theory, the membership degree of elements can be only 0 or 1, i.e., an
element can belong or not belong to a set. In fuzzy sets, the membership degree of elements varies
within the interval 0,1. A specific fuzzy set is characterised by the membership function. The related
fuzzy set theory has found application in several disciplinary fields where it deals with problems with
incomplete or imprecise information. Examples include engineering and information theory.

Here, we will consider the mesoscopic fuzzified clustering4 of data where the properties are related
to a specific phenomenon to suitably represent the incompleteness and possible coherences of the
complex phenomenon under study.

This approach is used, for instance, for fuzzy searches and matching, by using search engines on
the web. This type of search will be able to find matches even when users only enter partial information
or misspell words to be used for the search.

On the other hand, the complexity of the collective behaviours is modelled by using
cross-properties of simultaneous multiple mesoscopic variables, related to different aspects such
as speeds, altitude, and direction. It is a matter of considering the cross-properties among
non-homogeneous clusters (see Section 6.4).

Examples of properties related to cross-correlations and statistics among values are assumed
by different mesoscopic variables. Other examples include the occurrence of chaotic regularities,
possibly with strange attractors in the reoccurrence of the same cluster properties; correspondences
among the properties of the thresholds computed ex post; and possible levels of ergodicity among the
configurations of clusters ([8], pp. 111–128).

The ongoing aspect of properties as variants, in addition to those listed in the examples above, is
the establishment of different dynamic dominions of validities, such as local and remote synchronisations
and correlations that are probably analytically intractable [8,56].

Collective behaviours are intended as a source of large amounts of data; however, they must be
coherent. In this case, the phenomena of emergence are intended to have mesoscopic coherence [2]
among the interacting agents when, “...mesoscopic variables are intended to transversally intercept and
represent values adopted by aggregates of microscopic variables. Values of mesoscopic variables are considered
to represent the effective application of interaction rules” ([2], p. 55). In the meta-structure project, we
consider the properties of the clustered variables considered to be suitable to model the collective
behaviours [2,57].

The purpose of the meta-structure project is to find the properties of collective behaviours that are
suitable to

• Recognise behaviours, for instance, at different temporal and spatial scales where acquired
properties, such as patterns, may not be easily recognisable, and

• Induce, if not prescribe to, for instance, the Brownian-like (random) behaviour of multiple
interacting agents to put on such properties in order to assume coherence(s) (see, for instance,
([8], pp. 122–123). This is of interest, for instance, to facilitate, give start, support, and
keep coherence of the collective behaviours of cells in biology, prices in the economy, stock
exchange in finance, agents in traffic, and cyber swarms of drones, and herds of robots for
both terrestrial, marine, public security, and defence interventions. Examples of actions that are
suitable to induce collective behaviour include the inclusions of adequate perturbations, such as
environmental perturbations.

On one side, the project has the purpose of modelling and understanding collective behaviours
to search for ways to simulate and make available some modifying approaches, as mentioned

4 A form of clustering in which each item can belong to more than one cluster.
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above. On the other side, the project has the purpose of structurally forecasting the suitability of
modifying approaches.

In the following section, we propose the usage of similar approaches for Big Data.

6.4. Profiles as Properties of Mesoscopic Variables

We may consider the profiling of single aspects such as the interest in books, for example, by
author, theme, and typology, like narrative or science; travel, for example, by price, location, and
modality, like train or plane; and food, for example, by gastronomic fairs, local cuisine, and events,
such as wine and beer events.

When dealing with large amounts of microscopic data generated by collective behaviours (Case
2 in Table 1) any approach presumes coherence(s) to be the phenomenological property of the
phenomenon under study. Any computable clustering, for example, speeds, directions, altitudes,
metrical distances, topological distances, and related properties, is finalised to represent coherence(s)
and their dynamics. It is a matter of finding such properties that represent the collective behaviours
and applying the approaches to induce such behaviour.

Table 1. The profiles and meta-profiles.

Profiling Considered

Profiles Combinations of top-down and deductive profiling. Properties of
V(t) = [v1(t),v2(t),..., vn(t)].

Profiles as properties of
mesoscopic variables

We may then consider profiles as properties of mesoscopic variables
represented by vectors Wp(t) = [wp1(t),wp2(t),..., wpn(t)]. Related and
mixed (since combining top-down and deductive approaches where the
researcher is supposed to also invent variables and measurements to be
considered) approaches lead to the identification of mesoscopic
fuzzified clusters and their infra-cluster features.

Meta-profiling (profiles of profiles)
in populations of profiles

We consider populations of inhomogeneous vectors
Wp(t) = [wp1(t),wp2(t),..., wpn(t)] where p is related to different properties
and the number n may be standardised ex post by inserting empty
clusters. In this way, we may deal with a resulting matrix M(t) given by
the properties of each cluster. Meta-profiles are thus represented by
properties of sequences along the time of matrix M(t).

Non-computable profiles:
emergent profiles

We consider emergent profiles. For instance, a particular case is given by
dynamic non-computable-profiles as any machine learning parameters,
weights, and levels that are suitable to make an ANN learn the
behaviour of Big Data over time.

We may then consider the profiles as properties of mesoscopic variables represented by vectors
Wp(t) = [wp1(t),wp2(t),..., wpn(t)]. The related and mixed (since combining top-down and deductive
approaches where the researcher is supposed to also invent variables and measurements to be
considered) approaches lead to the identification of mesoscopic and possible fuzzified clusters5 and
their infra-clusters features, as considered below.

We now consider the properties of multiple mesoscopic variables as the properties of populations of
profiles (with a meta-profile being the profile of profiles, see below).

At this time, we may consider the populations of inhomogeneous vectors Wp(t) = [wp1(t),wp2(t),...,
wpn(t)] where p is related to different properties and the number n may be standardised ex post by
inserting empty clusters. In this way, we can deal with a resulting general matrix M(t) given by
p-properties per n-cluster, that is, the number of aggregations per similarity ([8], pp. 120–122).

5 In this regard, we mention the technique of fuzzy clustering when each entity can belong to more than one cluster [51].
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In social systems, examples of Wp(t) include the following:

M(t) =

∣∣∣∣∣∣∣∣∣
w11(t), w12(t), . . . , w1n(t)
w21(t), w22(t), . . . , w2n(t)

. . .
wp1(t), wp2(t), . . . , wpn(t)

∣∣∣∣∣∣∣∣∣
• Purchasing transaction records using clustered cards, for example, by amount, number of items,

or recurring groups of items;
• Purchase and sale transactions for clustered shares, for example, by amount, number of shares,

and time of the transaction;
• Telephone calls clustered, for example, by temporal duration, time, call area, and destination area;
• Information exchange (for instance, text documents, videos, and signals) clustered, for example,

by size, transaction time, and encoding;
• Internet accesses clustered, for example, by software used, location, time, and duration of access;
• Energy consumption events such as electrical events, clustered, for example, by corresponding

outside temperature, working hours, and natural light trends;
• Tickets for travel services, such as surface transport, for example, trains, buses, and subways

clustered, for example, by geographical area, time period, and service cost range.

These are all measured per instant.
In addition, when dealing with different clusters represented by Wpn(t), the researcher may

consider the level of belonging by specifying the fuzziness.
The mesoscopic aspect relates to the variables by following constructivist decisions6 made by the

researcher together with the properties and threshold levels of the representation of data to be taken
in the count. Afterwards, the mesoscopic fuzzified clustering allows for the detection of cluster and
infra-cluster analytical properties. However, the availability of this kind of data is restricted to those
that are accessible. For example, for purchase transactions, we have the available amounts, items, and
time, but not the age or sex of the client. Properties may be fuzzy retrieved within Big Data, such as for
fuzzy information retrieval systems (see, for instance, [58]). The searching of profiles should be viewed
as questions to Big Data—questions that are, however, formulated with the kinds of data available
and are only partially chosen by the researcher. This limits the abductive aspect of the demand,
focusing instead on the choices of variables and properties to be considered. The level of quantitative
aggregation does not replace; however, the semantic meaning to be abductively realised by the researcher, that
is, the meaning of the profile. The ongoing aspect is given by the fact that we do not search for
different values acquired over time by the same profile, but rather, for different multiple profiles
that identify different aggregations of the available data. This is represented by the properties of
sequences along the time period of the matrix M(t).

As for probability, keeping De Finetti in mind, objective probability does not exist. In the same
way, objective profiles do not exist if they are not in standardised boundary conditions.

It is then possible to consider different possible populations of simultaneous and subsequent
matrix profiles M(t) of interest that correlate, transform, and re-emerge over time. We may, for instance,
speak of systems of profiles (eventually categorised) when the occurrence of one implies an interaction
with another because, for instance, they have common or interconnected elements or relationships.

In conceptual generic correspondence within the concept of meta-data, that is, data that provides
information about other data that are used for several applications, such as for research in the semantic

6 We specify that the choice of a variable is a property that can be considered as a semantic act by the researcher that is not
replaceable by algorithmic approaches, such as statistical aggregation processes that can only be supportive. On the other
side, a semantic act is also to give ex post meaning to detected clusters and correlations.
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web (see, for instance, [20]), we use the term meta-profile for profiles of profiles. We use this term to relate
to the properties of multiple simultaneous or subsequent profiles. This is intended to be a multiple
matrix Ms(t), where s indicates the matrix combination of Wp(t) considered by the researcher.

Populations of profiles, as considered above, may be considered to be systems or quasi-systems [8]
depending on whether they display systemic properties, such as the maintenance of possible stabilities,
equilibriums, periodicities, patterns, correlations, and remote synchronisation [56]. In this case, we
consider the populations of profiles as sets of matrixes Ms(t), where s identifies both the semantic and
computational selections.

Such meta-profiling is expected to allow for the detection of the possibility or attitude to
establish communities that are considered to have compatible, equivalent profiles; the introduction of
communities to subsequent profiles; the results or degeneration of previous profiles; and the merging
with other profiles and their negations. Another case is given by the dynamics and related properties,
such as fuzziness, of multiple profiles that are valid for each instant. Lucky cases take place when few
dominant profiles are sufficient to represent the meta-profile.

Meta-profiles are intended to allow for model dynamics, evolutionary compatibilities, and
equivalences, and to identify areas (incubators) where specific phenomena may emerge.

We may say that profiling by using mesoscopic variables generically coincides with
mesoscopic understanding.

6.5. Non-Computable Profiles

In the previous sections, we considered the case of profiles as properties of incomplete, fuzzy,
and non-analytically tractable mesoscopic variables. The particular aspects consisted of assuming
computable properties of multiple clusters.

Here, we remind the reader of the well-known Church–Turing thesis [59]. This thesis claims that
each function that is effectively computable by an algorithm can be calculated by a suitable Turing
Machine. In other words, each algorithm is Turing-computable. Moreover, two very important related
properties of any algorithm are its completeness and explicitness, that is, the computational process
(the program) occurs by sequences of finite numbers of steps and specifies the process’s causal chain.
However, the processes of emergence are intended to be non-algorithmic, non-procedural processes
with regard to their input and output [18]. It is interesting to observe how the behaviours of some
particular types of neural network are non-Turing-like. This situation suggests the suitability of
constituting a theory of natural computation [60].

As considered below, different approaches, such as learning, are necessary, including those based
on machine learning.

Phenomenological emergence may be intended to describe the uniqueness of coherent subsequent
phase transitions [8,30].

The phenomenon of the emergence of constituting ecosystems7 may be intended to constitute
the so-called natural computation as a physical process. We now consider how, in the effective
phenomenology of emergence (that is, how emergence emerges (its ‘mechanism’), the boundary
conditions continuously change and require the assumption of a level of observer-dependent
description. Specifically, they need to consider the user’s cognitive processes, for instance, their
abilities to memorise recognise, make logical inferences, and find properties.

7 An ecosystem should be viewed as a dynamical community of multiple systems and quasi-multiple systems ([8], pp. 166–170)
formed by the interaction of a community of organisms with their environment. The richness of the interactions is peculiar
as they are based, for instance, on (or given by) adaptation, cognitive (at different levels of complexity) interactions,
compensations for missing resources, competition, growth, learning, mutual symbiosis, and reproduction. All of this
occurs within a framework of spatial and temporal dynamics, different durations, densities, and uses of the environment.
Some models represent aspects such as the well-known Lotka–Volterra, or predator–prey models whose equations describe
the dynamics of biological systems where the number of individuals in the population changes over time according to
the equations.
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In the case of natural computation, its step-by-step computation is intended to correspond to
step-by-step frames of a process of radical emergence. In this case, the sequence is the computation itself,
and it is non-Turing. Rather, it has phenomenological nature and it is possibly repeatable thanks to the
learning processes of a cognitive complex system. We stress how repeatability by learning is conceptually
different and theoretically non-equivalent to Turing-like computational iterations [18].

The case of machine learning performed by Artificial Neural Networks (ANNs) through supervised
or unsupervised learning is an example. In the case where the observer establishes correspondences
among specific inputs and outputs, the program (in this case, the ANN) represents (can we say computes?)
the (machine) learning which, from a specific input, will generate the corresponding output.

It is well-known that the representation of the process is non-analytical, and it is performed by
changing adaptive networks by specifying weighted links and levels among variables.

This is then an example of a process that can be intended to be non-analytical and non-explicit.
Such processes are often termed sub-symbolic, whereas they emerge from explicit and complete
computational processes (algorithms), such as ANN programs, which are explicit algorithms.

We consider the possible dynamic non-computable-profiles to be the classes of Big Data listed in
Section 1, for example, any machine learning parameters, weights, and levels that are suitable to make
an ANN to learn the behaviour of Big Data over time [61,62].

More generally, here, we consider the case of emergent profiles. Rather than only using populations
of interrelated profiles, we may consider the ecosystems of interacting profiles where continuous
processes of emergence occur.

6.6. Topological Data Analysis

Within the conceptual framework of the meta-scale analysis introduced above and with a focus at
the mesoscopic level, we consider the Topological Data Analysis (TDA) that was already mentioned in
Section 2.5.

Tt is well known that topology is the branch of mathematics whose area of study is related to the
study of features of shapes and the connectivity of spaces.

TDA is a homology-based theory.
In mathematics, homology was introduced as a methodological approach to the categorisation of

holes, that is, to identify classes in a manifold.
In addition to the searching for meta-structures allowing for meta-profiles, as mentioned above,

some topological approaches were introduced to identify and model the mesoscopic aspects of complex
systems intended to be complex networks.

In particular, such approaches in computational topology are based on persistent homology
(individualisation of generators of persistent n-dimensional holes. This approach is suitable for
the identification of non-local structures, like weighted holes inside a link-weight network texture.
In this approach, the properties distinguish weighted networks in two main classes. One is given
by small and hierarchically nested holes. The other one exhibits significant and longer persisting
inhomogeneities. This approach allows the processes of shape recognition and data discovery to occur
within large datasets [63].

Another case relates to topology driven models in the framework of the Information Sytems (IS)
metaphor when disciplinary research is conceived as part of data science. This is the case when the
adaptivity of complex systems is considered to be driven by data. The purpose is to obtain global
topological information from spaces of data. In particular, it is of interest to consider the persistent
homology and Betti numbers of the phenomenological data [64].

Moreover, another TDA approach we would like to mention is related to the usage of the persistent
entropy that characterises the environment. The interest in this is because the value of such entropy is
highly related to the topological structures of the data.

In this case, the entropy measure is essentially computed by using the persistent Betti barcodes.
It is a method that considers the topological properties of complex systems [65].
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7. What to Do with Big Data—From Forecasting to Mesoscopic Understanding.

Effective classifications [66] allow for suitable searches. This is the case for web search engines.
The order of magnitude is now trillions (1018) of searches per year inside the World Wide Web [67].
However, the available information is not very precise due to the number of search engines available
and the marketing importance of the data.

A large variety of proprietary approaches are used.
The problem is in having all the data available without knowing it or without knowing what to

do with it.
Network representations allow for the representation of properties and equivalences of paths that

can be used as profiles to be possibly considered, dynamically combined and weighted, and used to
establish meta-profiles.

By dealing with homogeneous or heterogeneous Big Data, we consider how different kinds of
profiling, such as meta-profiles, which vary depending on the ongoing sequences of Big Data, allow
for the establishment of dominions, compatibilities, and incubators of properties that are figured out
by the researcher.

We mention, among a large variety of possible searches, the backward search, which identifies the
paths that led to the current state ex post and allows for learning and making possible generalisations
of the paths as profiles for equivalent states.

Non-computable, emergent profiles allow for the tracking of structural dynamics that is invisible
to researchers using the dynamics of the same profiles.

The aim of the case of mesoscopic meta-profiling [68] introduced above is to avoid the classical
assumption that the detection of any possible properties should be anticipated by analytical,
correlational, and statistical properties. According to the conceptual constructivist and De Finetti’s way
of thinking, the properties should be hypothesised by the researcher first or realised ex post. However,
the occurrence of analytical, correlational properties is used as the abductive material for the creativity
of the researcher by identifying variables, scales, network representations, and properties.

Here, we consider that mesoscopic forecasting and understanding have a dynamical trade-off between
their microscopic and macroscopic aspects. This level of representation is considered suitable to
represent the tendency and ongoing properties more-so than the impreciseness of classical fuzziness.

The proposal here is to focus on the mesoscopic instead of, or combined with, the fuzziness used
in several approaches, such as that used for search engines on the web.

Some generic examples of the kinds of properties to look for in the structural dynamics of Big Data
which the mesoscopic approaches may facilitate the emergence of are as follows:

• Temporal quantitative trends of aggregations;
• Singularities and their possible recurrence;
• Possible equivalent properties that are necessary or preliminary to the phenomena of emergence;
• Temporally evolving properties.

Social examples of the three kinds of meta-profile considered above may relate to the
representation of the maintenance of peaceful conditions, the emergence of conflictive situations,
and social trends.

Another area of interest is cryptocurrency [69]. A cryptocurrency is a virtual, digital, and
decentralised currency whose implementation is based on the principles of cryptography, both for the
generation of money itself and for validating transactions.

The implementations use the peer-to-peer technologies of peer (non-hierarchical) nodes on
networks whose nodes are computers of users scattered everywhere.

Cryptocurrencies have decentralised control; they work through blockchains, a public database
of transactions that can be understood as a distributed ledger in which a set of subjects shares IT
resources, such as memory, processing, and telecommunication band, in order to make a generally
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public virtual database that is available to the user community and in which each participant has a
copy of the data.

Transactions take place collectively on the network, so there is no “centralised” type of
management. In fact, there is no central authority that controls them. Cryptocurrencies are then
data and transaction generators that plump Big Data [70,71].

Several cryptocurrencies were conceived to induce or facilitate the introduction of subsequent
new units of currency in order to place a limit to the amount of money in circulation. This is both
to imitate the scarcity (with a corresponding effect on the value) of precious metals and to avoid a
hyperinflation phenomenon after which users have to use another currency. We mention that Bitcoin,
introduced in 2009, was the first decentralized cryptocurrency.

Furthermore, such profiling allows for some peculiar approaches, such as the following:

• The design and detection of impossible profiles, for example, artificial profiles to hide the real ones
(this may be the case to detect criminal behaviours);

• The consideration of tentatively evolving profiles, for example, to be supported or prevented;
• The exploration of admissibility and compatibility of profiles;
• The identification of incompatibilities and inconsistencies (to be eventually used to disable the

creation of a process);
• The identification of equivalences among profiles;
• The identification of composition criteria among profiles;
• The consideration of evolutionary criteria (admissible, possible, compatible) with different levels

of sensitivity to the initial conditions;
• The consideration of the robustness of profiles.

We mention how this approach may also be considered in linguistics, for instance, it can be related
to the Latent Semantic Analysis [72].

We conclude this section by stressing that we do not look for past profiles to explain the current
ones, but rather, we look for ongoing profiles (it is their emergence and the properties of their emergence
that trace the trajectories). We focus on profiling and querying Big Data rather than trying to definitively
understand them and assume that we can then foresee them. Querying is intended as an ongoing
understanding.

8. Further Research

The methodology outlined here has the potential to be implemented in a variety of approaches in
relation to the field of investigation and the interests of the researcher. As a result, several software
tools will have to be developed to complement, for instance, those of clustering and cluster analysis
that are already in use.

A further line of research may consider the compatibilities, equivalences among fuzzy profiles,
semantic fuzzy profiles, and their properties during networking by considering variable idempotence
(when M ≈ c + kM2 as in [73]), as well as other matrix properties M(t) that represent the networks and
random matrices that allow for possible mathematics-specific descriptions.

Furthermore, it is possible to consider approaches such as networking for Big Data [74,75] and, by
using computational network-based approaches, to determine the properties of networked data ([8],
pp. 287–304; 64).

Another line of research to be mentioned is related to Quantum Fields Theory (QFT), in which
some concepts and approaches may be, at least, inspiring, such as the use of fields as autonomous
entities; the existence of non-equivalent representations; and entanglement, where a system cannot
be described individually, but only as a superposition of several systems and matrixes Ms(t)). As a
consequence, a measurement or an intervention on a system instantly determines the variations in
the others. This also occurs in the case where systems considered to be overlapping or correlated are
spatially or temporally distant.



Systems 2019, 7, 8 19 of 22

Moreover, “... the plasticity itself of QFT conceptual structures does not preclude the unexpected
occurrence of new models and new achievements helping to better understand what is emergence”
([8], p. 248).

9. Conclusions

In this article, we discussed and considered some new, unusual conceptual frameworks
and approaches.

The fundamental new understanding relates to a move from considering Big Data as data sets
within properties towards considering Big Data as multiple processes to be considered in constructivist
ways, for example, by ongoing profiling rather than modelling and understanding rather than
foreseeing. Querying Big Data rather than trying to definitively model properties when querying
is intended to allow ongoing understanding. We considered the mesoscopic level used to model
collective behaviours, such as collective beings, to be the level of representation that is suitable to deal
with the ongoing multiplicity of structural dynamics in contrast to dynamics alone.

In particular, we proposed the use of the properties of mesoscopic variables to profile Big Data
from a constructivist view, where, as in De Finetti’s view of probability, the observer semantically
introduces variables and properties. We stated that it is a matter of using mesoscopic profiling that is
suitable to detect properties within the context of structural dynamics, where the dynamics relate to
the changes of structures, rather than the changes of values regarding the same structure. The focus is
then on ongoing profiles as they emerge (the properties of the becoming that trace the trajectories). We
focused on profiling Big Data rather than trying to definitively understand them and assuming we can
then foresee them (from the past). This is a matter of having an ongoing mesoscopic understanding that
overlaps with profiling. We mentioned the case of non-computable profiles, such as when dealing with
natural computing, machine learning, and ecosystems.

Following the proposed interpretations and the possible future research mentioned, it is possible
to consider consequential innovative approaches that could be transformed into methodological and
technological implementations with fresh ways of dealing with Big Data. In particular, the purpose
is to allow the implementation and engineering of tools that can be used to understand and design,
rather than to foresee and manipulate. The availability and usage of such tools may facilitate, induce,
and support processes of development that are intended to represent multiple, strategic usages of
processes of growth.
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