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Abstract: The basic processes that bring about living systems are conventionally represented in
the framework of chemical reaction networks. Recently, it has been proposed that this framework
can be exploited for studying various other phenomena. Reaction networks are specially suited
for representing situations where different types of entities interact in contextual ways leading to
the emergence of meta-structures. At an abstract level, a reaction network represents a universe
whose evolution corresponds to the transformation of collections of entities into other collections of
entities. Hence, we propose that systems correspond to the sub-networks that are stable enough to
be observed. In this article, we discuss how to use reaction networks for representing systems.
Namely, we introduce the different representational levels available (relational, stoichiometric,
and kinetic), we show how to identify observable systems in the reaction network, discuss some
relevant systemic notions such as context, emergence, and meta-system, and present some examples.

Keywords: Reaction Networks; System Theory; Chemical Organization Theory; emergence; context;
meta-structure

1. Introduction

Systems theory (ST) focuses on the properties, laws, principles and phenomena that different
kinds of systems share. Particularly, the founders of systems theory emphasized the importance
of studying the structural isomorphism between systems of different domains of reality, which are
studied by different scientific disciplines. Consistently, mathematical modeling was proposed as the
main interdisciplinary tool of systems theory due to its suitability to represent and handle the formal
structure of systems independently of the nature of their components [1,2].

The mathematical modeling of systems has considered a variety of frameworks, usually different
when changing from one area of knowledge to another. In general, there is a tradeoff between how
precise is the description of the system and its properties, and the number of entities and types
of interaction. For example, when an ecological system of only a few species is considered, differential
equations are used and exact knowledge of the system can be gathered. However, this approach is
not scalable to large ecological systems because the equations involved are too complex and thus the
dynamics cannot be computed. In such cases, alternative frameworks such as network or agent-based
models are used. These frameworks can simulate some aspects of the dynamics of large systems,
but important features that can be studied using differential equations such as the sensitivity to
perturbations and the dependence on the system’s parameters are lost [3].

Moreover, although well-grounded philosophical and structural principles have been developed
for systemic thinking, and although the importance of integrating different areas of knowledge
in the mathematical representations has been constantly stressed [4,5], interdisciplinary scientists
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have had a hard time trying to develop formal representations of systems that integrate diverse
areas of knowledge. As a consequence of this, we can conclude that systemic thinking lacks a formal
language to express the full scope of systemic thoughts [6].

In conclusion, one of the big challenges in ST is developing a language that allows for putting
multiple perspectives into play, but at the same time is mathematically well-grounded so large scale
interdisciplinary models can be developed and tested.

In various biochemistry-related areas such as systems biology, bioinformatics, and chemical
computing, reaction networks are the mainstream language of representation [7–9]. Interestingly,
the language of reaction networks allows for three levels of representation: relational, stoichiometric,
and kinetic, respectively. These three levels are increasingly richer in their mathematical structure.
On the relational level, one can represent simple structural properties such as connectivity and cycles,
and is mainly used for visualization purposes [10,11]. On the stoichiometric level, one can analyze
quantitative structural properties of the processes occurring in a reaction network such as elementary
flux-modes and self-maintainance [12], and, on the kinetic level, one can compute the time-evolution
of the reaction network and perform a detailed study of it [13].

A recent advance of the reaction network formalism is Chemical Organization Theory (COT) [14].
In COT, a reaction network can be associated with a set of organizations, which represent the sustainable
subnetworks of the reaction network, and can be computed relatively easily. In fact, the study of
biochemical reaction networks can hardly be developed using traditional system dynamical tools for
large reaction networks [15]. However, organizations have been proven to provide a landscape of the
long-term dynamics, and thus characterize the observable systems emerging from a reaction network.
Hence, COT is a language that helps to bridge the gap between precision of the representation and size
of the system. COT has been applied to study several metabolic and other biochemical systems [16–18],
and has been proposed as a framework for chemical computation [19] and model checking [20].

Formalisms mathematically equivalent to the language of reaction networks have emerged,
rather unexpectedly, in areas outside biology. Namely, formalisms in the early times of parallel
computation such as Vector Addition Systems [21] and Petri Nets [22], and, in Linguistics, a formalism
known as commutative grammars [23], have been proven to be mathematically equivalent to reaction
networks [24,25]. The discovery of these equivalences has led to important cross-fertilizations between
biology and computer science [26]. Moreover, since traditional networks are a special type of reaction
networks, where only one-to-one relations are allowed, the network-based models in areas such
as ecology and social science [27,28] can also be understood as mathematical representations using
a simplified version of the language of reaction networks.

Why have reaction networks emerged as a representational language in seemingly different areas
of knowledge? The reason is simple but profound. Reaction networks (or any language mathematically
equivalent to it) entail a natural way to represent universes where the interactions among entities are of
transformational nature.

Hence, thinking of reaction networks not as a framework for representing biochemical interactions,
but as a language for representing processes of transformation, proposes an interesting way to
understand and represent systems as processes that are self-maintaining, and thus stable enough
to be observed in time [29,30]. Representing systems by reaction networks not only permits the
incorporation of different perspectives into play but also the possibility to represent and study the
long-term dynamics of systems with a large number of entities and interactions. Attempts of modeling
systems using reaction networks beyond the biochemical domain have been developed in political,
decision-making, and economical systems [31–33]. Remarkably, these applications have been carried
out combining scholars in various fields including social science, bioinformatics, and mathematics.
Hence, these works entail a truly formal interdisciplinary dialogue.

In this paper, we discuss how reaction networks can serve as both a framework-for-thinking-about
and a language-for-modeling systems. In Section 2, we introduce the three levels of description available
to represent reaction networks and introduce some relevant properties. In Section 3, we present COT,
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in Section 4, we discuss how to model systems using reaction networks and present some systemic
relevant notions in our framework, in Section 5, we present examples of non biochemical systems
modeled using reaction networks, and we present our conclusions and future perspectives in Section 6.

2. Reaction Networks

We introduce the notions of the reaction network formalism that are necessary to understand the
relational, stiochiometric and dynamical levels of representation, and to introduce COT. Most of the
material of this section, with the exception of the identification of different layers of representation,
is standard material in the reaction networks literature. For a comprehensive treatment of the reaction
network formalism, we refer to [9,34]. From now on, letM = {s1, . . . , sm} be a set of m species that
can react with each other according to a set R = {r1, . . . , rn} of n reactions. Reactions describe how
certain collections of species transform into other collections of species. For a given reaction r ∈ R, the
species to be transformed, i.e., consumed by r, are called reactants of r, and the species to be created by
this transformation are called products. Together, the set of species and the set of reactions are called
reaction network (M,R).

In general, some reactions in R might occur more often than others. A particular specification
of the occurrence of reactions within the reaction network is called reaction process, or simply process
(In reaction network modeling, v is usually called flux vector. We are introducing a slightly more
general notion because our aim lies beyond the modeling of biochemical systems) and denoted by v.

Before proceeding with a more detailed description of how reaction networks and processes are
represented, note that, for any set of species X ⊆M, we find a unique maximal set of reactionsRX ,
defined as the set of all reactions whose reactants are in X. Thus, each set X induces a sub-network
(X,RX). Hence, a process v applied to X can only contain reactions fromRX .

Note that X ⊂ X′ impliesRX ⊂ RX′ . Thus, a process v applied to X can always be applied to X′.
On the contrary, if v is a process applied to X′, v can be applied to X only if v considers reactions in
RX only.

In this section, we will be concerned with the structure of a set X ⊆ M. To do so, we will
introduce three (increasingly more complex) ways to represent a process, and define some properties
related to the consumption and production of species. Since we focus on a set X ⊆M, we assume that
v contain reactions inRX only.

2.1. Relational Descriptions

Relational descriptions are the simplest form of representation of reactions and processes.
Reactions r ∈ R is specified by a set rC of consumed species, and a set rP of produced species,
and denoted by r = (rC, rP), and a process v is simply a set of reactions.

Definition 1. X is closed w.r.t. v = {(r1
C, r1

P), · · · , (rk
C, rk

P)} iff ∪k
i=1ri

P ⊆ X. If X closed w.r.t. the process
v = RX , we say that X is structurally closed.

The notion of closure formalizes the fact that no new species are created by a process.
For structurally closed sets, no process can create new species. Note that, although X can be closed
for certain processes, such as the (trivial) empty process, if X is not structurally closed, the processes
for which X is not closed might change its structure. Indeed, when X is not structurally closed,
some reactions (ri

C, ri
P) ∈ RX are such that ri

P is not a subset of X. Therefore, at least one species
s ∈ ri

P is not in X. Hence, whenever such reactions occur in a process applied to X, new species
are added. As a consequence, reactions that are inRX∪{s} but not inRX might become available for
further processes that, in turn, might add new species. This mechanism can continue until no new
species can be added by any process, i.e., when a structurally closed set has been reached.

Lemma 1. For all X, the structurally closed set GCL(X) of minimal cardinality that contains X is unique [14].
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Definition 2. X is semi-self-maintaining w.r.t. v = {(r1
C, r1

P), · · · , (rk
C, rk

P)} if and only if ∪k
i=1ri

C ⊆ ∪k
i=1ri

P.
If X is semi-self-maintaining w.r.t. v = RX , we say that X is structurally semi-self-maintaining.

Similarly to structural closure, the evolution of a reaction network generally leads to a structural
semi-self-maintaining network. Indeed, if a set X is not structurally semi-self-maintaining, then, for
some processes, we have that the reactants consumed by the reactions in the process are not being
produced by any reaction in the process. Therefore, such species that are not produced are going to be
consumed by the processes occurring in the reaction network, until a structurally semi-self-maintaining
set is obtained.

Definition 3. Two species s, s′ ∈ X are directly-connected w.r.t. X if and only if there exist a reaction r ∈ RX
such that s, s′ ∈ rC ∪ rP. We say s, s′ ∈ X are connected w.r.t. X if and only if there is a sequence of species
{s1, ..., sk} such that s1 = s, si is directly-connected to si+1 and sk = s′.

The connected relation is a generalization of connectivity for traditional networks. In particular,
it allows for decomposing a reaction network into a collection of non-interacting subnetworks. In fact,
note that every reaction consumes/produces species that are directly-connected to the reactants,
and when two species s1 and s2 are not connected, we have that none of the species connected to s1 are
connected to any of the species connected to s2 and vice-versa. From here, it is easy to deduce that
any process applied to X can be partitioned into a list of disjoint sub-processes, and that each of these
sub-processes in turn correspond to disjoint subsets of species of X. From now on, we will assume that
all species in X are connected.

2.2. Stoichiometric Description

Note that, in a relational description, reactions provide information about the type of species
transformed only, but not about how many species of each type are transformed by the reaction.
A stoichiometric description provides a new level of information on how reactions and processes
are represented. A reaction ri is represented by

ri = ai1s1 + ...aimsm → bi1s1 + ...bimsm (1)

with aij, and bij ∈ N0, and i = 1, ..., n.

The number aij ∈ N0 denotes the number of reactants of type sj of the i-th reaction. Together,
these numbers form a reactant matrix A ∈ Nn×m

0 . Analogously, the number bij denominates the number
of products of type sj of the i-th reaction. Together, these numbers form a product matrix B ∈ Nn×m

0 .
From here, we can encode the way in which species are consumed and produced by the reactions in
the stoichiometric matrix S = B−A.

Since the stoichiometric description counts the amount of each type of species involved in the
reactions, processes can be extended to specify the number vi ∈ N0 of times that each reaction ri occurs.
Thus, a process corresponds to a vector v = (v[1], ..., v[n]).

We can also represent the state of a reaction network by a vector x of non-negative coordinates
such that x[j] corresponds to the number of species of type sj in the reaction network, j = 1, ..., m.
Moreover, we can compute the state xv of the reaction network associated to a state x and a process v
by the following equation:

xv = x + Sv. (2)

For simplicity, we have assumed that the coordinates of x are large enough for the reactions in
v to take place in any order (The study of processes where the number of species is small has been
profoundly studied in the context of Petri Nets using the notion of deadlock state [22]. See also [35].).
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From here, we can define some relevant quantitative roles for the species participating in a process.
For simplicity, we will assume that X is a closed set (When this condition is not satisfied, the definitions
below require minor modifications that are not relevant for the purposes of this article.), and that
a process v applied to X is such that if ri /∈ RX then v[i] = 0.

Definition 4. A species sj ∈ X is a catalizer w.r.t. X if and only if ri ∈ RX implies aij = bij.

A catalizer is not affected by the action of a process in the reaction network. There are
two interesting facts about catalizers. First, if s is a catalizer w.r.t. X, then s is a catalizer with
respect to all X′ ⊆ X, but not necessarily with respect to X′ ⊃ X. Second, catalizers w.r.t. X correspond
to a row of zeroes in the stoichiometric matrix associated toRX , and thus are easy to compute.

Lemma 2. A species sj ∈ X is a catalizer w.r.t. X if and only if for all process v applied to X, we have that
xv[j] = x[j].

Definition 5. Let v be a non-null process vector applied to X such that xv does not have negative coordinates.
If xv[j] > x[j], we say that sj is overproduced by v in X.

Overproduced species have the potential to unlimitedly increase their amount by repeating the
process v which overproduces them. Therefore, overproduced species can be considered as an unlimited
resource in the reaction network. Interestingly, an overproduced species by v in X is also overproduced
by v in any X′ ⊃ X. Moreover, if two species sj and sk in X are overproduced by the processes vj and
vk, respectively, it is trivial that vj + vk overproduces the set {sj, sk} in X.

Both overproduced species and catalizers can be used to refine the notion of connectivity
(see Definition 3), and thus help to provide a much more elegant decomposition of the reaction
network into dynamically independent sub-networks. For the sake of simplicity, we will not elaborate
on this issue here, but refer the reader to [36] for an elaborated exposition of these results.

Moreover, the notion of (structural) semi-self-maintaining networks can be extended in the
stoichiometric description, leading to a quantitative definition of sustainable reaction network.

Definition 6. Let v be a non-null process. X is weak-self-maintaining with respect to v if and only if
xv[j] ≥ x[j], j = 1, ..., m. If, additionally, such process satisfies v[i] > 0 if and only if ri ∈ RX, we say
X self-maintaining.

Lemma 3. If X is self-maintaining, then X is structurally semi-self-maintaining.

For a weak-self-maintaining set X, there are processes that lead to a non-negative production of
all the species involved in the process. These processes, however, might not use all the reactions inRX .
For self-maintaining sets, we can find processes such that every reaction inRX occurs, and the result
of the process does not lead to the consumption of any species. Therefore, self-maintaining sets entail
the parts of the reaction network where self-sustainable processes, at a quantitative level of description,
can occur.

2.3. Kinetic Description

In order to quantify the overall transformation of species derived from a process v occurring in
time, we represent the state vector as a function of time x(t) = (x1(t), ..., xm(t)), where xj(t) encodes
the number of species sj at time t.

Suppose that the process v occurs between times t0 and t1. Therefore, we can obtain x(t1) from
x(t0), S, and v as follows:

x(t1) = x(t0) + Sv. (3)



Systems 2017, 5, 11 6 of 16

This equation provides a formal description for the change of the number of species driven by
a process v [37].

By setting the diffenence between t1 and t2 infinitely small, Equation (3) becomes the
differential equation

ẋ = Sv, (4)

with initial conditions specified by x(t0).
In this case, the process vector is a function of time. Usually, v is conceived as a function of

time t, the state vector x(t), and a vector of parameters k associated to the reactions and given by the
dynamical rules of the system. The common case of continuous dynamics is the mass-action kinetic
law [13], where the state vector x(t) ∈ Rm

≥0 represents the concentration of species in the reaction
network at time t, and the process vector function v is defined by:

vi(t, k) = ki

m

∏
j=1

x
aij
j

for i = 1, . . . , n, and k = (k1, ..., kn) is a strictly positive vector whose coordinates are called reaction
rate constants.

For (discrete or continuous) probabilistic dynamics, the process vector v represents the probability
of occurrence of the reactions in the network.

A reaction network together with the discrete/continuous and deterministic/probabilistic kinetic
law is called a reaction system. A reaction system is the most refined description of a reaction network
because it describes how the local dynamics evolve.

3. Connecting the Description Levels: Chemical Organization Theory

The relational, stoichiometric and kinetic levels of representation present three increasingly
precise ways of representing a reaction network and its processes. However, the gain in precision is
compensated with an increase in the computational resources required to identify the properties of the
reaction network. In Table 1, we summarize some important structural features and the computational
resources required for identifying such structures at each level of representation.

Table 1. Table of scalability of properties depending on the level of representation. Each property is
either not computable, or a level or scalability is associated. A property is more scalable if it can be
computed for larger networks. Hence, Full, Moderate, and Hard scalability represent three levels of
increasingly more complex computation, respectively.

Property-Type/Level Relational Stoichiometric Kinetic

Topological Structure Full Full Full
Phase Space Analysis Uncomputable Moderate Hard

Time Evolution Uncomputable Moderate Hard

Namely, the relational description is capable of identifying connectivity-related properties
in the network by means of simple set-like operations, but is unable to describe properties of
quantitative nature. The stoichiometric description allows for describing properties of quantitative
nature by means of matrix algebra operations (which are computationally tractable for moderately large
networks), but it is unable to describe the influence of kinetic parameters and the precise time-evolution
of a reaction network. The kinetic description is able to fully represent the influence of parameters
and the time-evolution of a reaction network, but such description requires solving a highly coupled
and nonlinear system of (either discrete, stochastic, or differential) equations. These equations do not
have an analytic solution in most cases. Hence, the exploration of the dynamics of a reaction network
requires numerical solutions that become intractable for large reaction networks.
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Since a full-featured understanding of the dynamics of a reaction network is intractable at the
kinetic level, COT proposes that certain structural properties at the kinetic level can be traced at the
relational or stoichiometric levels, and thus at a computationally affordable cost. Such structural
traces are, technically speaking, necessary conditions for the desired properties of the reaction system.
In particular, COT focuses on the connection between structural properties at the relational and
stoichiometric levels with the long-term behavior of the reaction system.

To this end, COT introduces the crucial notion of organization:

Definition 7. X is a (semi-)organization if and only if X is closed and (semi-)self-maintaining.

An organization satisfies simultaneously the relational-level property of closure and the
stoichiometric-level property of self-maintaining. By combining these two requirements, COT identifies
the structural footprint of stable dynamics. Namely, a closed set of species entails a subnetwork whose
processes do not produce new species, and within these closed dynamics, there are processes that
allow self-maintenance of the quantity of species in the system. Therefore, as long as self-maintaining
processes occur, the subnetwork (X,RX) will be preserved in time.

In order to connect the notion of organization with the dynamical level, we introduce the
following notions.

Definition 8. Let P (M) be the power set ofM and

φ(t) : Rm
≥0 → P (M) , x(t) 7→ φ (x(t)) ≡ {si ∈ M : xi(t) > 0} . (5)

For a state x(t) ∈ Rm
≥0, the set φ (x(t)) is the abstraction of x(t). For a given set of species X ⊆M, a

state x(t) ∈ Rm
≥0 is an instance of X if and only if its abstraction equals X.

The notions of abstraction and instance connect the representations of the reaction network with
the reaction system, and organizations represent the abstractions of all the possible stable instances:

Theorem 1. If x is a fixed-point of the ODE (4), i.e., Sv(x, k) = 0, then the abstraction φ(x) is an
organization [33].

Fixed points entail the simplest dynamically stable instances of a reaction system, and are crucial
for determining most important features of the dynamics of a system [38]. Thus, Theorem 1 provides
a link between the long-term behavior of a reaction system and its underlying reaction network.
In simple words, it proves that a necessary condition to be a fixed point at the kinetic level is to be
an organization at the stoichiometric level (and thus a a semi-organization at the relational level).
Moreover, in [39], Theorem 1 is extended to other stable asymptotic behaviors such as periodic orbits
and limit cycles. In addition to these results, necessary conditions for the existence of adequate flux
vectors are explored in [40], and algorithmic studies concerning the computation of the organizations
of a reaction network are presented in [41–43].

4. Discussion: Reaction Networks and the Modeling of Systems

We now discuss some general aspects about using reaction networks as a language for the
modeling of systems.

4.1. Reaction Networks as Universes and Organizations as Systems

In the reaction network formalism, we define species and reactions to specify how the entities we
consider interact and transform. Therefore, it is important to stress that we do not start from the idea of
a pre-existing system to be modeled. On the contrary, we start from a set of relevant entities, which can
be of any nature (physical, cognitive, economic, etc.), and we determine a set of rules that specify how
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combinations of these entities transform into new combinations. Since, for a system, it is generally
assumed that it is, to some extent, stable in time so it can be observed, and it holds certain properties
that entail its qualitative identity, we propose that the more adequate notion of system is a subnetwork
(X,RX) such that X is an organization. Therefore, systems are conceived as self-maintaining entities
that emerge from the universe of interactions [29,44]. This explains the notion of qualitative identity of
a system from a dynamic perspective. Namely, a system is continuously changing its inner components
and sub-processes, but the qualitative identity and unity are secured as long as the reaction network is
structurally closed and its inner processes are self-maintaining. Hence, the reaction network (M,R)
plays the role of universe of existence and interaction, and the organizations play the role of potentially
observable systems in this universe.

The latter view allows for a recursive representation of the systems in a universe [45]. In case
the whole reaction universe is an organization, we conceive it as the largest possible system, if not,
several largest systems might exist. By looking inside the largest systems, we find smaller systems
that are contained in the largest systems, and continue recursively until we arrive to the smallest
organizations, which play the role of minimal observable entities.

Since we are free to chose our basic entities and processes, a fundamental step when modeling with
reaction networks is to choose a basic representational ontology which includes the fundamental entities
in the transformational universe, and then define the transformation rules among these basic entities.
Next, we can extend the representation of such universe by incorporating either new entities and new
reactions, or by replacing existing entities and reactions by a deeper or fine-grained representation of
the replaced entities.

4.2. Inner and External Contexts

In the reaction network formalism, we identify two fundamentally different notions of context.
The first is the epistemic (or external) context that corresponds to the choice of the subnetwork to be
considered. The external context specifies what entities and interactions we consider. In this approach,
we start from our universe (M,R) and analyze specific external contexts represented by subnetworks
(X,RX). The choice of an external context constrains the entities to be found and the transformations
allowed to occur.

The second context operates within the external context. This behavioral (or inner) context
specifies what processes v are allowed to occur and how they occur. The inner context v determines
whether a subnetwork is self-maintaining, and thus an organization. If the inner context forbids the
occurrence of self-maintaining processes, we have that (X,RX) will not be stable in time, and thus
not observable.

The previous observation implies an interesting dichotomy between structure (external context)
and dynamics (inner context) in the study of systems. The importance of this dichotomy has
not been widely acknowledged by the biochemistry-related community working with reaction
networks models. It occurs for two main reasons. First, in most biochemical cases, the reaction
network is meant to model a predefined system, thus the notion of external context is of virtual
nature only. Secondly, biochemical processes are governed by deterministic physical laws. Hence, the
inner context of the reaction network is fixed by deterministic principles of the biochemical domain [13].

However, by considering reaction networks as a language for modeling systems, species might not
be biochemical or even physical entities. Hence, processes might not necessarily obey any determined
set of rules, and thus external and inner contexts might become relevant and influence each other.

4.3. The Emergence of Systems and Meta-Systems

In the reaction network approach, the emergence of a stable system is a natural consequence of the
dynamics. In fact, Theorem 1 states that stable dynamical regimes correspond to organizations in the
reaction network. This is equivalent to say that the systems we observe are observable because they are
stable enough in time to be observed, and that this stability is the consequence of a dynamical process.
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Therefore, systems are stable structures of processes emerging from the transformational interactions,
i.e., dynamics, occurring in the universe.

In COT, a reaction network is represented as a hierarchy of subnetworks. At the lowest level,
we have the empty reaction network (0 species), and each subsequent level has subnetworks having
more species. At the highest level, we find the setM. This representation is known as the Hasse
diagram (see Figure 1).

picture

Figure 1. Example of hierarchy of reaction networks and their properties in COT. Inspired from [14].

This setting is convenient for explaining not only the emergence of systems from the interaction
of species, but also the emergence of meta-systems from the interaction of systems. Since we conceive
organizations as systems, we note that when two or more organizations interact, a new reaction
network is formed. Since the new reaction network can have reactions that are not in any of the former
organizations, the union of two (or more) organizations may or may not be an organization. In the
example in Figure 1, we see that both {a, b} and {b, d} are organizations, but when they combine to
become {a, b, d}, the new reaction b + d→ c becomes active. Therefore, {a, b, d} is not closed and thus
is not an organization, but its closure {a, b, c, d} is closed and self-maintaining, and thus an organization.
This simple example illustrates that organizations form a hierarchy, and that this hierarchy can be used
to explain how meta-systems can non-trivially emerge by the interaction of systems.

4.4. The Lack of Identity Problem and the Membrane Solution

One important drawback of the reaction network formalism is that the species do not have
individual identity. This means that given a certain species type s, we have that all the species of this
type are equivalent in the reaction network. This has proven to be problematic for modeling systems
where species represent entities having mechanisms of memory or recognition [32]. Moreover, there is
a way to construct virtual cells of interaction in an extended reaction network formalism known as
membrane or P-systems [46]. In the P-systems framework, we allow different reaction networks to
exist, and each of these reaction networks is enclosed in a membrane and thus is allowed to evolve
separately from the other reaction networks. However, each reaction network is also allowed to
exchange species with other reaction networks by means of a common space. Therefore, indirect
communication between reaction networks is possible.
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The use of membranes brings a new modeling dimension because we can attribute agency
properties to reaction networks, and since membranes can be recursively defined, we can assign
recursive layers of individual identity within an agent. Moreover, by properly labeling species
according to the compartment they belong to, we can model interactions where mechanisms of
recognition and even memory operate. Remarkably, it has been shown that when, for even the
simplest cases where two reaction networks interact, it is possible that both networks co-stabilize in
an organization, even though the two reaction networks are not stable on their own [40].

4.5. Resilience and Other Modern Systemic Notions

The reaction network approach provides a suitable landscape of concepts to formalize some
modern systemic notions. As an example, we will elaborate on the notion of resilience. Resilience has
been defined as the ability of a system to cope with change (There is a large number of definitions for the
concept of resilience [47]. We use this definition due to its simplicity and generality.). By ‘cope’, authors
generally mean ‘to be able to maintain its qualitative identity’, and ‘change’ means ‘a perturbation.’
However, the notion of qualitative identity, as well as the notion of perturbation, are generally applied
in a non-formal manner. This leads to multiple interpretations of the notion of resilience. In our
approach, the notions behind resilience can be properly defined. In fact, the qualitative identity of a
system in this setting corresponds to an organization together with a self-maintaining process occurring
in it, and the perturbation corresponds to three different types of change. The first is a change of state,
and this means increasing or decreasing the values of the coordinates of the vector x. The second is a
change of the inner context, and this means changing the set of possible processes v that can occur in
the system. The third is a change of the external context, and this means adding or eliminating species
and/or reactions in the system.

Since the notion of identity and change are properly defined, resilience can be formally studied
using reaction networks. In a similar way, we propose that other notions introduced in the system
theory literature such as robustness, adaptivity, etc. can be formalized using structural properties of
a reaction network. We will not elaborate on the details of these notions here, but refer to [36] for
a mathematical framework to formalize such notions.

5. Examples

We now overview three cases of non-biochemical systems that have been modeled using
reaction networks.

5.1. Social System: Political Structure

The use of reaction networks as a language for modeling political systems was inspired by
Luhmann’s approach to sociology [48]. Luhmann introduced the notion of communication as the
basis of societies’ structuring and ordering [49]. The concept of communication is defined as the flow
produced by the exchange of social-symbols. These symbols belong to different social structures. For
example, for simple economical, legal and political structures, the communication flow is done through
money, justice and power, respectively. In a general case, all of these structures overlap, and, hence,
communications in one system may affect the others. Therefore, a social system emerges from these
structures of communication.

In [31], Dittrich and Winter developed a reaction network that represents a toy-model of the
political system based on Luhmann’s concept of communication. They define 13 communication species,
e.g., social movement demands ‘SBFor’ (acronym from the German: Soziale Bewegung Forderung),
social movement members ‘SBMit’ (Soziale Bewegung Mitglieder), potential collective binding decisions
‘KVEPot’ (Potenzielle Kollectiv Verbindliche Entscheidungen), etc., and a set of 20 reactions to model
the interactions among these communications. For example, the reaction ‘SBMit + KVEPot→ SBFor’
models that Demands from social movements can be stimulated by potential collectivly binding decisions.
The species ‘SBMit’ corresponds to a social movement demand decision (e.g., do not increase the tax),
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that may be expressed as a protest, or by other actions, ‘KVEPot’ might correspond to a potential law
such as increase the tax, and ‘SBFor’ corresponds to the communications that the social movement
members discuss or spread (for example within social networks). For simplicity, we will not present
the full set of species and reactions, but provide a diagram of the topology of the network and the
hierarchy of organizations in Figure 2.

Figure 2. (a) Topology of the reaction network model of the political system. Labelled boxes represent
species and arrows represent reactions. (b) The hierarchy of organizations.

In this network, the simplest organization represents a political system where there is formal
political power of high and low levels, public opinion, thematic conflicts, and public force.
The dynamics of self-maintaining networks is given by how public opinion influences thematic
conflicts and how they get resolved by the political power. It resembles a monarchy-like system. More
complex organizations in the hierarchy involve either social movements and social demands, political
parties and their programs, or collectively binding decisions and their implementation. Further levels
combine these structures in different ways, and the highest level at the hierarchy is the conjunction of
all these cases together.

5.2. Decision System: Evolutionary Game Theory

In a game theoretical setting, an agent interacts with another agent by deciding a certain action
on the basis of a set of possible actions and the payoffs of these actions. The payoffs depend on
the decision of both agents, but no agent knows the decision of the other agent. For example, if we
consider cooperative C and defecting D decisions, we have that a cooperative interaction requires
two cooperative agents generating payoff for the cooperative payoff specified by PC by the reaction
C + C → C + C + 2PC, while the interaction of a cooperative decision with a defecting decision,
C + D → C + D + PD, generates payoff for the defecting decision PD only.

In the evolutionary game theory setting, agents are allowed to interact several times. They can
eventually recognize and remember other agents as well as their past actions. From here, each agent
develops a ‘strategy’ that sets how agents interact with each other depending on past interactions.

Since the interactions in evolutionary game theory are between agents, agent-based modeling is
the dominant paradigm to represent these systems [50]. Unfortunately, it is very difficult to develop
analytic results for agent-based models, and performing simulations to explore the parameter space
is computationally very expensive when several strategies are in play. As an alternative, in [32],
a reaction network model was developed to represent the evolutionary game theoretical setting of
the prisoner’s dilemma, and, in particular, the evolution of cooperation problem [51]. Species play
the role of decisions and payoffs, and a reaction network is built from the payoff matrix of decisions
(see Figure 3).
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Figure 3. Paradigm change from agent-based (bottom) to reaction network (top) modeling.
The interaction among agents corresponds to a vessel of decision species interacting, and the payoff
matrix corresponds to a set of reactions which consumes a pair of decisions to produce the payoff of
each decision and two new decisions determined by the strategies.

The reaction network model is able to fully reproduce the results obtained using agents for
the evolutionary prisoner’s dilemma. Interestingly, a formula that explains when cooperation is
evolutionarily stable is obtained [32]. This formula is equivalent to the famous result obtained by
Nowak in [52].

5.3. Ecological Systems

Ecological interactions among biological species can be modeled using reaction networks.
As an example, Table 2 provides a simple model of a list of ecological interactions using reaction networks.

Table 2. Reactions associated to most common ecological interactions.

Reaction Ecological Interaction

prey + predator → 2predator Depredation
host + hosted→ 2hosted Parasitism

host + hosted→ host + 2hosted Comensalism
host + hosted→ host Amensalism

Coop1 + Coop2 → 2Coop1 + 2Coop2 Mutualism

Since, in this setting, interactions are many-to-many directed relations, reaction networks
allow a more complex representation of ecological interactions than traditional network models.
Moreover, a more detailed account of the ecological concepts can be developed in certain ecosystems.
For example, consider the mutualistic interaction between mychorrizae and plants [53]. Namely, plants y
feed from mycelium xr to grow roots yr (r1 in Equation (6)), mycorrhizae x feeds from the roots yr

to produce mycelium (r2 in Equation (6)), and contributes to the production of mycelium xr (r3 in
Equation (6)), which, in turn, increments the absorption capacities of plants y (r4 in Equation (6)).
Therefore, the following set of reactions:

r1 = y + xr → y + yr (Plant grow roots),

r2 = x + yr → x + xr (Roots foster the growth of mychorrizea),

r3 = x→ x + xr (Mychorrizea produces mycelium),

r4 = y + xr → 2y (Mycelium foster the growth of plants),

(6)

provides a more complex model of a mutualistic relation than the one shown in Figure 2.
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Therefore, reaction networks can be used to model the mechanisms of ecological interactions.
Remarkably, COT provides a suitable conceptual landscape to formalize ecological notions.
For example, organizations can be understood as sustainable ecosystems, and invasion of a particular
ecological species x in an eco-system E can be modeled by adding species and reactions that represent
the interaction mechanisms of the species x with the ecological species in the ecosystem E [30].

6. Conclusions

In this paper, we have proposed the language of reaction networks, and particularly its COT
implementation, as a representational framework for systemic modeling. In particular, we focused
on crucial notions in a system’s theory such as the notion of the system itself, context, meta-system,
resilience, etc., and presented a reaction network model for a political, agent-decision, and ecological
systems.

Remarkably, this framework does not require the choice of a particular point of view, or field of
knowledge, that serves as a reference for representing a system. On the contrary, it is required
to identify a set of entities, that can be, in principle, of any nature (physical, biological, social,
economical, etc.), and define a set of interactions of transformational nature (reactions) among
them. The set of interactions is understood as a universe of basic processes, i.e., a reaction network.
From here, a system corresponds to a sub-network such that its structural properties ensure its
qualitative identity (closed) and observability (self-maintaining), i.e., organizations in the COT sense.
Technically speaking, organizations characterize the global invariants of the local dynamics, and can
be computed at a computationally tractable cost.

Since reactions are allowed to combine entities of different nature (see, for example, the
interactions combining payoffs and decisions in Section 5.2), this approach is a priori interdisciplinary.

In order to advance the modeling of systems using COT, we envisage various challenges.
First, this perspective requires proving its usefulness beyond the toy-model studies. We believe
that a model of an ecological universe of interactions, extending the toy-model presented in Section 5.3,
is a good option. Second, COT is still at an early stage of mathematical development. Several advances
can be made applying lattice theoretical notions [54] to the hierarchy of organizations [14], and more
profound studies in the topology of reaction networks could provide a more rich structure that the
one presented in this paper. Such a richer structure could be used not only to better understand
how systems emerge and combine, but also for improving algorithms regarding the computation of
organizations [41]. In this vein, we present some advances in this issue [36].

Last but not least, we believe that it is fundamental to develop a semi-formal methodology that
ensures that interdisciplinary reaction networks can be designed by combining the expertise from
different fields. Indeed, previous reaction networks models of non-biochemical systems required
an extensive dialogue among the disciplines involved in the problem in question (e.g., sociologist,
economist, and biologist). The aim of such dialogue was to find an ontology (set of species) and
the interaction mechanisms (sets of reactions) that combine the different perspectives into play.
This exhaustive dialogue has been carried out due to the motivation of the members involved in
the respective studies. However, a methodology to advance on such a dialogue could foster the
application of this formalism at a wider scale.

We suggest two ways in which this potentially divergent process can be improved. The first is
to provide semantic tools to construct the ontology given by the set of species. Researchers can be
aided by current powerful language taxonomies and semantic tools that can help them to identify
misunderstandings and ambiguous meanings. The second is the possibility to visualize the output
of the COT analysis of a reaction network (e.g., see Figure 1b). In this way, researchers can modify
in real-time the structure of the reaction network and observe how the structural properties of the
reaction network depend on the local interactions.

The ultimate goal of using reaction networks as a language for modeling systems is to bring
systemic thinking closer to the real world. We aim at not only scholars, but also decision-makers
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and the general public contributing with their knowledge and expertise, so multiple perspectives can
be integrated in a single framework that brings forward a broader understanding of the emergent
consequences of our local actions.
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