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Abstract: We investigate the integration of several additional efficient techniques that improve a
solution method for the lifelong multiagent pickup-and-delivery (MAPD) problem to reduce the
redundancy in the concurrent task execution and space usage of a warehouse map. The lifelong
MAPD problem is an extended class of iterative multiagent pathfinding problems where a set of
shortest collision-free travel paths of multiple agents is iteratively planned. This problem models a
system in automated warehouses with robot-carrier agents that are allocated to pickup-and-delivery
tasks generated on demand. In the task allocation to agents, several solution methods for lifelong
MAPD problems consider the endpoints of the agents’ travel paths to avoid the deadlock situations
among the paths due to the conflict of the endpoints. Since redundancies are found in the problem
settings themselves and the concurrency of allocated tasks, several additional techniques have been
proposed to reduce them in solution methods. However, there should be opportunities to investigate
the integration of additional techniques with improvements for more practical solution methods. As
analysis and an improved understanding of the additional solution techniques based on endpoints,
we incrementally integrate the techniques and experimentally investigate their contributions to the
quality of task allocation and the paths of the agents. Our result reveals significant complementary
effects of the additionally integrated techniques and trade-offs among them in several different
problem settings.

Keywords: multiagent pickup-and-delivery; multiagent pathfinding; lifelong problem; endpoints

1. Introduction

In this study, we investigate the integration of several additional efficient techniques that
improve the solution methods for the lifelong multiagent pickup-and-delivery (MAPD) problem,
which is an extended class of iterative multiagent pathfinding (MAPF) problems, to reduce the
redundancy in concurrent task execution and the space usage of a warehouse map.

The MAPF problem is a fundamental problem in multiagent systems, and its goal is to find
a set of shortest collision-free paths for multiple agents in a time-space graph. Two cases of agents
colliding on a graph of a two-dimensional map must be avoided. A vertex collision is a situation
where multiple agents simultaneously stay in the same vertex, and in an edge/swapping
collision, two agents move from both ends of the same edge in opposite directions.

MAPF problems are motivated by various applications, including the navigation
of mobile robots [1], autonomous vehicles in warehouses [2], a swarm of drones [3], au-
tonomous taxiing of airplanes [4], autonomous car operation [5], and video games [6].
There are various studies of MAPF/MAPD problems and solution methods (Table 1).
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The solution methods for MAPF problems are categorized as either complete or
incomplete methods. The former type finds an optimal solution under a criterion of
optimization. The conflict-based search (CBS) algorithm [7] is a complete solution method
consisting of two levels of search processes. In a higher level, a tree-search method finds
colliding situations of agents and inserts constraints that inhibit colliding moves by agents
to the pathfinding problems at the lower level. Then each agent solves its pathfinding
problem using the A* algorithm in a time-space graph under the inserted constraints.
Since this class of solution methods requires relatively high computational cost, several
efficient/approximate methods have been developed, including the priority-based search
(PBS) [8] and enhanced CBS (ECBS) [9] algorithms.

The incomplete methods find quasi-optimal solutions in exchange for relatively low
computational cost. There are several types of solution methods based on dedicated problem
settings for them. In the cooperative A* (CA*) algorithm [6], the A* algorithm [10,11] in a
time-space graph is repeatedly performed for each agent with a predefined order of agents
to find a collision-free path, where each path is reserved in such an order. This is a greedy
approach where the agents simply avoid the previously reserved paths.

The priority inheritance with backtracking (PIBT) algorithm [12,13] repeatedly deter-
mines the moves of agents in each subsequent time step by reactively resolving collisions
among agents. It employs a push-and-rotate operation and introduces the priority values
of agents and a partial backtracking method.

The lifelong MAPD problem is an extended class of the iterative multiagent pathfind-
ing problem [12], where new travel paths of multiple agents are repeatedly planned at the
ends of their travel. This problem models a system in automated warehouses with robot
carrier agents, which are allocated to pickup-and-delivery tasks generated on demand.

Although there are various classes of optimization/routing problems related to logis-
tics, including the variants of vehicle-routing problems [14,15], several dedicated solution
methods are necessary for them. A unique setting of MAPF/MAPD problems is that
they extend a traditional shortest pathfinding problem so that multiple (ideally) shortest
paths for multiple agents must be found without collisions of agents in a time-space graph.
Although several techniques for traveling-salesperson problems (TSPs) can be employed as
a part of solution methods, the variants of MAPF problems generally focus on the lower
layers of routing/pathfinding problems containing obstacles than that for TSPs.

A solution method for MAPD problems consists of task allocation to agents and an
MAPF method for the allocated tasks. In the case of static problems with a fixed number
of tasks, the task allocation problem is often formalized as a fundamental combinatorial
problem [16]. On the other hand, for lifelong MAPD problems, partially greedy task
allocation methods are reasonable for tasks continuously generated on demand [17].

While PIBT can also be effectively applied to several cases of lifelong MAPD problems,
it cannot correctly work with a map containing dead ends.

The token passing (TP) algorithm [17], which is a solution method for lifelong MAPD
problems, is based on a greedy task allocation method and the CA* algorithm. With TP, each
task is allocated to an agent in a specific order, and a travel path for the task is reserved. This
class of algorithms solves well-formed MAPD problems, where the endpoints (EPs) of agents’
travel paths are considered to avoid deadlock situations on the paths. A well-formed problem
has several types of EPs, including pickup, delivery, and parking locations, and the condition of
the feasible solutions is defined with EPs. Then a solution method exclusively allocates each
task to an agent under a rule to avoid conflicts among the endpoints of the agents’ paths.

Since there are redundancies in the problem settings themselves and the concurrency of
the allocated tasks, several additional techniques have been proposed to reduce them in the
solution methods. The multi-label A* (MLA*) algorithm [18] improves the CA* algorithm by
employing the knowledge of the agents’ pickup locations/times to prune and relax pathfinding
for allocated tasks. The standby-based deadlock avoiding method (SBDA) [19], which is a
dedicated solution for maze-like maps with just a few EPs, dynamically places standby locations
of agents for narrow maps.
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However, opportunities undoubtedly exist for investigating the integration of addi-
tional efficient techniques with improvements for more practical solution methods. Such an
investigation will also be a useful tool to consider several modes in agents’ moves. As an
analysis and better understanding of the additional solution techniques based on endpoints,
we incrementally integrate the techniques and experimentally investigate their contribu-
tions to the quality of task allocation and agents’ paths. We integrate several techniques:
(1) prioritizing task allocation, (2) generalization of EP types, (3) relaxation of constraints
excluding EPs from paths, (4) dummy retreat paths, and (5) the subgoal divisions of pickup-
and-delivery tasks into TP. Our result reveals some significant complementary effects of
integrated additional techniques and trade-offs among them in several cases of problem
settings. In particular, the full combination of our selected techniques with several improve-
ments, excluding an experimental version, resulted in the best makespan in most cases. We
believe that our experimental analysis will contribute to further developments of efficient
solution methods.

This work is an extension based on a conference paper [20]. We refined its experimental
results by adding new benchmark problems, improved our proposed methods including
the subgoal division, and revised our paper’s description by adding detailed explanations
and examples.

The rest of this paper is organized as follows. In the next section, we briefly describe
related works. In Section 3, we present the background of our study, including the multia-
gent pickup-and-delivery problem, a solution method called token passing, and additional
efficient techniques that are integrated in our study. Then we describe our proposed ap-
proach in Section 4. We complementarily integrate the additional techniques with several
improvements and apply our solution methods to an environment with relatively narrower
maps. We experimentally investigate our approach in Section 5, discuss several issues in
Section 6, and conclude in Section 7.

Table 1. MAPF/MAPD problem and approaches.

MAPF

Appraoch Solver Technique Variants Note
Offline MAPF

Exact CBS [7]
Tree search to resolve
collisions A* in
time-space

ECBS [9], PBS [8]
Relatively high
computational
cost

Greedy/ Heuristic CA* [6]
Greedy ordering of
agents A* in
time-space

Iterative MAPF

Greedy/Heuristic PIBT [12]
Priority of
agentsPush-and-
rotate/backtracking

winPIBT [13] Graphs (maps)
with cycles

MAPD
Appraoch Solver Task allocation MAPF Note
Offline MAPD

Heuristic TA-Prioritized/
TA-Hybrid [16] TSP Heuristic/

max-flow
Lifelong MAPD

Greedy/Heuristic

TP [17]

Greedy

Variant of CA*
Well-formed
problemsMLA* [18]

PIBT (for MAPD) PIBT Graphs (maps)
with cycles

SBDA [19] Variant of CA* Maze-like maps
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2. Related Works

In this section, we describe related works by extending our explanation from the
previous section. We start with the multiagent path finding (MAPF) problem and briefly
describe the extended classes of problems including iterative MAPF ones. Then we discuss
multiagent pickup-and-delivery (MAPD) problems which are another iterative MAPF
problem. For the classes of problems we refer to several solution methods. Finally we focus
on a solution method for a class of MAPD problems and several additional techniques
to improve such methods. Since the relationship among the classes of problems and the
solution methods is slightly complicated, we summarize most of them in Table 1 in advance.

The MAPF problem is a base of the MAPD problem, and solution methods for MAPF
problems are also employed for MAPD problems. The solution methods of MAPF problems
are categorized as either complete or incomplete methods. The complete solution methods
find optimal solutions without collisions in the agents’ paths under a criterion of optimality.
Typical criteria are the total number of moves for all agents and the makespan, which is the
time required to complete the moves of all the agents.

The conflict-based search (CBS) [7] is a complete solution method that employs
two levels of search processes. In the higher level, a tree-search method finds the con-
flicts of the agents’ paths and resolves them by inserting constraints. On the other hand,
in the lower level, a pathfinding method in a time-space graph is performed under the in-
serted constraints. Here each agent initially has its own shortest path ignoring other agents.
The colliding situations between two agents are incrementally identified and inhibited in
a tree search so that each agent recomputes its path avoiding such collisions. Since this
method requires relatively high computational cost, efficient/approximate methods have
been proposed [8,9]. In several studies, a MAPF problem was formalized as a satisfiability,
satisfiability modulo theories, or answer set programming problem, and a dedicated solver
for such a problem was employed [21–23].

There are solvable and unsolvable MAPF problems. Intuitively, if a map has no
sufficient space, agents cannot avoid each other [17]. This situation also depends on the
population density of the agents.

The incomplete solution methods do not assure the optimality of solutions, and they
generally need relatively low computational cost. Such methods usually depend on specific
feasible problem settings.

The cooperative A* (CA*) algorithm [6] finds and reserves each agent’s travel path in
a predefined order of agents. The collision avoidance in this approach basically depends
on consistent reservations of agents’ travel paths. During the pathfinding, the A* algorithm
is performed in a time-space graph under the previously reserved agents’ paths.

A different approach employs the push, rotate, and swap operations to resolve col-
lisions among agents’ moves [24,25]. Here the agents have their default shortest paths
ignoring other agents and basically resolve their collisions on demand. This partially
resembles sliding puzzles or Sokoban. The priority inheritance with backtracking method
(PIBT) [12,13] based on push-and-rotate operations manages the priority values of agents
and employs a limited backtracking method in the push operation. Although the solution
method is designed for a specific type of problem where all the vertices in a map’s graph
are contained in cycles, it effectively resolves collisions among agents.

There are several extended classes of MAPF problems. An important example is the
iterative MAPF problem [12], where each agent updates its new goal location at its current
goal. Other extended problem settings addressed various more practical situations, includ-
ing delays in agents’ moves [26,27], continuous time in the moves [28,29], the asynchronous
execution of tasks [30], moves to any direction [31], and agents with a specific type of
bodies [32]. Dedicated solution methods were also developed for the extended problems.

The multiagent pickup-and-delivery (MAPD) problem is a class of iterative MAPF
problems where agents are allocated to transportation tasks, and the lifelong MAPD
problem addresses tasks generated on demand [17]. The lifelong MAPD problem is a
class of iterative MAPF problems, since each agent has its sequence of goal locations for
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pickup-and-delivery tasks that are sequentially allocated to the agent. A single pickup-and-
delivery task itself of a MAPD problem can also be considered an iterative MAPF problem
because it has a subgoal of a pickup location.

Several solution methods for iterative MAPF problems and MAPD problems basically
perform iterative processes for a sequence of (sub-)goals. However, the details of the
solution processes are various.

The typical criteria of optimality in lifelong MAPD problems are the service time
to complete each task and the makespan. A solution method for MAPD problems is
decomposed into task allocation to agents and the MAPF for agents with allocated tasks.
For a static problem with a fixed number of tasks, task allocation can be solved with a
complete search method, although the issue of computational complexity remains. Task
allocation can be represented as several types of combinatorial optimization problems,
including the traveling-salesperson problem (TSP) [16].

We note that TSP is employed not to solve the routing of agents but to sort their allo-
cated tasks as a cycle graph. Although perhaps MAPF/MAPD problems can be integrated
with several vehicle-routing problems (VRPs) [14,15], a relatively large gap appears to exist
between them in both the problem definitions and the solution methods. For these classes
of methods, several solution methods for TSPs and VRPs are employed, including local
search methods [33], genetic algorithms [34], and machine learning approaches [35–37].
Extended classes with multiple agents contains combinatorial problems of agents and
routes, and dedicated extended solution methods are employed [37,38]. On the other hand,
MAPF/MAPD problems are extensions of a traditional shortest pathfinding problem and
generally focus on the lower layers of routing/pathfinding problems containing obsta-
cles and other colliding agents. Several demand-responsive transport (DRT) systems [39]
also employ multiple vehicles, while their collisions are generally excluded from problem
settings. Here a transport simulation itself is also a major interest.

When tasks are generated on demand, task allocation is solved using (partially) greedy
approaches. In addition, greedy approaches for iterative MAPF problems are often reason-
able for the scalability of solution methods.

The token passing (TP) algorithm [17] is a solution method for lifelong MAPD prob-
lems. It employs a greedy task allocation method and the CA* algorithm. This solution
method depends on the condition of well-formed problems [17,40] and employs a set
of rules considering the endpoints of agents’ travel paths in the task allocation to avoid
deadlock situations among agents. While PIBT can also be employed for MAPD problems,
the conditions of feasible problems are different from that of TP. In particular, PIBT cannot
be applied to maps containing dead ends.

Since a solution method based on well-formed problems suffers some redundancy in
the parallel execution of tasks, several methods, including additional efficient techniques
(Table 2), have been proposed to reduce the redundancy.

The multi-label A* (MLA*) algorithm [18], which has been used instead of the CA*
algorithm, considers agents’ pickup locations/times in the pathfinding to prune the search
and relax the restriction of paths. This previous method also employs an ordering of
agents in the task allocation that is based on the minimum heuristic path length from the
location of a currently available agent to the pickup location of each new task. However,
it determines whether the allocation of each task to an agent is possible by executing the
MLA* algorithm. On the other hand, the effect of the MLA* algorithm resembles that of
another method employed in our study. Moreover, our selected method considers the
estimated pickup time of each new task for all the agents, including currently working
agents, and do not require a pathfinding process to verify whether the allocation of each
task is possible.

Several methods that improve TP partially relax the conditions of the well-formed
problems that ensure feasible solutions. The standby-based deadlock avoiding method
(SBDA) [19] is a relatively aggressive approach that employs dynamically prepared standby
locations of agents. However, it mainly addresses a special case of maze-like maps with a
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small number of parking, pickup, and delivery locations. We address the case of warehouse
maps that generally contains a sufficient number of such locations.

Table 2. Additional techniques to improve TP algorithm.

Name Summary/Effect

Pt Estimation of pickup times of other agents Reduction of pickup path length
(Sections 3.3 and 4.2)

TeW Shortcut paths through EPs Reduction of traversal path length
(Sections 3.4 and 4.3)

Ge Generalization of task and non-task EPs Reduction of space usage of
warehouse maps (Section 4.1)

DP/DPc-T-P Dummy path Improvement of concurrent task allocation
(Sections 3.5 and 4.4)

Sg Division of task into subgoals Reduction of long reserved paths
(Sections 3.6 and 4.5)

In this study, we focus on additional techniques to improve the performance of TP.
While there are several existing works on such components, opportunities must be found to
investigate the effect of integrating such additional techniques to analyze the redundancy
in the solution process that can be reduced by the integrated techniques.

We employ several additional techniques with the TP algorithm to mainly improve
the concurrency of tasks and the space usage of warehouse maps. To investigate integrated
solution methods based on additional techniques, we carefully selected a set of fundamental
ones that have different and complementary effects (Table 2) and incrementally combine
them. Table 3 shows the possible full combinations of them in our result.

Table 3. Combination of additional techniques to be incrementally integrated.

Possible Full Combinations of Additional Techniques

TP + Pt + TeW + Ge + Dp-T-P
TP + Pt + TeW + Ge + Dpc-T-P
TP + Pt + TeW + Ge + Sg

3. Background

In this section, we present the background of our study. We first introduce the MAPD
problem and the TP algorithm. Then we describe our selected additional techniques
(partially listed in Table 2) for improving the TP algorithm as the basis of our integrated
solution methods.

3.1. Lifelong Multiagent Pickup-and-Delivery Problems

The lifelong multiagent pickup-and-delivery (MAPD) problem [17] is an extended
class of multiagent pickup-and-delivery problems and iterative multiagent pathfinding
(MAPF) problems. Here multiple pickup-and-delivery tasks are generated on demand
during a certain period and repeatedly allocated to agents. For these allocated tasks,
collision-free travel paths of agents are determined. A problem consists of the following:

• undirected graph G = (V, E) representing a warehouse’s map,
• a set of agents A, and
• a set of currently generated pickup-and-delivery tasks T .

Each task τi ∈ T has the information of its pickup-and-delivery locations (si, gi),
where si, gi ∈ V. An agent assigned to a task travels from its current location to the pickup
location and then to the delivery location.
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Let li(t) ∈ V denote the location of agent ai ∈ A in discrete time step t. Agent ai
moves from li(t) to an adjacent location li(t + 1) 6= li(t) or stays in its current location
li(t + 1) = li(t) at the end of each time step t. An agents’ path is the sequence of its moves
for a period of time steps.

There are two cases of colliding agents’ moves to be avoided. First, two agents ai and
aj collide if they simultaneously stay in the same location (vertex conflict): li(t) = lj(t).
Second, the agents collide if they simultaneously move on the same edge from both ends
of the edge (edge/swapping conflict): li(t + 1) = lj(t) ∧ lj(t + 1) = li(t). The paths of
two agents collide if there are at least one colliding move on them.

The condition of a well-formed MAPD problem that guarantees feasible solutions with-
out deadlock situations in task allocation and multiple pathfinding has been presented [17,40].
Here the vertices, which can be the first and last positions of each path, are called end-
points (EPs). In the case of lifelong MAPD problems, an EP can be pickup, delivery, and
parking locations.

In a fundamental well-formed problem, EPs VEP ⊂ V are categorized into non-task EPs
VNTSK, which are initial and parking locations, and task EPs VTSK, which are pickup-and-
delivery locations (Figure 1). Here VTSK ∪VNTSK = VEP ∧VTSK ∩VNTSK = ∅. With these
EPs, the conditions for a well-formed problem are defined as follows (Definition 1 in [17]).

A MAPD is well-formed iff

1. the number of tasks is finite,
2. non-task endpoints are no fewer than the number of agents, and
3. for any two endpoints, there exists a path between them that traverses no other

endpoints.

Under the following rules, tasks can be sequentially allocated to agents without
deadlock situations among the paths for the allocated tasks.

1. Each path of an agent only contains EPs for the first and last locations of the agent
(and a pickup location), and

2. the last location of each path is not included in any other paths.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Passageway

Non-task EP

Task EPObstacle

fig_sample5
Figure 1. Env. 1: Well-formed MAPD [17] (white: passageway, black: shelf (obstacle), light-blue: task
EP, blue: non-task EP). A well-formed problem of a grid-like warehouse map consists of cells that are
categorized into passageways, task/non-task EPs, and obstacles. The obstacle cells also represent
storage shelves. Only EPs can be the ends of a path (including a parking state) of each agent. Task
EPs can be pickup-and-delivery locations of transport tasks; non-task EPs can only be the initial
or parking locations of agents. For each pair of EPs, at least one path that contains no other EPs
must exist.

The maps of warehouses are generally represented using grids in fundamental studies,
and we interchangeably use a vertex in a graph, a cell in a grid world, and a location in
a map.
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3.2. Solution Method Based on Endpoints

The token passing (TP) algorithm [17] is a fundamental method to solve well-formed
MAPD problems (Figure 2). Here a cooperative system is assumed to consists of multiple
agents and a centralized process that adds new tasks.

In the pseudo code in Figure 2, we employ the following notations:

• loc(a): agent a’s location;
• sj and gj: pickup-and-delivery locations of task τj;
• h(v, v′): heuristic distance from v to v′;
• Path1(ai, τ, token) and Path2(ai, token): pathfinding and reservation methods for a

pickup-and-delivery path of task τ and a retreat path.

1 Initialize token with path [loc(ai)] for each agent ai .
2 until a termination condition do // All generated tasks in a period are completed.
3 Add new tasks generated on demand to task set T .
4 foreach agent ai that determines its next path in token do
5 T ′ ← {τj ∈ T s.t. no other agents’ paths in token end in sj or gj}.
6 if T ′ 6= ∅ then do
7 τ ← arg min τj∈T ′ h(loc(ai), sj).
8 Assign ai to τ.
9 Remove τ from T .

10 Update ai’s pickup-and-delivery path in token with Path1(ai , τ, token).
11 done
12 else if no task τj ∈ T s.t. gj = loc(ai) exists then
13 Update ai’s stay path in token with path [loc(ai)].
14 else
15 Update ai’s retreat path in token with Path2(ai , token).
16 done
17 All agents move along their paths in token for one time step.
18 done

Figure 2. Token passing (TP) [17].

The agents sequentially allocate their tasks and reserve corresponding travel paths in
a greedy order (line 4) by referring and updating a shared memory called a token (lines
1, 4-5, 10, 13, 15, and 17 in Figure 2). A token contains the information of a list of tasks
waiting to be allocated and the paths reserved by the agents.

Each agent without an assigned task tries to allocate a new task that do not cause a
deadlock situation under the currently reserved paths. If such a task is allocated, the agent
finds and reserves a path that corresponds to its assigned task by the A* algorithm on a
time-space graph (lines 6–11).

Here the tasks are prioritized by the distance from the agent’s current location to the
pickup location for each task (line 7).

For heuristic function h(v, v′), we employ the distance in a two-dimensional map with
fixed obstacles (shelves) and without agents. The distance value can be cached for the end
of the current travel path of each agent and each endpoint, and a cached distance value is
updated when a corresponding agent’s reservation is updated.

If any waiting tasks cannot be assigned to an agent, the agent remains at its current EP
or retreats to one of other EPs. If its current location is the delivery location of a task on the
task list, the agent retreats to a free EP that does not conflict with the delivery locations of
the tasks on the task list and the reserved paths (line 15).

Otherwise, the agent temporarily stays at its current location (line 13). The agent also
reserves a retreat or a stay path (lines 10, 13, and 15). At the end of each time step, each
agent moves or stays, as it reserved (line 17).

There is some redundancy in this basic solution method, and several techniques below
have been proposed to address this problem.
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3.3. Prioritizing Task Allocation Considering Estimated Pickup Times

The task allocation process can employ several ordering criteria to select a waiting task
to be assigned to a free agent. Although there are many possible heuristic criteria, there
might be some trade-offs among them in different problem instances [18]. Here we focus
on a heuristic based on the estimated pickup time of tasks [41] as a reasonable example.

Since TP is based on the reservation of paths, the time of the last location on each
reserved path is known. Therefore, to estimate agent ai’s pickup time t̂i

sj
of task τj,

the heuristic distance from the agent’s current goal location end(ai) to the task’s pickup
location sj is added to the (future) time at the agent’s goal location: t̂i

sj
= (reserved time at

end(ai)) + h(end(ai), sj).
Each agent ai, which selects its new task to be allocated, compares the estimated

pickup time t̂i
sj

of each task τj with that of other agents. If the estimated pickup time of
one of the other agents is earlier than that of the selecting agent, the allocation of the task
is postponed.

In the example shown in Figure 3, idle agent ai without a task can pick up new task τk
in eight time steps, while delivering agent aj can pick it up in five time steps including its
current delivery time. Therefore, agent ai does not immediately select τk and tries to select
the nearest task among other new ones.
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Figure 3. Considering estimated pickup time.

3.4. Relaxation of Paths Containing Arbitrary EPs

To reduce the redundancy in path lengths, an additional technique was proposed,
where paths are allowed through EPs [41]. While paths can contain any EPs in this ex-
tension, the deadlock situations of paths are avoided by considering conflicting EPs in
task allocation.

Here all the EPs in all the reserved paths are locked, and the conflict between the
locked EPs and the delivery location of each new task in the task list is checked. Each agent
also temporarily reserves its additional ‘staying’ path at the end of its current path until it
cancels the staying reservation and reserves a new path. This information is referred to in
the pathfinding for a newly assigned task to avoid the locations at which agents are staying.
The effect of this technique partially resembles the pruning and relaxation in pathfinding
improved by the MLA* [18] algorithm. With this technique, the length of travel paths
can be reduced, although such paths might block more EPs and decrease the number of
allocatable tasks.

Figure 4 shows an example where the length of ai’s travel path can be reduced by
moving through EPs. In this example, in both the left and right side cases, agent ai’s path
ends at the third cell to the right from ai’s current (start) location. While the EPs between
the start and end locations of ai cannot be shortcuts in the original TP algorithm (left
side case), the extended method allows a shortcut through EPs (right side case). Agent ai
temporarily reserves a continuous stay at its goal location in addition to its reserved path.
The reservation at the current goal location is canceled when a new task is allocated to
the agent.
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Figure 4. Path through EPs.

3.5. Adding Dummy Path for Retreating

The task allocation is affected by the locked task endpoints that are the last locations
of the reserved paths. If a task’s delivery location is locked, such a task cannot be assigned
to avoid deadlock situations of paths. To reduce the number of locked tasks, additional
dummy paths are introduced [16,42]. By adding a dummy path, an agent’s path is expanded
so that it retreats to a non-task endpoint with no waiting tasks.

A dummy path is created with the destination of a free non-task EP that is not locked
by other agents’ paths so that an agent reduces the situations where the delivery locations of
waiting tasks are locked at the end of the agent’s path. An agent selects the destination of its
new dummy path from free non-task EPs by referring to the task list and the reserved paths
of other agents. Note that the ends of a path in the TP algorithm must be EPs. Therefore,
the destination of an additional dummy path is always a free EP (a non-task EP in the
previous study).

In addition, such a dummy path might be canceled, if necessary. The additional
staying path of an agent shown in Section 3.4 is a special case of a dummy path. Dummy
paths can reduce the number of locked tasks, while the agents might reserve relatively long
retreat paths if non-task endpoints are located in separate areas in a warehouse.

In the example in Figure 5, the goal locations of agent ai and new task τk were originally
identical, and τk cannot be allocated to any agents. By adding dummy paths from their
common goal location to two different EPs, such a conflict is resolved, and task τk can be
allocated to an agent.

In a basic case, each dummy path starts from the last location of a path and ends at a
parking location [16].
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Figure 5. Adding dummy paths.

3.6. Partial Reservation of Tasks’ Paths

In lifelong MAPD problems, tasks generated on demand are continuously allocated
to multiple agents depending on the situation in each time step. Such a situation might
change before an agent traverses a long path, and this can affect the allocation of new tasks
and paths.

For this issue, several methods divide the paths of tasks to delay the planning of future
paths [13,42]. While there are several relatively complex methods to employ such a partial
path within a time window, we focus on a relatively simple method that divides the path
of a single task into pickup and delivery paths.
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4. Integration and Improvement of Efficient Techniques

To investigate the effects and trade-offs of integrated solution methods based on the
additional techniques shown in the previous section, we improve some details of the
techniques and incrementally combine them. We also address problems without non-
task endpoints.

Our selected additional approaches that have different and complementary effects
are summarized in Table 2. In the following, we incrementally combine these techniques.
Possible full combinations of them in our result are shown in Table 3.

4.1. Generalization of Task and Non-Task EPs

To reduce the redundant space in warehouses, we allow cases where the initial and
retreat locations of agents can be any EPs, including maps without non-task EPs (Figure 6).
In this example, the left and right side areas with non-task EPs in the map in Figure 1
are eliminated. This case requires the relaxation of the second condition for well-formed
MAPD problems in Section 3.1 that non-task endpoints must not be fewer than the number
of agents. Instead, the space usage of warehouses is reduced. In the modified settings, each
agent basically retreats to its nearest EP, excluding EPs on the reserved paths and those of
the delivery locations of tasks waiting to be allocated. When no EP temporarily exists to
retreat to in an environment with fewer non-task EPs than agents, such an agent stays at its
current EP.

Even in this modified setting, all tasks can be completed without any deadlock situa-
tions for a finite number of on-demand tasks. In specially limited cases without non-task
EPs, there are solutions as long as the number of agents |A| is less than the number of task
EPs |VTSK|.
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fig_sample6Figure 6. Env. 2: MAPD without non-task EPs (white: passageway, black: shelf (obstacle), light-blue:
task EP). To improve the space usage of warehouse maps, several areas are eliminated, including
non-task EPs. This requires the relaxation of a condition for well-formed problems regarding the
numbers of non-task EPs and deployed agents.

Proposition 1. The relaxed well-formed problem without non-task EPs can be solved with a
modified TP algorithm, if the number of agents is less than the number of task EPs.

Proof of Proposition 1. We briefly sketch this proof. In the TP algorithm, tasks are se-
quentially allocated to agents under previously allocated tasks and reserved paths. The
reservation of the stay/retreat paths of agents is also performed in the same procedure.
Therefore, the movements of agents are serialized in the worst case without deadlock
situations as long as at least an agent’s new path can be reserved.

If there is only a single free EP v f , one agent can move to it. A new task whose delivery
location is v f can be allocated to an idle agent. Otherwise, v f can be the goal location of
another agent that retreats from a delivery location of new tasks. Such retreat moves of
agents might be repeated until a new task is allocated.
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Agent ai at a pickup location of a waiting task can immediately allocate the task to
ai after an agent in the task’s delivery location reserves a retreat path. In addition, in our
modified method, agents do not retreat to EPs on reserved paths or to the delivery locations
of new tasks waiting to be allocated.

Therefore, at least a single task can be sequentially performed if the number of agents
is less than the number of EPs.

The map in Figure 6 contains 200 (task) EPs, and at most 199 agents can be deployed.
On the other hand, the map in Figure 1 contains 152 non-task EPs, and only the same
number of agents can be deployed under the conditions for well-formed MAPDs.

4.2. Employing Task Allocation Considering Estimated Pickup Times

We first integrate the generalization of EPs shown in the previous subsection and the
task allocation considering the estimated pickup times (Section 3.3). While we borrowed
the idea from a previous study [41], we employed the following method considering the
balance of computational cost and missing allocations due to a heuristic search. Lines 6
and 7 in Figure 2 are replaced by the procedure shown in Figure 7. Here, end(a) denotes
the end of agent a’s path.

1 d⊥ ← ∞.
2 τ⊥ ← empty. // task to be allocated to ai
3 foreach ak in A \ {ai} do
4 d⊥k ← ∞.
5 τ⊥k ← empty. // task assumed to be allocated to ak
6 done
7 foreach task τj in T ′ do
8 di ← h(loc(ai), sj) // estimated pickup time of ai
9 d∗k ← ∞.

10 k∗ ← empty. // ID of an nearest agent to pickup location of τj
11 foreach ak in A \ {ai} do
12 dk ← (reserved time at end(ak)) + h(end(ak), sj) // estimated pickup time of ak
13 if dk < di ∧ dk < d∗k then do
14 d∗k ← dk .
15 k∗ ← k.
16 done
17 done
18 undertaken← f alse.
19 if k∗ 6= empty then do
20 if τ⊥k∗ = empty then do
21 d⊥k∗ ← d∗k .
22 τ⊥k∗ ← τj.
23 undertaken← true.
24 done
25 else if d∗k < d⊥k∗ then do
26 if then d⊥k∗ < d⊥ do // ai takes a task back from ak∗ .
27 d⊥ ← d⊥k∗ .
28 τ⊥ ← τ⊥k∗ .
29 done
30 d⊥k∗ ← d∗k .
31 τ⊥k∗ ← τj.
32 undertaken← true.
33 done
34 done
35 done
36 if ¬undertaken ∧ di < d⊥ then do
37 d⊥ ← di .
38 τ⊥ ← τj.
39 done
40 if τ 6= empty then do // line 6 in the original pseudo code
41 τ ← τ⊥. // line 7 in the original pseudo code

Figure 7. Task allocation considering estimated pickup time and backup of task (agent ai).
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As in the previous study in Section 3.3, if agent ak can pick up task τj in fewer steps
than ai, then task τj should be allocated to ak. Therefore, agent ai does not immediately
allocate τj to it. However, if ak finds another task that can be picked up by ak in fewer steps
than τj, ak ignores τj. We address this issue within a greedy method. In the procedure,
agent ai leaves task τj to agent ak if (reserved time at end(ak)) + h(end(ak), sj) is less than
h(loc(ai), sj), where end(a) denotes the end of agent a’s path (lines 11–34 in Figure 7). In
addition, agent ai assumes that the task will be assigned to ak∗ with the minimum estimated
pickup time (lines 13–17). If the task nearest ak∗ is updated in the search process, ai takes
the previous task back from ak∗ (lines 26–29). Then agent ai keeps the nearest one to it in
such tasks. If no agent is nearer task τj than ai, agent ai compares τj with its kept task to
select one of them (line 36).

This is basically a greedy method, but it intends to reduce the missing allocation of
tasks in a simple method. While the effect of such a heuristic depends on the problem
settings, we prefer this approach.

We selected this heuristic as a relatively simple example of a greedy approach and
slightly adjusted it to mitigate the situations of temporarily unallocated tasks due to greedy
allocation. In cases of relatively sparse populations of agents in an environment containing
obstacles, the accuracy of the estimated pickup time, which is partially based on heuristic
distance, will be relatively low, and the task allocation might be incorrect. On the other
hand, if the number of agents is sufficient, the time required to pickup each task is expected
to be reduced, and the total time until the task is delivered can also be reduced.

4.3. Integration with Paths Containing Arbitrary EPs

Next we integrate a technique that allows paths containing arbitrary EPs (Section 3.4).
Although this technique reduces the length of the paths, the paths containing EPs block the
allocation of new tasks whose delivery locations are such EPs. It also needs to modify its
selection of EPs to which to retreat so that the EPs locked by reserved paths are excluded.

We improve pathfinding so that it avoids the EPs of the delivery locations of new tasks.
This modification allows the traversal paths of agents to only shortcut EPs which are not
the delivery locations of new tasks. Since we found that a strict setting that completely
avoids such EPs produces relatively long paths, we adopted a heuristic weight value W for
the distances to the EPs to adjust the degree of avoidance.

Figure 8 shows an example of agent ai’s path that avoids the delivery location of new
task τk. By inserting such a detour, the delivery location of τk is not locked by ai’s path,
and τk can be allocated to an agent.
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Figure 8. Avoiding ends of new task.

To manage the information of locked EPs, we employ an additional two-dimensional
map corresponding to a warehouse’s floor plan. Agents share this additional map as part
of their token, and each vertex/cell v in the map consists of the following variables:

1. cLCK
v : a counter of the number of paths locking this location;

2. tSTY
v : a variable recording the start time of an additional staying path of an agent in

this location if one exists;
3. cTSK

v : a counter of the number of waiting tasks whose delivery locations are this location.
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The first and second variables, which are related to the reserved paths, are updated
when a new path is reserved and when each agent moves on its reserved path at each time
step. The last variable is updated when a new task is generated on demand and when a
task is allocated to an agent. These are referenced in the additional methods shown above
to check the locked EPs. cLCK

v is employed in the task allocation.
In the A* algorithm on a time-space graph, the estimated total path length g(vt, vt+1)

for a vertex vt at time step t and an adjacent vertex vt+1 is described as follows. It is
commonly represented as

g(vt, vt+1) = f (vt) + u(vt, vt+1) + h(vt+1), (1)

where f (vt) is the distance (time) from a start vertex to vt, u(vt, vt+1) is the distance from
vt to vt+1, and h(vt+1) is the heuristic distance from vt+1 to a goal vertex. We employ the
following distance between neighboring vertices.

u(vt, vt+1) =


∞ vt+1 is reserved by another agent,
W cTSK

v > 0,
1 (unit time) otherwise.

(2)

Here tSTY
v is employed to evaluate the reservation of a staying agent.

4.4. Integration with Management of Additional Dummy Paths

We next integrate the solution methods shown in previous Sections 4.1–4.3 and a
technique of the additional dummy paths (Section 3.5). In the basic method, each additional
dummy path starts form the last location of a path and ends at a parking location (i.e.,
mainly non-task EPs). We also address cases where any EP can be used as a parking
location and where the number of non-task EPs is less than the number of agents. Therefore,
dynamic management of dummy paths is necessary.

For each agent, we introduce a sequence of ‘tasks’ that consists of the following:

1. a pickup-and-delivery or retreat task, if one exists,
2. optional dummy retreat tasks, and
3. a stay task if there is nothing to do.

Here we temporarily consider any type of travel paths to be corresponding types of
tasks and assume a sequence of tasks has maximum length T. Each agent manages the
information of its own task sequence.

First, each agent is assigned to just one from among pickup-and-delivery, retreat,
and stay tasks and reserves its travel path as usual. Then dummy paths are added in the
following two cases.

(1) If an agent has a pickup-and-delivery or a retreat task, and the end of its travel path
blocks tasks that are waiting to be allocated, then a dummy retreat task is added, if possible.
Here the dummy path’s goal location is one of the other available (free) EPs. Each agent
performs this operation at every time step.

(2) When an agent can select a new pickup-and-delivery task, the agent conditionally
adds a dummy path. If the a new task’s delivery location overlaps with a reserved path
(excluding its end location), and if there is an available EP to which the agent can retreat,
then a dummy path task is added after the allocated task. Next a path is reserved, including
pickup, delivery, and retreat locations. To avoid deadlock situations in an environment
with a small number of non-task EPs, a pickup-and-delivery task that requires no dummy
path is prioritized in the task allocation.

After each agent completes its pickup-and-delivery task or its first retreat task, the agent
cancels subsequent retreat tasks and tries to select a new task. However, such a new selected
task might be infeasible, since the agent must move from its current location to avoid other
agents’ paths that are newly reserved after its own dummy path is reserved. In such cases,
the canceled tasks and paths are restored to ensure the consistency of reservations.
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We limit the maximum length of each task sequence T and the maximum length of
each additional retreat path P to restrict the total path lengths. When there is no EP to
which to retreat within a range of P from the current path end of an agent, its related
preceding task is not allocated.

4.5. Employing Tasks’ Paths Divided for Subgoals

Finally, we integrate a method that decomposes a single path of a task into multiple
paths corresponding to the subgoals of the original task. In our investigation, we simply
decompose a task’s path into a sequence of two parts so that the former/latter ends/starts
at a pickup location. Therefore, a MAPD problem is modified to a pair of MAPF problems,
where each original task is decomposed into pickup and delivery tasks, with a constraint
that the decomposed tasks must be assigned to the same agent.

Since this change might introduce different deadlock situations among decomposed
tasks, we also modify the conditions in the task allocation.

1. The pickup-and-delivery tasks are associated to their original task and allocated to
the same agent.

2. Each agent switches between its pickup and delivery modes and can only assign its
consistent tasks. Namely, an agent can only allocate the originally same task in its pair
of pickup and delivery modes.

3. The delivery tasks that have been allocated to agents should be prioritized to
complete them.

For the last condition regarding the priority of tasks, we simply employ the original
task-allocation rule of TP. Namely, the original task with no conflict of pickup and delivery
locations is identically allocated to an idle agent as the original TP, although the allocated
agent only reserves its pickup path at its first phase. After an agent arrives at the pickup
location of its task, it allocates its task again to reserve a path to its delivery location.

The condition of conflict among the agents and the new tasks in line 5 (Figure 2) is
modified as follows. Here each delivery location of a partially allocated task (in its pickup
phase) is also considered its reserved location.

1. For new tasks: T ′ ← {τj ∈ T s.t. no other agents’ paths in the token and the partially
allocated tasks end in sj or gj};

2. For reallocated tasks: T ′ ← {τj ∈ T s.t. no other agents’ paths in the token and the
partially allocated tasks end in gj}.
In addition, conflicts between the pickup location of each new task and the reserved

paths containing EPs are also avoided in the task allocation. Therefore, we also apply a
weight parameter of the distance values to avoid the delivery locations of new tasks in the
pathfinding (Section 4.3) to the pickup locations of new tasks.

Although this relatively safe rule might still limit the concurrency of task allocation,
we focus on whether there is room to reduce the makespan by partially reserved paths. To
avoid complicated situations with this approach, we do not employ techniques of dummy
paths in this case.

4.6. Correctness of Integrated Method

The selected additional techniques to be integrated in our approach are correct in the
sense of no deadlock situation, and we can combine them without a loss of the correctness
of the original solution method TP. Therefore, the resulting methods inherit the correctness
of the original TP. Indeed, the integrated techniques substantially complement each other
and just need a few adjustments regarding the rules of the endpoints and the reserved
paths, as mentioned in Sections 4.1 and 4.3–4.5. We do not employ a combination of dummy
paths and subgoal-division techniques for simplicity in this paper, as shown in Section 4.5,
although we believe that they can be integrated with a slightly complicated adjustment.
An understanding of the fundamental property of endpoints also helps develop such
integrated solution methods. However, as a baseline case, solution methods still depend on
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the conditions of well-formed problems excluding those of non-task endpoints. The base
line case is also a safeguard for the correctness of the extended solution methods.

5. Evaluation

We experimentally investigated the effects and influence of the integrated techniques.
We first present the settings of our experiment, including the benchmark problems and the
compared solution methods. Then we report the experimental results that reveal the effect
of our approach.

5.1. Settings

We employed the following types of benchmark problems. We evaluated both well-
formed problems with non-task EPs and variants without them.

• Basic (Envs. 1 and 2 in Figures 1 and 6): Env. 1 is based on a well-formed problem
shown in a previous study [17], and Env. 2 is its variant without non-task EPs.

• Incoming–storing–outgoing (Envs. 3 and 4 in Figures 9 and 10): We modified the
basic problems to represent the task flows. Here task endpoints are categorized as
incoming, storing, and outgoing EPs. Half of the tasks are incoming tasks, and the
other half are outgoing ones. The pickup/delivery location of each incoming task is
an incoming/storing EP, and that of each outgoing task is a storing/outgoing EP.

• Large-scale (Envs. 5 and 6 in Figures 11 and 12): Env. 5 is based on another well-
formed problem shown in a previous study [17], and Env. 6 is its variant without
non-task EPs.

. . . . . . . . . . . . . . . . . . . . . . . . .

. . N N N N N N N N N N . N N N N N N N N N N . .

. . . . . . . . . . . . . . . . . . . . . . . . .

R . T T T T T T T T T T . T T T T T T T T T T . F

R . O O O O O O O O O O . O O O O O O O O O O . F

R . T T T T T T T T T T . T T T T T T T T T T . F

R . . . . . . . . . . . . . . . . . . . . . . . F

R . T T T T T T T T T T . T T T T T T T T T T . F

R . O O O O O O O O O O . O O O O O O O O O O . F

R . T T T T T T T T T T . T T T T T T T T T T . F

R . . . . . . . . . . . . . . . . . . . . . . . F

R . T T T T T T T T T T . T T T T T T T T T T . F

R . O O O O O O O O O O . O O O O O O O O O O . F

R . T T T T T T T T T T . T T T T T T T T T T . F

R . . . . . . . . . . . . . . . . . . . . . . . F

R . T T T T T T T T T T . T T T T T T T T T T . F

R . O O O O O O O O O O . O O O O O O O O O O . F

R . T T T T T T T T T T . T T T T T T T T T T . F

R . . . . . . . . . . . . . . . . . . . . . . . F

R . T T T T T T T T T T . T T T T T T T T T T . F

R . O O O O O O O O O O . O O O O O O O O O O . F

R . T T T T T T T T T T . T T T T T T T T T T . F

. . . . . . . . . . . . . . . . . . . . . . . . .

. . N N N N N N N N N N . N N N N N N N N N N . .

. . . . . . . . . . . . . . . . . . . . . . . . .

fig_sample95

Passageway

Obstacle

Storing task EP

Outgoing task EP

Non-task EPIncoming task EP

Figure 9. Env. 3: Well-formed MAPD (incoming–storing–outgoing) (light green (left side): incoming
EP, light yellow (right side): outgoing EP, other task EPs: storing EPs).
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Figure 10. Env. 4: MAPD without non-task EPs (incoming–storing–outgoing) (light green (left side):
incoming EP, light yellow (right side): outgoing EP, other task EPs: storing EPs).
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Figure 11. Env. 5: Well-formed MAPD (large-scale) [17].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O . O O O O O O O O O O .

. T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T . T T T T T T T T T T .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 12. Env. 6: MAPD without non-task EPs (large-scale).

The parameters of the environments are summarized in Table 4.

Table 4. Parameters of environments.

Env. Width Height
#EP

Non-Task Task Incoming/Outgoing Storing

1 35 21 152 200 - -
2 23 21 0 200 - -

3 25 25 40 238 19 200
4 25 21 0 238 19 200

5 101 81 632 3200 - -
6 89 81 0 3200 - -

We varied the number of agents and the task settings. We set the maximum number
of agents depending on the number of non-task EPs for well-formed problems and the
number of EPs for non-well-formed problems. For the task settings, we selected the total
numbers of generated tasks, the number of tasks generated for each time step, and the
candidates of the pickup-and-delivery locations depending on the types of maps. At every
time step, NpT tasks were generated, up to the defined total maximum number of tasks.
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Parameter NpT affects the possibility of the concurrent execution of the tasks. The initial
locations of agents were selected from the non-task EPs for the well-formed problems
and all the task EPs for the non-well-formed problems. The initial locations of the agents
and the pickup-and-delivery locations of the tasks were randomly selected from their
corresponding cells/vertices with uniform distribution. The parameters of the tasks and
the agents are summarized in Table 5.

Table 5. Parameters of tasks and agents.

Env. #Task NpT Max. #Agent
Incoming/Outgoing

1 500 - 1, 10 152 (#non-task EP)
2 500 - 1, 10 199 (#EP-1)

3 500 250 1, 10 40 (#non-task EP)
4 500 250 1, 10 199 (#EP-1)

5 1000 - 50 500
6 1000 - 50 500

We evaluated our selected additional techniques below by incrementally combining
them. The possible full combinations of them in our result are shown in Table 3. We selected
a subset from the possible full combinations, as shown in the following tables of results.

• TP: our baseline implementation of TP based on the literature [17]. For our study we
adjusted a few details, which introduced a relatively small bias in our results.

• Pt: for the waiting tasks in the task allocation, each agent considers the estimated
pickup times for all the agents (Section 4.2).

• TeW: allows agents to travel on paths through EPs (Section 4.3). Each move from an
agent’s location to a neighboring EP, which is a delivery location of tasks waiting to be
allocated, is weighted by penalty coefficient value W to avoid such an EP.

• Ge: generalizes non-task and task EPs and allows the elimination of non-task EPs
from a map to reduce redundant spaces (Section 4.1).

• DpT-P: employs dummy retreat paths to improve the concurrency of the executing
tasks (Section 4.4). Here at most T ‘tasks’, including a pickup-and-delivery task and
subsequent retreat tasks, are allocated, and each retreat task has a path whose length
is at most P.

• DpcT-P: an extension of DpT-P that cancels the reserved dummy paths, if possible.
• Sg: decomposes a pickup-and-delivery task into corresponding pickup and delivery

paths (Section 4.5).

We evaluated the makespan (MS) to complete all tasks, the service time (ST) to com-
plete each task, and the computation time (CT) per time step. The units for MS and ST are
logical time steps, and the units for CT are milliseconds. Note that the computation times
include some disturbances in a computation environment.

The results over ten runs with the random initial positions of the agents were averaged
for each problem instance. We employed a computer with g++ (GCC) 8.5.0 -O3, Linux 4.18,
Intel(R) Core(TM) i7-9700K CPU @ 3.60 GHz, and 64 GB memory for the experiment. The
maximum memory usage was within 220 MB for large-scale problems.

Our experimental implementation of algorithms focuses on an investigation of the
simulation results and employs several statistical processing and cache data of maps. There
are opportunities for improving them for practical implementations.

5.2. Results

Tables 6 and 7 show the results for Env. 1 (basic).
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The best value in each setting is emphasized in bold. We discuss the effect of integrated
techniques with the results. Pt based on the estimated pickup times reduced the actual
pickup times when a sufficient number of agents cover a whole map without congestion,
and it also reduced the makespan and the service time (NpT = 1, 60 agents).

Te reduced the makespan and the service time by allowing shorter paths through EPs,
although it increased the number of temporarily locked EPs. In these settings, the results
were identical for the cases with/without Ge because there were enough EPs for the agent
to retreat to.

Dp and Dpc improved the results by increasing the concurrency of tasks in the situa-
tions where the tasks were continuously assigned to a relatively large number of agents
(NpT = 10, 60 and 152 agents).

Table 6. Env. 1 (basic, with non-task EP, NpT = 1).

#Agent 10 30 60 152

Alg. MS ST CT MS ST CT MS ST CT MS ST CT

TP 1188.4 322.9 0.026 613.3 62.1 0.058 631.3 75.0 0.101 633.5 75.2 0.179
Pt 1204.4 328.0 0.044 611.2 65.7 0.077 565.1 43.5 0.133 554 37.0 0.653
PtTe3 1082.7 273.5 0.055 567.3 42.4 0.090 556.1 35.6 0.150 550.4 30.9 0.593
PtGe 1204.4 328.0 0.047 611.2 65.7 0.080 565.1 43.5 0.136 554 37.0 0.651

PtTe3Ge 1082.7 273.5 0.054 567.3 42.4 0.087 556.1 35.6 0.148 550.4 30.9 0.590
+Dp2-100 1136.3 303.1 0.067 558.1 39.7 0.104 542.5 28.7 0.204 540.2 25.9 0.959
+Dpc2-100 1070.7 268.5 0.082 551.6 33.6 0.129 539.6 28.0 0.211 537.3 25.8 0.783

PtTe3GeSg 1129.1 293.1 0.074 571.3 43.9 0.112 557.6 36.0 0.177 549.6 32.1 0.600

Table 7. Env. 1 (basic, with non-task EP, NpT = 10).

#Agent 10 30 60 152

Alg. MS ST CT MS ST CT MS ST CT MS ST CT

TP 1164.3 521.4 0.030 530.4 219.3 0.089 429.8 159.0 0.147 495.0 194.2 0.401
Pt 1177.5 525.7 0.061 529.3 225.7 0.243 399.3 159.4 0.366 388.5 156.0 0.862
PtTe3 1061.6 475.7 0.075 443.7 180.0 0.298 303.3 112.1 0.453 283.7 100.7 1.185
PtGe 1177.5 525.7 0.066 529.3 225.7 0.292 399.3 159.4 0.402 388.5 156.0 0.861

PtTe3Ge 1061.6 475.7 0.074 443.7 180.0 0.295 303.3 112.1 0.451 283.7 100.7 1.169
+Dp2-100 1222.0 586.6 0.086 508.3 231.3 0.322 341.3 149.4 0.542 287.9 109.4 15.260
+Dpc2-100 1053.9 475.1 0.117 429.4 176.3 0.492 267.3 101.0 1.080 245.3 85.6 18.858

PtTe3GeSg 1106.7 498.6 0.138 466.4 190.7 0.424 327.4 119.1 0.515 289.1 109.0 1.649

For such problems, Dp and Dpc were relatively competitive with PIBT (Table 2 in a
previous work [12]).

In these cases, SG completed all the tasks without deadlock situations, although the
makespan and the service time slightly increased in most results. This overhead was
caused by the waiting time for the task allocations divided into subgoals as well as some
increments of the length of the divided paths.

Tables 8 and 9 show the results with different parameter settings. For weight parameter
W imposed on the distance to the EPs with waiting tasks, a relatively small value achieved
a good trade-off between the avoidance of such EPs and the total length of the detour route.

To avoid excessive locking of EPs by dummy paths, appropriate settings appeared
to emerge for the maximum number of tasks T, including dummy retreat tasks, and the
maximum length of dummy paths P. In these results, a smaller value of T and a sufficiently
larger value of P were relatively better.
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Table 8. Env. 1 (basic, with non-task EP).

N pT 1 10

#Agent 10 30 60 10 30 60

Alg. MS ST MS ST MS ST MS ST MS ST MS ST

PtTe1 1046.6 254.8 595.1 53.5 568.3 40.5 1009.2 445.0 489.7 182.1 406.4 141.2
PtTe3 1082.7 273.5 567.3 42.4 556.1 35.6 1061.6 475.7 443.7 180.0 303.3 112.1
PtTe5 1111.5 286.6 562 41.6 547 34.6 1092.9 491.3 443.4 184.5 298.6 115.7
PtTe10 1117.6 291.1 561.4 42.1 552.4 34.7 1102.1 498.6 462.5 192.7 317.6 121.3

Table 9. Env. 1 (basic, with non-task EP).

N pT 1 10

#Agent 10 30 60 10 30 60

Alg. PtTe3Ge MS ST MS ST MS ST MS ST MS ST MS ST

+Dpc2-100 1070.7 268.5 551.6 33.6 539.6 27.99 1053.9 475.1 429.4 176.3 267.3 101.0
+Dpc2-1 1078.9 271.1 562.1 40.6 548.8 33.81 1051.3 475.5 434 178.4 289 113.2
+Dpc5-3 1071.4 268.1 552.1 33.7 540.9 28.03 1053.2 476.7 420.1 177.9 279.4 108.4

Tables 10 and 11 show the result for Env. 2. The absence of non-task EPs in this setting
increased the trade-offs between the effect and overhead in the additional methods when
the population density of the agents is relatively high. When the number of agents was not
excessive, a solution method based on Ge competed with those in similar problems with
non-task EPs.

Table 10. Env. 2 (basic, without non-task EP, NpT = 1).

#Agent 10 30 60 199

Alg. MS ST CT MS ST CT MS ST CT MS ST CT

PtGe 1201.1 319.7 0.036 606.2 60.6 0.058 555.8 34.7 0.092 1604.6 523.4 4.228

PtTe3Ge 1082.1 270.7 0.045 570.9 41.0 0.075 550.4 29.2 0.112 1597.7 520.9 4.534
+Dp2-100 1129.1 297.0 0.054 560.4 39.0 0.085 536.8 25.6 0.148 1646.3 535.5 23.805
+Dpc2-100 1064.5 263.0 0.063 550.2 32.9 0.098 536.3 25.5 0.150 1646.3 535.5 23.705

PtTe3GeSg 1124.9 288.2 0.064 575.1 42.3 0.091 548.6 30.4 0.127 1940.7 678.6 4.796

Table 11. Env. 2 (basic, without non-task EP, NpT = 10).

#Agent 10 30 60 199

Alg. MS ST CT MS ST CT MS ST CT MS ST CT

PtGe 1166.9 516.4 0.053 516.5 213.0 0.239 395.7 146.0 0.318 1520.4 664.7 6.215

PtTe3Ge 1058.5 472.8 0.064 429.3 172.3 0.263 308.9 108.2 0.387 1503.4 658.7 6.642
+Dp2-100 1230.9 584.7 0.071 525.6 237.3 0.282 331.8 136.5 0.547 1533.4 667.8 32.361
+Dpc2-100 1050.9 471.7 0.093 424 173.3 0.431 284.2 105.4 0.858 1533.4 667.8 32.061

PtTe3GeSg 1105.6 496.3 0.129 457.9 183.2 0.386 313.8 114.5 0.445 1812.7 819.7 6.670

Although Dp and Dpc reduced the makespan and the service time in appropriate
settings, their overhead also increased with the number of agents. Particularly in the
excessively dense case of 199 agents, there was almost no room for the effect to reduce
makespan and service times by the methods.

Tables 12 and 13 show the result for Env. 3 (incoming–storing–outgoing). Although
this environment resembles Env. 2, there are incoming and outgoing EPs on both the left
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and right sides. Non-task EPs for well-formed problems are placed in the top and bottom
areas. One endpoint of each task is an incoming or outgoing EP, and this situation relatively
lengthens the travel paths of the agents.

In this case, the combinations of Pt, Te, Ge, and Dp/Dpc well reduced the makespan
and the service time. PtTeGeSg slightly reduced the makespan more than its baseline
method PtTeGe in the case of NpT = 1 and 40 agents, while there is still some overhead in
service times. Although this number of agents is maximum (i.e., the number of non-task
EPs), below we confirm a similar result in an environment without non-task EPs.

Table 12. Env. 3 (incoming–storing–outgoing, with non-task EP, NpT = 1).

#Agent 10 20 30 40

Alg. MS ST CT MS ST CT MS ST CT MS ST CT

TP 2008.6 847.1 0.016 1171.4 445.0 0.032 1028.4 282.9 0.042 1026.8 216.4 0.047
Pt 2040.9 858.6 0.023 1166.6 435.8 0.055 903.2 274.3 0.084 922.2 213.7 0.089
PtTe3 1838.9 757.2 0.029 992.2 351.5 0.067 768.5 209.0 0.097 781.9 146.8 0.089
PtGe 2040.9 858.6 0.025 1166.6 435.8 0.057 903.2 274.3 0.088 922.2 213.7 0.092

PtTe3Ge 1838.9 757.2 0.028 992.2 351.5 0.066 768.5 209.0 0.095 781.9 146.8 0.089
+Dp2-100 1904 801.4 0.041 1015.6 373.7 0.090 699.4 217.4 0.136 538.8 146.6 0.164
+Dpc2-100 1821.4 749.5 0.050 966.3 344.6 0.116 676.8 208.9 0.192 531.0 137.8 0.261

PtTe3GeSg 1906.5 769.5 0.053 1072.7 359.4 0.091 812.4 221.6 0.111 760.5 164.9 0.116

Table 13. Env. 3 (incoming–storing–outgoing, with non-task EP, NpT = 10).

#Agent 10 20 30 40

Alg. MS ST CT MS ST CT MS ST CT MS ST CT

TP 1999.8 946.4 0.016 1153.8 543.5 0.033 983.3 372.0 0.045 1020.6 308.5 0.050
Pt 2039.1 957.5 0.025 1172.9 545.0 0.061 909.9 380.7 0.098 910.9 311.9 0.116
PtTe3 1831.5 858.8 0.031 999.1 459.7 0.076 754.7 310.0 0.120 745.2 242.9 0.133
PtGe 2039.1 957.5 0.027 1172.9 545.0 0.064 909.9 380.7 0.103 910.9 311.9 0.120

PtTe3Ge 1831.5 858.8 0.031 999.1 459.7 0.074 754.7 310.0 0.120 745.2 242.9 0.133
+Dp2-100 1914.4 915.8 0.044 1024.7 489.7 0.101 709.1 336.1 0.168 545 258.9 0.226
+Dpc2-100 1820.9 853.6 0.055 963.4 450.6 0.146 676.6 313.6 0.276 528.6 244.3 0.426

PtTe3GeSg 1894.2 873.3 0.067 1056.5 468.6 0.122 774.3 325.7 0.152 748.4 264.2 0.147

Tables 14 and 15 show the result for Env. 4. Although the non-task EPs were eliminated
from the previous setting in this environment, the result resembles that of Env. 3.

In this result, PtTeGeSg slightly reduced the makespan more than PtTeGe in the case
of sixty agents. We saw such a trend in the cases of 40 and 50 agents. Since these problem
settings often generate long travel paths of agents in opposite directions, the effect of Sg
appeared to be revealed in the cases of relatively dense populations of agents. However, no
such result surfaced in the extremely dense case (199 agents).

Table 14. Env. 4 (incoming–storing–outgoing, without non-task EP, NpT = 1).

#Agent 10 30 60 199

Alg. MS ST CT MS ST CT MS ST CT MS ST CT

PtGe 2052.6 860.1 0.021 915.2 277.4 0.074 944.2 183.49 0.089 728.5 159.4 0.842

PtTe3Ge 1833.6 753.4 0.026 764.3 201.4 0.087 778.4 109.92 0.082 626.6 105.2 0.827
+Dp2-100 1909.2 798.5 0.037 692.2 215.8 0.125 406.3 79.12 0.185 587.7 159.3 15.970
+Dpc2-100 1824.2 745.6 0.046 671.6 203.6 0.182 395 69.88 0.294 568.5 147.8 16.770

PtTe3GeSg 1896 763.8 0.051 798.2 217.9 0.102 722.5 143.05 0.192 747.3 168.4 1.452
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Table 15. Env. 4 (incoming–storing–outgoing, without non-task EP, NpT = 10).

#Agent 10 30 60 199

Alg. MS ST CT MS ST CT MS ST CT MS ST CT

PtGe 2039.2 955.8 0.023 915.2 379.9 0.091 928.2 278.0 0.126 783.5 285.1 1.442

PtTe3Ge 1824.5 853.2 0.029 754.2 306.8 0.112 757.7 190.5 0.135 656.2 205.4 1.614
+Dp2-100 1912.3 909.1 0.040 704.2 333.7 0.158 407.5 189.5 0.322 544.2 240.1 27.406
+Dpc2-100 1813.8 849.6 0.051 677.3 312.0 0.262 383.5 167.6 0.682 544.7 238.1 29.549

PtTe3GeSg 1896.8 867.7 0.062 776.6 320.9 0.137 728.8 235.2 0.250 764 295.9 3.421

Tables 16 and 17 show the result for Envs. 5 and 6 (large-scale). The populations
of the agents were relatively sparse, and the effect of the additional methods was also
relatively small. However, a combination of additional methods reduced the makespan and
the service time, particularly for 300 and 500 agents. In the latter case, PtTeGeSg slightly
reduced the makespan more than PtTeGe in average.

Table 16. Env. 5 (large-scale, with non-task EP, NpT = 50).

#Agent 100 300 500

Alg. MS ST CT MS ST CT MS ST CT

TP 923.5 405.2 0.884 584.8 214.2 2.142 596.5 194.0 3.164
Pt 981.8 449.2 4.956 535.8 231.2 17.998 493 196.8 18.505
PtTe3 920.9 407.4 5.237 488.3 199.5 15.873 468.6 175.6 36.748
PtGe 981.8 449.2 6.000 535.8 231.2 22.064 493 196.8 20.991

PtTe3Ge 920.9 407.4 5.185 488.3 199.5 15.795 468.6 175.6 35.248
+Dp2-100 910.7 407.2 5.703 469 198.3 14.286 404.6 157.8 30.813
+Dpc2-100 896.6 399.5 7.019 426.9 179.3 31.415 367.4 140.2 44.893

PtTe3GeSg 933 412.6 7.188 492 201.2 19.832 445.2 169.3 26.352

Table 17. Env. 6 (large-scale, without non-task EP, NpT = 50).

#Agent 100 300 500

Alg. MS ST CT MS ST CT MS ST CT

PtGe 913.8 397.9 4.622 489.8 176.5 18.496 421.9 137.0 22.550

PtTe3Ge 877.9 379.0 4.777 454.9 159.9 14.704 412.2 119.0 20.364
+Dp2-100 883.6 379.8 5.240 428.5 160.5 16.794 346.3 115.7 35.655
+Dpc2-100 856.6 371.4 6.279 403.7 148.9 26.292 327.6 108.7 36.124

PtTe3GeSg 890.6 384.4 6.862 444.4 162.3 18.403 399.6 122.1 19.740

A major issue here is the overhead of the additional methods in the computation times,
although there are chances to improve our experimental implementation, as discussed in
Section 5.1. One such overhead comes from our implementation of Pt that considers the
estimated pickup times of the other agents in the task allocation. Since our current version
evaluates all the agents and all the allocatable tasks in the task allocation process, it was
affected by the numbers of both agents and allocatable tasks.

Another overhead was due to the canceling and restoring of the dummy paths in Dpc.
Our current version searches for the possibility of task allocation with the pathfinding of
each task’s path after a dummy path of an agent is temporarily canceled. The dummy path
is restored if the task allocation fails. Our current version was also affected by the number
of agents and the size of the environments. In practical cases, a large warehouse’s map
might be divided into sub-areas to mitigate the computational cost of the solution methods.
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In summary, we found that the redundancy in well-formed problems and solution
methods based on EPs can be reduced by appropriately combining and setting our selected
additional techniques.

1. Pt was effective in situations where a certain number of tasks to be assigned were
waiting in an environment with a sufficient number of agents.

2. TeW was effective in most situations, although there were some trade-offs regarding
the number of locked/unlocked EPs.

3. Ge was a useful option that reduced the number of non-task EPs.
4. DpT-P/DpcT-P was effective in situations with a sufficient number of free EPs to

which agents can additionally retreat.
5. Although opportunities remain for improving the current SG to reduce redundant

waits for the decomposed task assignments, some results revealed the effectiveness of
this technique.

6. The incremental combinations of Pt, Te, and Dp/DPc were basically effective. How-
ever, there are inherent trade-offs among the methods, especially in situations where
the population density of the agents was high and the number of free EPs was
relatively small.

Although Dp and Dpc required relatively large computational cost to manage the
dummy tasks/paths, the experimental implementation of the methods can be improved.
Additionally, some parts of the computation can be performed while the agents are on their
journey, and their moves typically take a longer time than the computation.

Figures 13–15 show the makespans in a major part of our result. We extracted them
from the cases with non-task EPs, to include the base TP algorithm. Although the result
revealed several trade-offs, a full combination ‘+Dpc2-100’ was effective with sufficient
numbers of agents.
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Figure 13. Env. 1 (basic, with non-task EP, NpT = 10).
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Figure 14. Env. 3 (incoming–storing–outgoing, with non-task EP, NpT = 10).
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Figure 15. Env. 5 (large-scale, with non-task EP, NpT = 50).

6. Discussion

The effects of the additional integrated methods are basically complementary. The Pt
method that considers the estimated pickup times affects the task allocation process. Te,
which allows travel paths of agents to contain arbitrary EPs, reduces the path length. Dp
employs additional dummy paths and resolves the conflict among an end of an agent’s
path and a delivery location of a task waiting to be allocated. Ge, which accepts map
setting without non-task EPs, reduces the space of maps, and Dpc, which conditionally
cancels dummy paths, is particularly important in such narrow maps. Regarding Te and
Dp, an agent avoids the delivery locations of new tasks in its pathfinding process with our
improved Te, and Dp resolves such conflicts after the agent’s path is reserved.

We describe some directions to enhance the employed techniques. Our Pt method
that considers the estimated pickup times in the task allocation process currently evaluates
all the agents and all the allocatable tasks; it requires relatively large computational cost
for large-scale problems. Some elements of the agents and tasks that are evaluated in the
process can be eliminated considering the areas in a large map.

For the Te method that allows the travel paths of agents to contain arbitrary EPs, we
introduced weight values that are added to the distance values in the pathfinding to avoid
the delivery locations of new tasks, and the experimental result revealed the room to adjust
the weight parameter for situations (Table 8). The insertion of such detour paths might be
controlled by evaluating the density of idle agents in local areas in a certain period of time.

Our current Sg method, which divides a task’s path was simply applied to all the
tasks as an investigation to integrate it with several heuristic add-on methods. To bring out
its effect, the division could be conditionally applied to tasks whose pickup-and-delivery
locations are separated areas in a map, while the integration of different task allocation
rules is necessary for decomposed and non-decomposed tasks.

The solution methods based on TP complete all the tasks generated on demand if a
finite number of tasks are generated. However, there is an issue of fairness among tasks
waiting to be allocated, and a starvation situation can be a problem in the task allocation.
This drawback can be addressed with an approach using the threshold or the priority values
to consider the waiting times of tasks. Generally, there is a trade-off between efficiency and
fairness. We mainly focused on efficiency in the makespan to complete all the tasks.

Although we employed several techniques in the solution methods to partially relax
the conditions of the well-formed MAPD problems, the maps of the warehouses themselves
remain restricted by some fundamental conditions regarding endpoints. The solution
methods still depend on the conditions as a safeguard. The challenges of mitigating
the limitations of maps will require greater consideration of the conditions for avoiding
deadlock situations within time windows.

In summary, excluding an experimental version of subgoal division of each task,
the full combination of our selected techniques with several improvements resulted in the
best performance in most cases in the sense of makespan. We recommend this solution
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method in our evaluated methods except for excessively dense agent populations. When
computational overhead is an issue due to dense agent populations, a technique with
dummy paths can be omitted in turn for trade-offs with other performances.

7. Conclusions

We investigated the integration of several additional efficient techniques that improve
the solution methods for the lifelong multiagent pickup-and-delivery (MAPD) problem by
considering endpoints. Although these additional techniques have been proposed to reduce
some redundancies in the problem settings themselves and the concurrency of allocated
tasks, there were opportunities to combine the techniques with improving them for further
practical solution methods. For an analysis and better understanding of the additional
solution techniques based on endpoints, we incrementally integrated the techniques and
experimentally investigated their contributions to the quality of task allocation and the
paths of the agents.

Our result revealed significant complementary effects of the integrated additional
techniques and the trade-offs among them in several cases of problem settings. A full com-
bination of our selected techniques with several improvements, excluding an experimental
version, resulted in the best performance in most cases for the sense of makespan. We
recommend this solution method in our evaluated methods except in the case of excessively
dense agent populations. We believe that our experimental analysis will contribute to
further development of efficient solution methods.

Future work will include detailed analysis of the trade-offs among the integrated
additional techniques, improvement of different solution methods by employing our result,
and further relaxation of the settings in well-formed problems. Although we concentrated
on a scalable heuristic solution method based on EPs, opportunities will exist to investigate
variants of exact solution methods with our result.
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