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Abstract: Modeling and simulation of complex systems frequently requires capturing probabilistic
dynamics across multiple scales and/or multiple domains. Cyber–physical, cyber–social, socio–
technical, and cyber–physical–social systems are common examples. Modeling and simulating such
systems via a single, all-encompassing model is often infeasible, and thus composable modeling
techniques are sought. Co-simulation and closure modeling are two prevalent composable modeling
techniques that divide a multi-scale/multi-domain system into sub-systems, use smaller compo-
nent models to capture each sub-system, and coordinate data transfer between component models.
While the two techniques have similar goals, differences in their methods lead to differences in the
complexity and computational efficiency of a simulation model built using one technique or the
other. This paper presents a probabilistic analysis of the complexity and computational efficiency of
these two composable modeling techniques for multi-scale/multi-domain complex system modeling
and simulation applications. The aim is twofold: to promote awareness of these two composable
modeling approaches and to facilitate complex system model design by identifying circumstances
that are amenable to either approach.

Keywords: complex systems; modeling and simulation; multi-scale systems; multi-domain systems;
co-simulation; complexity

1. Introduction

Complex systems are systems with multiple components that interact with each other
to produce global behaviors of interest. These systems frequently include dynamics with
inherent uncertainty that occur at different scales and/or over different domains in which
effects at one scale/domain influence effects at one or more other scales/domains [1–3].
Cyber–physical, cyber–social, socio–technical, and cyber–physical–social systems [4–9]
are prevalent examples. Modeling and simulation of such systems offers insight into
their global behavior when analytical methods are intractable.We refer to such a system
as an “interaction system”, meaning a system that requires the interaction of two or
more sub-systems.

However, models of interaction systems are themselves complex. Building a single, all-
encompassing model that captures all dynamics across all sub-systems is often undesirable
because the resources required (e.g., development time and domain/technical expertise)
can be prohibitive. Thus, composable modeling techniques are sought. A composed model
is one that is built by combining multiple individual component models, where each
component model represents a partial capture of the system’s dynamics [10]. In practice,
component models usually capture dynamics relevant to a unique scale and/or domain of
the system being modeled.

Co-simulation is a widely used composable modeling technique for engineering appli-
cations [11–17]. Co-simulation divides a system to be modeled into sub-systems and uses
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component models for each sub-system. Component models are treated as black boxes
capable of receiving inputs and generating outputs. Coordination of component models is
conducted via an “orchestrator” which synchronizes the transfer of data between compo-
nent models dynamically during simulation execution. The result is a global simulation of
the system as a composition of simulators [10,18].

Another composable modeling technique commonly found for applications in physics
employs closure laws that compute aggregations of a component model’s output to “close”
it, i.e., to close its simulation execution. As in co-simulation, the system model is divided
into multiple component models, each capturing a single sub-system, in which component
models receive inputs and generate outputs. However, data transfer between models is
conducted by executing predecessor models to completion and aggregating their outputs
before passing their aggregated data to successor models that will receive them [19–24].
For the sake of convenience, we refer to closure-based composable modeling techniques as
simply closure modeling or closure models.

The goal of this paper is to compare the complexity and computational efficiency
of the co-simulation and closure modeling techniques for complex system modeling and
simulation applications that seek to capture multi-scale and/or multi-domain dynamics.
Here, complexity is concerned with characterization of the dynamics captured by a model
while computational efficiency is concerned with characterization of the amount of time
used to execute a model [25,26]. We present a new probabilistic analysis of these composable
modeling techniques not previously attempted in the literature. We also discuss the benefits
and tradeoffs of the two techniques and identify circumstances that favor the use of either
technique. Modelers who seek to apply composable modeling approaches for multi-
scale/multi-domain applications can benefit from the following items in this study.

• A discussion of two prevalent composable modeling approaches, their motivations,
and a detailed description of how they are applied.

• A new probabilistic analysis comparing the complexity and computational efficiency
of these two approaches.

• A discussion on the trade-offs between the two approaches and the modeling circum-
stances which favor one approach or the other.

The rest of this paper is organized as follows: Section 2 discusses related work,
Section 3 details the motivations for composable modeling of interaction systems, Section 4
gives an overview of the co-simulation and closure modeling approaches and describes
their methodological differences, Section 5 provides foundations necessary for the proba-
bilistic analysis, Section 6 analyzes both approaches for modeling of a simplified exemplar
interaction system containing only two sub-systems, Section 7 extends and generalizes
this analysis to more complex interaction systems, Section 8 provides a discussion of the
analysis, and Section 9 concludes the paper.

2. Related Work

Simulation models have been rapidly growing in size and complexity for
decades [25,27,28]. This growth, as one might expect, has adversely affected the cost
of developing and using/executing simulation models as well as their performance [27,29].
To combat this growth, it is widely recognized that one of the primary tasks for simulation
modelers is to reduce complexity [30,31]. Despite this view, model complexity is a seldom-
studied topic in the simulation community, and there are only a handful of studies on this
topic [25,29].

In [32], a complexity measure based on the size of the model’s source code and data
after compression is proposed. Ref. [33] provides a semi-formal method for measuring the
complexity and scale of simulation models. Refs. [34,35] construct complexity measures
based on the structural properties of a simulation model using a graph-based approach.
In [36], the complexity of Discrete-Event Simulation (DEVS) models is examined and
an approach that considers both the complexity of a DEVS model’s structure and of its
software implementation is proposed. It employs a linear combination of multiple model
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parameters. Ref. [29] discusses relevant issues regarding simulation complexity, while [25]
provides general concepts related to simulation complexity and size held by a collection of
simulation modeling subject matter experts.

Another stream of related work focuses on the composability and interoperability
of simulation models. Composability refers to the ability to compose a full model by
assembling component models together in such a way as to ensure model correctness,
that is, a consistent representation of truth [37,38]. Interoperability refers to the ability
of component models to exchange information and to use information that has been
exchanged [39,40]. Initial foundations of simulation model composability are provided
in [41,42]. In [43,44], model theory is used to generalize these foundations into a framework
for interoperability maturity (which they refer to as an Interoperability Maturity Model).

Waveform relaxation represents a class of composable modeling techniques
that apply closure modeling to capture bidirectional interactions between two
sub-systems [45–47]. Waveform relaxation methods execute multiple rounds of closure
modeling on two models with bidirectional interaction, where data are exchanged between
the models in both directions after each round. Rounds are repeated until both models
reach convergence of their outputs. Waveform relaxation is proposed as an alternative to
more computationally intensive modeling methods that require concurrent execution of
both models, with data exchange occurring dynamically at any point in the execution [45].

DEVS-based modeling, Agent-Based Modeling (ABM), and Multi-layer Social Net-
work (MSN) approaches have been applied to facilitate composable modeling and model
reusability. Ref. [48] proposed a DEVS-based modeling architecture for describing ABMs
that capture information propagation in an MSN. Ref. [49] developed a Parallel DEVS
formalism for describing ABMs, specifically to facilitate the inclusion of ABMs into the
Modelica modeling environment, which was previously not supported. Modelica is a
general-purpose modeling language intended to enable reusability of models of physical
systems [50]. Finally, ref. [51] used a MSN model for continuous development of product
requirements that are subject to frequent changes over time.

This paper addresses complexity and computational efficiency for composed simula-
tion models. We start from the vantage point of a given correctly composed model, that is,
a model whose component models are correctly assembled and interoperable. We provide
a new probabilistic analysis that compares two widely used techniques, co-simulation and
closure modeling. We focus on these two techniques for the following reasons.

• Both modeling techniques are designed to decompose a full system model into sub-
models and coordinate interaction between sub-models as a way of modeling dy-
namics of the full system rather than using a non-composed model (i.e., a single,
all-encompassing model).

• Both techniques are commonly used to capture systems with sub-systems of differing
scales and/or from differing domains in which dynamics from one scale or domain
propagate affect one or more other scales or domains.

Additionally, the analysis provided in this paper may be used in conjunction with any
of the previously proposed complexity measures discussed above. We provide a discussion
on the compatibility of our analysis with previously studied complexity measures in
Section 8.

3. Composable Modeling Methods: Motivations and Benefits

Interaction systems are characterized by the collective dynamics of two or more
interacting sub-systems in which effects originating from at least one sub-system influence
the dynamics of one or more other sub-systems. Sub-systems may represent different scales
and/or different domains of the whole system. Furthermore, the collective dynamics of the
full system are often characterized by inherent uncertainty [1].

A cyber–physical–social system (CPSS) is an interaction system in which deep inter-
actions between human actions and technical/engineering system(s) exist [4,5]. Consider
the notional CPSS depicted in Figure 1. The CPSS in the figure represents a generic man-
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ufacturing company that utilizes a cyber–physical system to produce one or more items:
(1) the organizational behavior of the company (upper left) governs the items produced and
the process by which they are produced, (2) the production process (lower left) specifies
the details of the production process, (3) the cyber–physical network (upper right) provides
the engineering system that executes the production process, and (4) the cyber–physical
network software (lower right) captures the software layer of the network that monitors
and regulates online production execution. Cyber attack and defense (middle of the figure)
dynamics are also part of the whole system and influence all sub-systems.

Figure 1. An exemplar interaction system: a notional cyber–physical–social system representing the
production process of a manufacturing company.

Modeling and simulation of an interaction system with inherent uncertainty, such as
the one given in Figure 1, entails the capture of probabilistic dynamics across domains of
human behavior, manufacturing/production engineering, and cyberspace. Additionally,
any of the domains may include dynamics that interact over multiple scales. For example, a
model of organizational behavior may necessitate the capture of dynamics at the individual,
group, and organization-wide scales; a model of the cyber–physical network may require
dynamics at the device and network scales; a model of the production process may include
dynamics of sub-processes that produce components that are later assembled to produce a
complete item.

There are several disadvantages to modeling an interaction system by way of a single,
all-encompassing (i.e., non-composed) model.

High Resource Cost—Modeling all dynamics in a single model requires implementing
sub-system dynamics from scratch for all sub-systems, unless there exists an already
implemented model capable of capturing all dynamics relevant to the interaction
system in question. In-house implementation may require significant engineering,
modeling, and domain expertise, as well as a significant amount of time. If such a
model already exists commercially, the access cost is also likely to be expensive. In
either case, the cost may be prohibitive.
Lack of Reusability/Extensibility—Multi-scale/multi-domain dynamics interwoven into
a single model are often highly customized to the original problem and the addition
of new dynamics or alterations to existing dynamics may require significant effort to
integrate and test. For example, for the CPSS depicted in Figure 1, if the organization
wishes to change the production process model, then this may entail changes to the
cyber–physical network and software models. If all models are implemented in a
single model, significant re-implementation may be necessary to integrate all changes.
Ideally, a modeling approach should readily support model extensibility and reuse to
minimize re-implementation costs when changes or additions are desired.
Lack of Maintainability/Testability—Complex interwoven dynamics across multiple
scales and/or domains makes testing and maintenance problematic. Unit tests focus-
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ing on individual scales require the inclusion of aspects from other scales. It may be
hard to isolate sub-system dynamics and test their individual behaviors. For non-
trivial systems, it can be difficult to verify that model implementation matches the
intended design.

Composable modeling approaches seek to address these disadvantages by leveraging
modularity concepts that are analogous to those of modular software design. The idea is to
divide a complex system model into component models that are loosely interdependent.
Loose coupling, as its called in the software engineering community, refers to components
that are less dependent on each other, such that changes to one component have relatively
lesser effects on other components [52]. Note that a non-composed model is one that is
not divided into component models, where sub-system dynamics are interwoven and thus
tightly interdependent. The significant advantages of composable modeling approaches
are recognized by [53].

Composable modeling approaches ameliorate the aforementioned disadvantages in
the following ways.

Reduced Resource Cost—Full system models may be constructed by combining multiple
sub-system models potentially originating from disparate sources. For example, a full
model of the CPSS in Figure 1 could be constructed by combining pre-existing models
of organizational behavior and production processing with custom-made models for
the cyber–physical network and its underlying software layer. The ability to leverage
existing sub-system models to compose a new full system model significantly reduces
the time and domain expertise required to model a complex interaction system.
Additionally, loosely interacting component models provide the opportunity for
parallel model development, which can further reduce the time required to build a
full system model.
Increased Reusability/Extensibility—Models can be be more easily reused and/or altered
due to their loose coupling. For example, for the CPSS in Figure 1, if a new cyber
attack exploiting a particular software vulnerability is to be incorporated into to
the full system model, it may only be necessary to alter the cyber–physical network
software component model without changing other component models. If a software
component model capturing the new cyber attack already exists, it potentially may
be used in place of the previous software component model. The ability to combine
and re-combine existing component models into new full-system models makes for
increased model flexibility and adaptability.
Increased Maintainability/Testability—Loose interdependence supports greater isola-
tion of sub-system dynamics and makes unit testing and model code maintenance
relatively easier than tight interdependence.

4. Composable Modeling Techniques

As mentioned in Section 1, co-simulation and closure modeling are two prevalent
techniques for building composed simulation models of interaction systems [10,18,20,24].
Co-modeling is another composable modeling technique that is closely related to co-
simulation in which a unified language is used to specify sub-system models [10,54]. This
distinction does not impact the analysis of this paper, and thus, we consider co-modeling
and co-simulation as the same technique.

The purpose of this section is to provide a brief description of these two composable
modeling techniques by way of a notional, illustrative example. Consider an abstracted
interaction system containing two sub-systems in which the dynamics of one sub-system
influence the dynamics of the other sub-system and in which inherent uncertainty is present.
The two sub-systems may represent different relevant scales or domains of the full system.
The abstracted system could, for example, represent a cyber network system in which
individual cyber device dynamics influence the dynamics of the network as a whole. As
another example, the system could represent a traffic flow system in which dynamics at
intersections influence the larger wide-area traffic flow. This simple abstracted system
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may be applicable to many examples from various domains. A depiction of this notional
interaction system and a high-level, generalized depiction of a composed model of this
system are given in Figure 2. In the figure, the upper ellipse depicts the notional interaction
system, which is made up of Sub-system 1 and Sub-system 2, and in which Sub-system
1 dynamics influence those of Sub-system 2. The lower ellipse depicts a generalized
composed model of the interaction system in the upper ellipse. In the lower ellipse, Sub-
model 1 represents a model capturing dynamics of the influencing Sub-system 1 while
Sub-model 2 captures dynamics of Sub-system 2, which is influenced by Sub-system 1
dynamics. Note that in the composed model, influence is propagated by way of a data
exchange from Sub-model 1 to Sub-model 2.

Figure 2. Interaction system with two subsystems (upper ellipse) and a high-level, generalized
depiction of a model of the system that is composed of two interacting sub-models (lower ellipse).

Co-simulation modeling employs an orchestrator component that serves to coordinate
model execution and data exchange between sub-models. Figure 3 depicts a co-simulation
approach to modeling the interaction system of Figure 2. In the figure, the orchestrator
component controls the execution of sub-models to synchronize their data exchange at
appropriate times. The orchestrator monitors Sub-model 2 and pauses its execution when
an influencing dynamic is required from Sub-model 1. It then executes/re-executes Sub-
model 1, receives its outputs, provides these to Sub-model 2, and resumes Sub-model 2
execution. This process may be repeated multiple times during the simulation whenever
Sub-model 1 dynamics are required by Sub-model 2.

Figure 3. Interaction system of Figure 2 as modeled by a co-simulation technique. The orchestrator
coordinates the data flow from Sub-model 1 to Sub-model 2.

Closure modeling executes influencing sub-models before their corresponding receiv-
ing sub-models. Figure 4 depicts a closure modeling approach for capturing our interaction
system example. In the figure, a set of runs is executed on Sub-model 1 and its outputs are
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aggregated. These aggregations are then used to specify inputs for Sub-model 2. Finally, a
set of runs is executed on Sub-model 2.

Figure 4. Interaction system of Figure 2 as modeled by a closure modeling technique.

Note that co-simulation synchronizes the execution and data exchange of sub-models
dynamically. This means that sub-model executions are interwoven, at times running in
parallel but marked by points in time where one or more sub-models are paused while
waiting for other sub-models to execute. Closure modeling, contrary to co-simulation,
executes sub-models serially. Influencing sub-models are executed to completion before
their corresponding receiving sub-models are executed. Once a sub-model is fully executed
(e.g., via a set of runs) it is not re-executed/resumed at a later point in the simulation.

Co-simulation has been widely used in the engineering [10] and cyber–physical
system [10,55] problem domains. DEVS-based co-simulation models have been frequently
applied for these domains both in a strict sense, where all component models are
DEVS models and in a hybrid sense, where DEVS component models interact with non-
DEVS component models [56–60]. Closure modeling has been frequently used in the
physics [19,20,22–24] and cyber security [21,61] problem domains.

5. Foundations

To start, we consider the two-component interaction system and its corresponding
model depicted in Figure 2. We will analyze this simplified composed model and then
extend and generalize our analysis to more complex models. This section provides foun-
dational specifications and assumptions that will be used throughout the analysis. As
shown in the lower ellipse of the figure, the interaction system model contains two sub-
models in which Sub-model 1 provides data for Sub-model 2. The combined output of both
sub-models, including their data interaction, provides the output for the full model.

For our simplified system, we specify two outcomes of interest, O1 and O2, that are
subject to uncertainty. We define an experiment on the system as a single system execution
resulting in a pair of outcomes where each outcome is evaluated and results as either true or
false. We define two random binary variables V1 and V2 which respectively map outcomes
O1 and O2 to the value of 1.0 when the outcome is true and the value of 0.0 when the
outcome is false.

We specify system inputs by two vectors of random variables, X = ⟨X1, . . . , Xi⟩ and
Y = ⟨Y1, . . . , Yj⟩, where x and y are vectors representing a single sampling taken from
X and Y , respectively. hlNote that the type of random variable used as system input,
e.g., discrete or continuous, does not affect this analysis. System outcomes O1 and O2 are
generated by an unknown non-linear function h and mapped to real values by random
variables V1 and V2, respectively, such that

v1, v2 = h(x, y), (1)
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where v1 and v2 represent a single generation of output variables V1 and V2, respectively,
as generated by function h with input vectors x and y. The system outcomes generated by
h are approximated by a system model M:

M(x, y) ≈ h(x, y), (2)

where x and y are input parameters of M. Note that M is a full, non-composed model of
our simplified system without consideration of sub-models or their composition.

We now specify the two sub-models of our system model. We specify that
Sub-system 1 (left of upper ellipse in Figure 2) generates outcome O1 via an unknown
non-linear function g, such that

v1 = g(x), (3)

where v1 and x are as defined in Equation (1). The sub-system 1 outcome generated by g is
approximated by Sub-model 1 (left of lower ellipse in Figure 2), which, for simplicity, we
refer to as M1:

M1(x) ≈ g(x), (4)

where x is an input parameter of M1.
Similarly, we specify that Sub-system 2 (right of upper ellipse in Figure 2) generates

outcome O2 via an unknown non-linear function f such that

v2 = f (y, v1) (5)

where v2 and y are as defined in Equation (1) and v1 is the output generated by function
g (Equation (3)) and approximated by M1 (Equation (4)). The sub-system 2 outcome
generated by f is approximated by Sub-model 2 (right of lower ellipse in Figure 2), which,
for simplicity, we refer to as M2:

M2(y, v1) ≈ f (y, v1), (6)

where v1 is the output approximated by M1 and y and v1 are input parameters of M2.
The above equations formally specify a single experiment for individual models M,

M1, and M2 without consideration of sub-models, their interactions, or their composition to
create a composed model of our simplified system. For a probabilistic model, it is necessary
to execute a set of experiments to sample the distribution of possible model outcomes and
estimate their expected values. We wish to compute an outcome distribution via a set of
experiments on our composed model given a specification for its input parameters X and
Y . To this end, we provide the following foundational definitions.

Definition 1 (Experiment Set Size, S). The experiment set size, Sa, is the number of experiments
executed on a given probabilistic model a.

Definition 2 (Computation Time, T). The computation time, Ta, is the time taken to compute a
set of experiments on probabilistic model a with experiment set size Sa.

Definition 3 (Dynamics Set, δ). The dynamics set, δa, is the set of dynamics captured by a given
probabilistic model a.

Definition 4 (Complexity, C). The complexity, Ca, is a measure of complexity for a given
probabilistic model a, where higher values represent greater model complexity.

Note that to accurately estimate the expected value of an outcome for a given proba-
bilistic model, it is necessary to execute a sufficient number of experiments [62,63]. Thus,
the experiment set size, S, should be specified appropriately so as to properly characterize
the outcome distribution. Also note that S, the experiment set size, and T, the computation
time for executing an experiment set of size S, may be used to describe the execution
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of multiple simulation trials, such as in Monte Carlo simulation, or the execution of a
single simulation for a duration of simulated time, such as in continuous-time Markov
Chain models. In either case S represents the number of input samples used to generate
the outcome distribution and T represents the computation time required to generate the
outcome distribution.

Building on the previous works of [64,65] that seek to define simulation model com-
plexity, Thompson [32] characterizes complexity in terms of a model’s scope, resolution,
interactions, and logical dependencies. Thompson’s framework proposes that greater
scope, more granular/precise resolution, a greater number of interactions, and more logical
dependencies are the pertinent factors that contribute to an increase in model complexity.

From Thompson’s framework, given that model complexity is increased with greater
model scope (i.e., a greater number of real-world components modeled) and/or finer
resolution (i.e., more granular discretization of model parameters and structure), it is
reasonable to expect that the model execution time is similarly affected. Similarly, given that
complexity also increases with greater numbers of interactions and/or logical dependencies,
it is reasonable to expect that an increase in the set of dynamics captured by a given model
would entail an increase in the model’s complexity.

Leveraging this framework, we make the following assumptions about the relationship
between S, T, δ, and C.

Assumption 1. 1A The computation time necessary to sufficiently execute a given probabilistic
model is directly proportional to the model’s complexity. That is, Ta = l · Ca, l ≥ 1, where Ca is
the complexity of model a, Ta is the computation time required to execute a sufficiently sized set of
experiments on a, and l is a proportionality constant.

Assumption 2. 1B The complexity of a given probabilistic model is directly proportional to the set
of dynamics captured by the model. That is, for two models, a and b, δa ⊂ δb =⇒ Ca < Cb.

Assumption 3. 1C The computation time necessary to execute a given set of experiments is directly
proportional to the experiment set size. That is, for a given model a, Ta = k · Sa, k ≥ 1, where
Ta is the computation time required to execute an experiment of size Sa on model a and k is a
proportionality constant.

Based on Assumptions 1–3, the following transitive assumption can be deduced.

Assumption 4. 1D The addition of one or more new dynamics to the set of dynamics captured by a
model incurs an increase in the computation time necessary to sufficiently execute that model. That
is, for two models, a and b, δa ⊂ δb =⇒ Ta < Tb.

For a composed model consisting of two or more sub-models, we make the following
assumptions concerning the sets of dynamics captured by each sub-model.

Assumption 5. 2A Every sub-model of a composed model captures at least one dynamic, that is

|δmi | > 0, ∀mi ∈ m,

where m is a full composed model and mi represents a sub-model of m.

For our simplified interaction system model M (Equation (2)) with sub-models M1
and M2 (Equations (4) and (6), respectively), Assumption 5 implies |δM1 |, |δM2 | > 0.

Assumption 6. 2B For a composed model consisting of two or more sub-models, no dynamics are
duplicated in two or more sub-models. That is,

δmi ∩ δmj = ∅, ∀mi, mj ∈ m, mi ̸= mj,
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where m is a full composed model and mi, mj represent sub-models of m.

For our simplified model M, Assumption 6 implies δM1 ∩ δM2 = ∅.
For a model that is composed of two or more sub-models, interactions between sub-

models produce dynamics in the greater model as a whole. To capture this phenomenon,
we introduce the notion of a set of interacting dynamics between two sub-models as a set of
pairs of single dynamics from each sub-model which, when executing together, capture
greater dynamics of the model as a whole. By executing together, we mean that the two
sub-models execute either simultaneously or in an interleaved fashion. We provide the
following definitions and assumptions concerning interacting dynamics between sub-
models of a composed model.

Definition 5 (Interacting Dynamics Set, 𭟋). The interacting dynamics set, 𭟋δa ,δb , is the set
of pairs of dynamics between two given probabilistic sub-models, a and b, that execute together to
capture combined dynamics not captured in either sub-model’s dynamics set, that is, not captured
in either δa or δb. 𭟋δa ,δb contains tuple elements given by ⟨δai , δbj

⟩ where δai and δbj
are single

dynamics from models a and b, respectively.

Assumption 7. 3A If a composed model contains two sub-models, a and b, that execute together,
and a influences (provides data for) b, then the set of interacting dynamics between a and b is
non-empty. That is

a → b =⇒ 𭟋δa ,δb ̸= ∅, (7)

where a → b represents the influence from a to b.

We define a notion of dense interaction between two sub-models as the maximal possible
interaction involving all dynamics captured by both sub-models.

Definition 6 (Dense Interaction). Two sub-models of a composed model have dense interaction if,
when executed together, there is interaction between all possible pairs of single dynamics from each
sub-model. That is, for sub-models a and b

𭟋δa ,δb = δa × δb =⇒ dense(a, b), (8)

where δa × δb is the cartesian product of sets δa and δb, and dense(a, b) is a function that, for
sub-models a and b, maps to the boolean value of true if a and b have dense interaction and
false otherwise.

Assumption 8. 3B Two sub-models that do not interact can be executed independently with total
complexity that is equivalent to the sum of complexities of each sub-model. That is, for a given model
a composed of sub-models b and c,

𭟋δb ,δc = ∅ =⇒ Ca = Cb + Cc, (9)

where Ca, Cb, and Cc are the complexities of models a, b, and c, respectively, and 𭟋δb ,δc represents
the set of interacting dynamics between sub-models b and c. In other words, independent and
non-interacting sub-models do not incur any additional complexity as a result of their interaction.

Assumption 9. 3C Two sub-models executing together with dense interaction have maximal addi-
tional complexity due to their interaction relative to the total complexity given by their independent
execution without interaction. We characterize this maximal additional complexity as multiplicative
with respect to the complexity of their independent execution. That is, for a given model a composed
of sub-models b and c

dense(b, c) =⇒ Ca = Cb · Cc, (10)
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where Ca, Cb, and Cc are as given in (9) and dense(b, c) represents dense interaction between
sub-models b and c.

Assumption 10. 3D For two sub-models executing together that do interact, the complexity of their
combined execution is greater than the sum of complexities of each sub-model due to the additional
complexity given by their interaction. That is, for a given model a composed of sub-models b and c

𭟋δb ,δc ̸= ∅ =⇒ Ca > Cb + Cc, (11)

where Ca, Cb, Cc, and 𭟋δb ,δc are as given in (9). In other words, interacting sub-models incur
additional complexity as a result of their interaction relative to the total complexity given by their
independent execution without interaction.

6. Analysis of a Simple System Model

With the formal foundation of the previous section in place, we now consider a
fully composed model of our simplified interaction system (Figure 2, Section 4). We
will analyze and compare the complexity and computational efficiency of a composed
model constructed by the co-simulation approach with that constructed by the closure
modeling approach.

We start with the co-simulation approach. Let Mcosim be a full, composed model of
the simplified system as constructed by the co-simulation modeling approach. A single
experiment on Mcosim is thus given by

v1, v2 = Mcosim(x, y),

where x, y are input parameters to Mcosim as given in Equations (1) and (2) and v1, v2 are
outputs generated by Mcosim as given in the same equations. Because Mcosim is a composed
model, it thus contains sub-models M1 and M2 (Equations (4) and (6), respectively) where
M1 provides data for M2, that is M1 → M2. Let µv1 and µv2 be the expected values of v1
and v2, respectively, as aggregated over a set of experiments executed on a full model of our
simplified system. To analyze the computational efficiency of Mcosim, we wish to specify
bounds on TMcosim , the total computation time required to execute the set of experiments on
Mcosim that estimate µv1 and µv2 .

First, we consider a lower bound. According to Assumption 8, the total complexity of
a model composed of sub-models M1 and M2 if there was no interaction between them
is given by the sum of their individual complexities. Because these sub-models execute
together and do interact, Assumption 10 applies:

CMcosim > CM1 + CM2 , (12)

where CM1 and CM2 are the complexities for sub-models M1 and M2, respectively, and
CMcosim is the complexity of composed model Mcosim. From Assumption 1 it
follows that

TMcosim > TM1 + TM2 , (13)

where TM1 and TM2 are the computation times for sub-models M1 and M2, respectively,
and TMcosim is the computation time of composed model Mcosim.

To compute the upper bound, we consider the case of dense interaction between M1
and M2, where dense interaction is as given by Definition 6. Dense interaction specifies
maximal additional complexity due to interactions between sub-models that execute to-
gether relative to the total complexity when no interaction is present. Assumption 9 thus
applies, yielding

CMcosim ≤ CM1 · CM2 , (14)
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where CMcosim , CM1 , and CM2 are as given in Equation (12). Similar to the lower bound
analysis, from Assumption 1, it follows that

TMcosim ≤ TM1 · TM2 , (15)

where TMcosim , TM1 , and TM2 are as given in Equation (13).
Now, we move to the closure modeling approach. Let Mclosure be a full, composed

model of the simplified system, as constructed by the closure modeling approach. Similar
to the analysis of Mcosim, we wish to compute TMclosure , the total computation time needed
to execute the set of experiments on Mclosure that estimate µv1 and µv2 .

Recall from Section 4 that closure modeling executes sub-models in series with influ-
encing sub-models executing to completion before receiving models are executed. Data
exchange occurs via an aggregation of influencing sub-model outputs, which are then used
to set receiving sub-model inputs. Execution of the Mclosure for our simplified system is
thus given by the following steps.

1. Model inputs X and Y are specified.
2. A set of experiments with set size SM1 is executed on M1 with input parameters given

by X.
3. The set of experiments executed on M1 generates an output distribution which is

aggregated to compute µv1 .
4. A set of experiments with set size SM2 is executed on M2 with input parameters given

by Y and the computed µv1 .
5. The set of experiments executed on M2 generates an output distribution which is

aggregated to compute µv2 .

As can be seen from the above steps, a single set of experiments is executed on M1,
followed by the execution of a single set of experiments on M2. Note that M1 and M2 are
never executed together either simultaneously or alternately. Thus, the total computation
time of the composed closure model is given by

TMclosure = TM1 + TM2 , (16)

where TM1 and TM2 are the computation times of sub-models M1 and M2, respectively,
and TMclosure is the total computation time of composed model Mclosure. Note that TMclosure is
directly proportional to CMclosure , the complexity of Mclosure (Assumption 1), and thus

CMclosure = CM1 + CM2 , (17)

where CM1 and CM2 are the complexities of sub-models M1 and M2, respectively.
Although sub-models M1 and M2 are not independent and do interact, the complexity

of their interaction is nullified by the aggregation of the data provided by M1 to M2. The
resulting complexity and thus computation time of the composed model Mclosure are in
the order of that for a composed model consisting of independent sub-models that do not
interact. This reduction of model complexity and computation time is not made without a
sacrifice to model fidelity. We discuss this tradeoff space further in Section 8. Because model
complexity and computation time are assumed to be directly proportional, for brevity, we
restrict the focus of the remainder of this analysis to computation time only.

7. Extension to Complex System Models

This section extends and generalizes the analysis of the previous section to composed
models that are more complex than the two-sub-system model of the simplified system
depicted in Figure 2 and defined in Section 5. The following sections provide additional
foundations needed for the extension, describe and analyze four basic patterns found
in more complex composed models, and utilize these patterns to provide a generalized
algorithm for analysis of composed probabilistic models.
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7.1. Additional Foundations

For more complex systems, we extend the two outcomes specified in Section 5 to a
vector of outcomes, O = ⟨O1, . . . , Ok⟩, k ≥ 1 that are subject to uncertainty. We define a
corresponding vector of random variables V = ⟨V1, . . . , Vk⟩ where Vi maps Oi to a value
vi ∈ ℜ, ∀i, 1 ≤ i ≤ k. We define an experiment on the system as a single system execution
resulting in a vector of outcomes, o = ⟨o1, . . . , ok⟩ which are mapped by V to a vector of
real numbers, v = ⟨v1, . . . , vk⟩.

We specify system inputs by a vector of random variables, Z = ⟨Z1, . . . , Zl⟩, l ≥ 1 (as
discussed in Section 5, the type of random variable used as system input, e.g., discrete
or continuous, does not affect this analysis), where z is a vector representing a single
sampling taken from Z. Similar to the specification given in Section 5, system outcomes
O are generated by an unknown non-linear function h and mapped to real values by V
such that

v = h(z), (18)

which represents a single generation of output vector V as generated by h with input vector
z. As given in Equation (2), h is approximated by a system model M which represents the
full system model. Let µv1 , . . . , µvk be the expected values for outputs v1, . . . , vk, respectively,
of v, as aggregated over a set of experiments executed on the full system model M.

When M is composed of two or more sub-models, we specify that every input variable
Zi from input vector Z is specified as an input to at least one sub-model. Furthermore, we
specify that every output variable Vi from output vector V is generated as an output by one
and only one sub-model. Note that different sub-models may share the same system input
variables, but that each system output variable is generated by only a single sub-model.

We introduce the notion of an interaction graph as a graph representing the sub-models
and influence relationships that exist within a composed model.

Definition 7 (Interaction Graph, Ψ). An interaction graph Ψm for a given composed model m is
a directed graph Ψm = (N, E) in which N is a set of nodes representing sub-models of m and E is a
set of edges representing influence relationships in which a sub-model x outputs data that another
sub-model y ingest as input, where E ⊆ (x, y)|(x, y) ∈ N2, x ̸= y.

Note that the composed model of the simplified system given in Figure 2 is represented
by an interaction graph with two nodes and a single edge. In this paper we analyze
composed models given by an acyclic interaction graph, that is when Ψ represents a directed
acyclic graph. The analysis of composed models with interaction graphs that contain cycles
is a topic of future work and discussed in Section 9.

7.2. Sub-Model Interaction Patterns

We describe and analyze four basic patterns of sub-model interaction. These patterns
capture possible sub-graphs of an acyclic interaction graph for a given composed model
containing two or more sub-models. Table 1 provides a list of these basic patterns.

Table 1. Four basic patterns of sub-model interaction in an acyclic interaction graph.

Interaction Pattern Description

Serial Pattern Sub-model interactions that occur in serial.

Parallel Single Origin Pattern Sub-model interactions that occur in parallel
and start from a single origin sub-model.

Parallel Single End Pattern Sub-model interactions that occur in parallel
and end at a single ending sub-model.

Parallel Single-Origin-And-End Pattern
Sub-model interactions that occur in parallel,
start from a single origin sub-model, and end
at a single ending sub-model.
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7.2.1. Pattern 1: Interactions in Series

The first pattern captures sub-model interactions that occur in series. The composed
model of the simplified system analyzed in Sections 5 and 6 demonstrates the simplest
instance of serial interaction. Figure 5 depicts serial interaction of two or more sub-models.
Note that serial interaction implies a directed path on a given interaction graph.

Figure 5. Serial interaction between sub-models.

We analyze the co-simulation approach for this serial pattern. Let Mcosim be a fully
composed co-simulation model consisting of m sub-models and an interaction graph ΨM
with m nodes and e = m − 1 edges that form a directed path where m > 1. As for the
analysis of Section 6, we wish to specify bounds on TMcosim , the total computation time taken
to execute the set of experiments on Mcosim that estimate aggregated outputs µv1 , . . . , µvk .

For the lower bound, leveraging the argument made in Section 6 for co-simulation
modeling analysis and generalizing Equation (13) for the serial pattern, we consider the
case of m sub-models that do not interact. From Assumption 8, the total complexity of
a full model composed of m sub-models that do not interact is given by the sum of their
individual complexities. Because the m sub-models do interact, Assumption 10 applies,
and together with Assumption 1, it follows that

TMcosim >
m

∑
i=1

TMi , (19)

where TMi is the computation time for sub-model Mi and varies over the m sub-models
and TMcosim is the computation time of composed model Mcosim for the serial
interaction pattern.

For the upper bound, we again leverage the argument of Section 6 for co-simulation
analysis by considering dense interaction between sub-model pairs given by the edges of
ΨM. From Assumptions 1 and 9, it follows that

TMcosim ≤
m

∏
i=1

TMi , (20)

where TMi and TMcosim are as given in Equation (19).
Now, we analyze the closure approach for the serial pattern. Let Mclosure be a fully

composed closure model consisting of m sub-models and the same serial interaction graph
ΨM as described above for the co-simulation analysis. Leveraging the argument made in
Section 6 for closure modeling analysis and generalizing Equation (16) for the serial pattern,
we have

TMclosure =
m

∑
i=1

TMi , (21)

where TMi is the computation time for sub-model Mi and varies over the m sub-models
and TMclosure is the total computation time of composed model Mclosure for the serial
interaction pattern.

7.2.2. Pattern 2: Parallel Interactions Emanating from a Single Origin Node

This pattern captures sub-model interactions that occur in parallel and emanate from
a single origin sub-model. Figure 6 illustrates this pattern. As shown in the figure, parallel
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interactions from a single origin node in an interaction graph form a tree pattern with
the origin node as the root and each directed path representing a branch of the tree. The
horizontal dots in the figure represent that there may exist two or more branches in this
pattern. The vertical dots in the figure represent the interaction path of each branch, which
may consist of two or more nodes. Note that the figure illustrates this pattern by depicting
three branches before expansion by horizontal dots. This is not intended to imply that
the minimum number of branches is three. Also, the sub-model nodes in the figure are
numbered to show that they are unique sub-models only and the numbering is not meant
to imply an ordering or total number of nodes.

Figure 6. Parallel interactions between three or more sub-models that emanate from a single origin
sub-model. The horizontal dots represent that there may be two or more branches from the origin
node. The vertical dots represent the interaction path of each single branch, which may consist of
two or more sub-models.

We analyze the co-simulation approach for this parallel single origin node interaction
pattern. Let Mcosim be a full composed co-simulation model consisting of m sub-models and
an interaction graph ΨM with m nodes and e = m − 1 edges that form a directed tree with a
single sub-model node as the root. As for the serial pattern analysis of Section 7.2.1, we wish
to specify bounds on TMcosim . For the lower bound as for the previous lower bound analyses,
we consider the case of non-interacting sub-models. Again, Assumptions 1 and 10 apply,
yielding the same lower bound as derived for the serial pattern (Equation (19)).

For the upper bound, we consider dense interaction between sub-model pairs given
by the edges of ΨM. The tree formed by ΨM contains two or more branches where each
branch is a directed path and thus follows the serial pattern. Let B be the set of branches
in ΨM. From Assumptions 1 and 9 for a given single branch b ∈ B containing a set of
sub-model nodes Nb, it follows that

Tb ≤ ∏
n∈Nb

Tn, (22)

where n is a sub-model node in Nb, Tn is the computation time of sub-model n, and Tb is
the computation time of branch b.

The multiple branches of the tree pattern share only an origin/root node. We wish to
characterize the combined computation time for these multiple branches, given that they
share this origin node. Let Mroot be the root sub-model node and Mchild be a given child
sub-model node. Recall that, due to the interaction between Mroot and Mchild, the complex-
ity of their combined execution is greater than the sum of their individual complexities
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(Assumption 10). Let ζ(n1, n2) > 0 be the additional complexity due to the interaction
between two interacting nodes n1 and n2 that is not accounted for by the sum of these nodes’
individual complexities and let τ(n1, n2) be the corresponding additional computation time
(Assumption 1). Thus, the computation time of their combined execution is given by

TMroot→Mchild = TMroot + TMchild + τ(Mroot, Mchild) (23)

where τ(Mroot, Mchild) represents the additional computation time due to the interaction be-
tween Mroot and Mchild and TMroot→Mchild is the computation time of the combined execution
of Mroot and Mchild.

Computing the upper bound computation time for an entire interaction tree entails
computing the computation time for a single branch via Equation (22) and then computing
the computation time of the remaining branches without repeated counting of the root’s
computation time, which has already been accounted for in the first branch’s computation.
Let b1 be the first branch of an interaction tree (any branch of the tree may be selected as
the first). and Brem = B− b1 be the remaining branches of the tree. The computation time
of a given remaining branch brem ∈ Brem containing a set of sub-model nodes Nbrem is
given by

Tbrem ≤ τ(Mroot, Mchild∈brem) · ∏
n∈Nbrem ,n ̸=Mroot

Tn, (24)

where Mroot is the root sub-model node of the tree, Mchild is the child node of Mroot that
is also in branch brem (note that there can be only one child of Mroot that is in a given
branch), τ(Mroot, Mchild) is the additional computation time due to the interaction of Mroot
and Mchild, n is a sub-model node in Nbrem and varies over all nodes of Nbrem except the
root node Mroot, Tn is the computation time of sub-model n, and Tbrem is the computation
time of a given branch brem ∈ Brem.

The upper bound computation time for an entire interaction tree is given by computing
the upper bound computation time of an arbitrarily chosen first branch of the tree via
Equation (22), computing the upper bound branch computation time of each remaining
branch via Equation (24), and summing all computed branch computation times to capture
the upper bound computation time of the whole tree. Summation of branch computation
times is appropriate because each branch, after interactions with the shared root node have
been accounted for, is independent from all other branches with respect to its remaining
nodes. That is, no nodes other than the root node are shared between branches. The upper
bound computation time for Mcosim with interaction graph ΨM that forms a tree pattern is
thus given by

TMcosim ≤ Tb1 + ∑
brem∈Brem

Tbrem, (25)

where Tb1 is the computation time an arbitrarily chosen first branch of the tree computed by
Equation (22), brem is a remaining branch of the tree and varies over all remaining branches
of the tree Brem, Tbrem is the computation time of remaining branch brem computed by
Equation (24), and TMcosim is the computation time of Mcosim. Note that the upper bound
computation time of Equation (25) sums computation times over branches of the tree,
not nodes.

We now analyze the closure approach for this parallel single origin-node pattern. Let
Mclosure be a full composed closure model consisting of m sub-models and the same parallel
single origin node interaction graph ΨM as described above for the co-simulation analysis
of this pattern. As described in Sections 6 and 7.2.1, closure models nullify the added
complexity due to dynamic interactions between sub-models by passing aggregated data
once instead of non-aggregated data many times. Thus the total computation time for
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Mclosure is on the order of that for a model consisting of independent sub-models that do
not interact. The computation time is thus given by

TMclosure =
m

∑
i=1

TMi , (26)

where TMi is the computation time for sub-model Mi and varies over the m sub-models and
TMclosure is the total computation time of composed model Mclosure for the parallel single
origin node interaction pattern.

7.2.3. Pattern 3: Parallel Interactions Finishing at a Single End Node

This pattern captures sub-model interactions that occur in parallel and end at a
single sub-model node. Figure 7 illustrates this pattern. As shown in the figure, parallel
interactions that end at a single node in an interaction graph form a pattern in which two
or more directed paths meet at the ending node. The horizontal dots in the figure represent
that two or more directed paths may exist in this pattern. The vertical dots in the figure
represent the interaction path of each directed path, which may consist of two or more
nodes. Note that similar to Figure 6, this figure illustrates the pattern by depicting three
paths before expansion by horizontal dots. This is not intended to imply that the minimum
number of parallel paths is three. Also, as in Figure 6, the sub-model nodes are numbered
only to show that they are unique sub-models and not to imply an ordering or total number
of nodes.

Figure 7. Parallel interactions between three or more sub-models that all end at a single sub-model
node. Horizontal dots represent that there may be two or more paths to the end node. Vertical dots
represent the interaction path of each single path, which may consist of two or more sub-models.

We analyze the co-simulation approach for this parallel single end-node interaction
pattern. As for the parallel pattern with a single origin-node analysis of Section 7.2.2, we
wish to specify bounds on TMcosim , the computation time required to compute a composed co-
simulation model, Mcosim, consisting of m sub-models and an interaction graph ΨM with m
nodes and e = m − 1 edges that form multiple directed paths that terminate at a single end-
node. As for the lower bound analysis of the previous two patterns, Assumptions 1 and 10
are used to derive the lower bound given in Equation (19).

As in the analyses of the previous patterns, we consider dense interaction between
sub-models to compute the upper bound. Leveraging the analysis of the single origin-node
parallel pattern, we use analogous versions of Equations (22) and (24) to compute upper
bound computation time for an initial, arbitrarily selected directed path and the same for
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each individual remaining path without repeated counting of the end node’s computation
time. Let P be the set of paths in ΨM. From Assumptions 1 and 9 for a given single path
p ∈ P containing a set of sub-model nodes Np, it follows that

Tp ≤ ∏
n∈Np

Tn, (27)

where n is a sub-model node in Np, Tn is the computation time of sub-model n, and Tp is
the computation time of path p.

As in the analysis of the previous pattern, let τ(n1, n2) be the additional computation
time incurred by the combined execution of nodes n1 and n2 that is not accounted for by
the sum of their individual computation times. Let Mend be the ending node and Mparent
be a parent/predecessor node. From Equation (23) the computation time of the combined
execution of Mparent and Mend is given by

TMparent→Mend = TMparent + TMend + τ(Mparent, Mend)

where τ(Mparent, Mend) represents the additional computation time due to the interaction
between Mparent and Mend and TMparent→Mend is the computation time of the combined
execution of Mparent and Mend.

Let p1 be the arbitrarily selected first path of the graph and Prem = P − p1 be
the remaining paths of the graph. The computation time of a given remaining path
prem ∈ Prem containing a set of sub-model nodes Nprem is given by

Tprem ≤ τ(Mparent∈prem, Mend) · ∏
n∈Nprem ,n ̸=Mend

Tn, (28)

where Mend is the end sub-model node of the graph, Mparent is the predecessor node of
Mend that is also in path prem (note that there can be only one predecessor of Mend that is in
a given path), τ(Mparent, Mend) is the additional computation time due to the interaction
of Mparent and Mend, n is a sub-model node in Nprem and varies over all nodes of Nprem
except the ending node Mend, Tn is the computation time of sub-model n, and Tprem is the
computation time of a given path prem ∈ Prem.

The upper bound computation time for the entire graph, contrary to that of the single
origin-node parallel pattern, is computed by taking a product of the upper bound compu-
tation times for each path rather than by taking a sum. Taking a product is appropriate
because each path is not independent of the other paths due to their shared ending node,
and this dependence cannot be fully accounted for by considering end node interactions
with individual paths in isolation as was done for individual branches in the single ori-
gin parallel pattern analysis of Section 7.2.2. Because all paths end at the ending node,
combined execution of the end sub-model together with the sub-models of each path
depends on the combined effects of interacting dynamics between all paths. Similar to our
characterization of the complexity and computation time due to dense interaction between
two sub-models (Assumption 9), we model the combined interaction of multiple paths
multiplicatively.

The upper bound computation time for Mcosim with interaction graph ΨM that follows
a pattern with parallel interactions that share a single ending node is thus given by

TMcosim ≤ Tp1 · ∏
prem∈Prem

Tprem, (29)

where Tp1 is the computation time an arbitrarily chosen first path of the graph computed
by Equation (27), prem is a remaining path of the graph and varies over all remaining paths
of the graph Prem, Tprem is the computation time of remaining path prem computed by
Equation (28), and TMcosim is the computation time of Mcosim.
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We now analyze the closure approach for this parallel single end-node pattern. Let
Mclosure be a full composed closure model consisting of m sub-models and the same parallel
single end-node interaction graph ΨM as described above for the co-simulation analysis of
this pattern. As described in the previous two sections analyzing the serial and parallel
single-origin interaction patterns, closure models nullify interaction complexity by passing
aggregated data between sub-models once only. The computation time for Mclosure is thus
the same as that for the parallel single origin-node pattern (Section 7.2.2) and is given by
Equation (26).

7.2.4. Pattern 4: Parallel Interactions Emanating from a Single Origin-Node and Finishing
at a Single End-Node

The final pattern considered is a composite pattern in which sub-model interactions
occur in parallel but start from a single origin sub-model node and end at a single end sub-
model node. Figure 8 illustrates this pattern. As shown in the figure, parallel interactions
with a single origin-node and end-node form a pattern in which two or more directed
paths are joined at the start and end nodes. As in Figures 6 and 7, the figure depicts three
paths with horizontal dots indicating potentially more paths, but this is not meant to imply
that three paths are a minimum. Also, as in the aforementioned figures, numbered nodes
represent unique sub-models only and are not meant to imply an ordering or total number
of nodes.

Figure 8. Parallel interactions between three or more sub-models that all start from a single origin
node and end at a single end node. Horizontal dots represent that there may be two or more paths to
the sink. Vertical dots represent the interaction path of each single path, which may consist of two or
more nodes.

We analyze the co-simulation approach for this parallel single-origin-and-end node
pattern. As in the previous analyses given in Sections 7.2.2 and 7.2.3, we specify bounds
on TMcosim , the computation time to compute a composed co-simulation model, Mcosim,
consisting of m sub-models and an interaction graph ΨM with m nodes and e edges that
form the parallel single-origin-and-end node pattern. Again, as for the lower bound
analysis of the previous three patterns, Assumptions 1 and 10 are used to derive the lower
bound given in Equation (19).

For the upper bound, we consider dense interaction between sub-models as for the
previous analyses. We leverage the analyses of the parallel single origin node and par-
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allel single end node patterns of the previous two sections to compute the upper bound
according to the following steps.

1. Select either the parallel single origin node pattern (Section 7.2.2) or the parallel single
end node pattern (Section 7.2.3) as a starting point for the computation.

2. Temporarily ignore either the origin node or end node and its edges depending on
which starting pattern is selected. That is, if the parallel single origin node pattern is
selected as the starting pattern, then the end node and its edges are ignored. And vice
versa if the parallel single end node pattern is selected as the starting pattern.

3. Compute the pattern upper bound for the selected starting pattern using the appro-
priate co-simulation equations for that pattern (equations from either Section 7.2.2 or
Section 7.2.3).

4. Collapse all nodes and edges of the starting pattern into a single “composite” node
representing the all nodes and edges of that pattern with associated computation time
Tpattern. Note that Tpattern represents the upper bound computation time for all nodes
and edges of the starting pattern.

5. Construct a simpler interaction graph Ψreduced-M which connects the composite node
with the temporarily ignored node by a single edge in the same direction as the
previously ignored edges. Note that Ψreduced-M contains only two nodes and a single
edge and is an instance of the serial pattern described in Section 7.2.1.

6. Compute the upper bound of Ψreduced-M using Equation (20) (Section 7.2.1). This
upper bound represents the final computation of TMcosim for the original interaction
graph ΨM and is given by

TMcosim ≤ Tpattern · Tn, (30)

where Tpattern is the computation time for the starting pattern computed in Step 4
above and Tn is the computation time of the remaining temporarily ignored node
of ΨM.

The above steps provide the analysis for computing the upper bound given an a priori
selection of either the parallel single origin node or parallel single end node pattern as
the starting pattern. While an argument can be made for either selection, we prefer to
use the parallel single end node pattern as the starting point. Our reasoning is based on
the algebraic order of operations in which multiplication is prioritized above addition.
Recall from Sections 7.2.2 and 7.2.3 that the multiple interaction graph paths/branches are
combined via a summation for the parallel single origin node pattern and via a product for
the parallel single end node pattern.

We now analyze the closure approach for this parallel single-origin-and-end node
pattern. Let Mclosure be a full composed closure model consisting of m sub-models and the
same parallel single-origin-and-end node interaction graph ΨM as described above for the
co-simulation analysis of this pattern. As described in the previous analyses of the other
patterns, closure models nullify interaction complexity by passing aggregated data. The
computation time for Mclosure is thus the same as that for the parallel single origin node
pattern (Section 7.2.2) and is given by Equation (26).

7.3. A Generalized Algorithm

We now provide a generalized algorithm for computing the bounds of computation
time T for full composed models constructed by the co-simulation and closure modeling
approaches. As mentioned in Section 7, for this analysis we consider an acyclic interac-
tion graph and discuss extension to cyclic interaction graphs in Section 9 as a topic of
future work.

We start with the co-simulation approach. As for the pattern analyses given in the pre-
vious sections, the lower bound is computed by Equation (19). The upper bound considers
dense interaction between sub-model nodes and is computed by Algorithm 1 for a given
co-simulation model Mcosim with directed acyclic interaction graph ΨM. For simplicity, we
consider only connected interaction graphs in the algorithm. For disconnected interaction
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graphs, the algorithm is used for each connected sub-graph and the final upper bound
computation time is given by summing over all individual sub-graph results.

The final result of applying Algorithm 1 on a connected interaction graph is a reduced
graph containing a single composite node (no edges) with an associated computation time
Tpattern representing the total computation time for the graph. To illustrate the application
of Algorithm 1, we consider a composed co-simulation model with the interaction graph
depicted by Figure 9. As shown in the figure, the composed model consists of six sub-
models, labeled as M1–M6, and six edges.

Algorithm 1 General algorithm for computing upper bound computation time of a co-
simulation model.

1: procedure COSIM-UPPER-BOUND(ΨM) ▷ interaction graph ΨM
2: for all Pattern 4 sub-graphs (parallel interactions from a single origin node and to a

single end node) in ΨM do
3: Compute Tpattern
4: Collapse sub-graph into single composite node with associated computation

time Tpattern ▷ ΨM is reduced

5: for all Pattern 3 sub-graphs (parallel interactions to a single end node) in the reduced
graph ΨM do

6: Compute Tpattern
7: Collapse sub-graph into single composite node with associated computation

time Tpattern ▷ ΨM is reduced

8: for all Pattern 2 sub-graphs (parallel interactions from a single origin node) in the
reduced graph ΨM do

9: Compute Tpattern
10: Collapse sub-graph into single composite node with associated computation

time Tpattern ▷ ΨM is reduced

11: for all Pattern 1 sub-graphs (serial interactions) in the reduced graph ΨM do
12: Compute Tpattern
13: Collapse sub-graph into single composite node with associated computation

time Tpattern ▷ ΨM is reduced

Figure 9. Exemplar complex interaction graph for a co-simulation model consisting of six sub-models,
M1-M6, and six edges.

Applying Algorithm 1 to an interaction graph, ΨM, with nodes and edges as depicted
in Figure 9, the first step is to compute Tpattern for the sub-graph of ΨM that follows the
parallel single-origin-and-end node pattern described in Section 7.2.4. Notice that sub-
model nodes M1-M4 together with the four edges connecting nodes M1 and M4 with nodes
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M2 and M3 form this parallel single-origin-and-end node pattern. Using the steps listed in
Section 7.2.4, Tpattern for this pattern is computed as

Tpattern ≤ TM1 · (TM2 + TM4 + τ(M2, M4)) · (τ(M3, M4) · TM3), (31)

where TM1, . . . , TM4 are the computation times for sub-models M1–M4, respectively,
τ(M2, M4) is the additional computation time due to interaction between sub-models
M2 and M4 that is not accounted for by summing their individual computation times, and
τ(M3, M4) is the same for sub-models M3 and M4. Once Tpattern is computed, all nodes and
edges of the sub-graph are collapsed into a single composite node, where Tpattern represents
the upper bound computation time of this composite node. After collapsing this sub-graph,
the reduced interaction graph is the graph depicted in Figure 10 containing three nodes
and two edges. In the figure, the node labeled “Composite Node M1–M4” represents the
collapsed sub-graph.

Figure 10. Reduced interaction graph after the sub-graph representing an instance of the parallel
single-origin-and-end node pattern is computed and collapsed.

The next step is to compute a new Tpattern, which we refer to as T′
pattern for clarity,

representing the upper bound computation time of the next prioritized existing pattern
on the reduced graph. Notice that the reduced graph of Figure 10 forms an instance of
the parallel single origin node interaction pattern described in Section 7.2.2. Also note
that there is no instance of the parallel single end node interaction pattern in the reduced
graph of Figure 10, therefore we do not consider this pattern in this example. Using
Equations (23)–(25) from Section 7.2.2, T′

pattern is computed as

T′
pattern ≤ TCompositeNode + TM5 + τ(CompositeNode, M5)

+ τ(CompositeNode, M6) · TM6,
(32)

where TM5 and TM6 are the computation times for sub-models M5 and M6, respectively,
TCompositeNode = Tpattern is the computation time of the composite node computed in
Equation (31), τ(CompositeNode, M5) is the additional computation time due to interaction
between sub-model M5 and the sub-graph containing sub-models M1–M4 represented
by the composite node that is not accounted for by summing the individual computation
times, τ(CompositeNode, M6) is the same for sub-model M6 and the composite node. Once
T′

pattern is computed, the nodes and edges of the reduced graph of Figure 10 are collapsed,
resulting in the further-reduced graph of Figure 11 containing only a single composite
node where T′

pattern represents the upper bound computation time for the entire original
composed co-simulation model.
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Figure 11. The final reduced interaction graph after all steps of Algorithm 1 are executed.

We now provide a generalized algorithm for computing bounds of computation time
T for full composed models constructed by the closure modeling approach. As discussed
in the previous sections, the computation time for Mclosure is computed by summing
the individual computation times of each of its sub-models as given by Equation (26)
(Section 7.2.2).

Theorem 1. Given a probabilistic simulation model M composed of two or more probabilistic
sub-models whose interactions are given by a directed acyclic interaction graph with two or more
nodes and at least one edge, the complexity CM and computation time TM of the composed model as
constructed by the co-simulation approach are greater than those of the same model as constructed
by the closure approach. That is,

CMcosim > CMclosure , TMcosim > TMclosure ,

where Mcosim and Mclosure represent the given composed model M as constructed by the co-
simulation and closure modeling approaches, respectively, CMcosim and CMclosure represent their
corresponding complexities, respectively, and TMcosim and TMclosure represent their corresponding
computation times, respectively.

Proof. As given in the above analysis, TMcosim is bounded below by Equation (19)
(Section 7), which captures a sum of individual sub-model computation times. As given
in the equation, this lower bound is non-inclusive. As given by the above analysis and
captured by Equation (26) (Section 7.2.2), TMclosure is equal to the sum of individual sub-
model computation times. Thus, TMclosure is always less than TMcosim for a given composed
model with a directed acyclic interaction graph. Because Tm is directly proportional to Cm
for any given model m (Assumption 1), CMclosure is also always less than CMcosim for a given
composed model with a directed acyclic interaction graph.

8. Discussion

The analysis provided above proves that a composed model constructed by the clo-
sure modeling technique has lower complexity and thus higher computational efficiency
(i.e., a lower required computation time) than the same model as constructed by the co-
simulation technique for composed models with acyclic interaction graphs. It is very
important to note that this result does not suggest that closure modeling is preferable to
co-simulation. Closure models sacrifice model fidelity to achieve higher efficiency. It is
critical to consider trade-offs between model fidelity, computational efficiency, and resource
cost when selecting a composable modeling approach. Generally, higher-fidelity models
are associated with higher resource costs for model development (or licensing if the model
is purchased) and for model execution/use.

For a given modeling application, the selection of a composable modeling approach
is driven by the model’s purpose. There are several relevant questions to consider. Is the
model intended to capture an existing system or a system that is being designed/modified?
If for a system in design, for what design phase is the model intended? If for an existing
system, is the model intended to capture system behavior under normal conditions or
under abnormal conditions? Is it intended to gain general insights into system behavior or
to provide relatively precise predictions of system outcomes?
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Early system design modeling applications often wish to compare the relative per-
formance of different design choices, and thus require greater computational efficiency
to enable evaluation of numerous options. Later system design applications may wish
to simulate full system execution to identify scenarios that cause failure or otherwise un-
satisfactory conditions. Thus, these applications may necessitate higher-fidelity models
to accurately estimate failure thresholds. Models of an existing system that wish to gain
general insights may not require the same fidelity as those that wish to generate predictions
of system outcomes. For models that are intended to explore abnormal conditions, for ex-
ample, to prepare for potential contingencies or system disruptions, evaluating the relative
effects of various mitigation strategies may also require greater model efficiency to support
what-if analysis of many possible scenarios. Models that are part of a simulation-based
optimization/decision support system frequently require rapid simulation execution to
enable automated/semi-automated discovery of effective decisions.

Given that physics modeling applications can require capturing interactions between
a very large number of entities at the micro-scale (e.g., at the molecular scale) and how
these dynamics affect behavior at the macro-scale, it is not surprising that closure models
are selected due to their greater efficiency. It may be that for such applications, it is simply
intractable to select other modeling approaches.

A limitation of the analysis provided in this paper is that it considers interactions
between sub-systems that are acyclic rather than cyclic/bi-directional. However, the
analytical approach given here can readily be extended to include cyclic interactions.
The analysis of this study is intended to provide the foundation from which analysis of
cyclic interactions between sub-systems, as modeled by either the co-simulation or closure
modeling approaches, can be developed.

Note that some modeling applications may have a mix of bi-directional/cyclic and uni-
directional interactions, that is, some sub-systems that participate in bi-directional/cyclic
interactions while other sub-systems participate only in unidirectional interactions. There
exists the potential for a hybrid composable modeling approach, where some interaction
relationships between sub-systems are captured via a co-simulation technique and others
(either bi-directional/cyclic or unidirectional) are captured via a closure modeling tech-
nique. Modelers who apply a hybrid composable modeling approach may judiciously
select which interaction relationships to model via co-simulation and which to model
via closure. This may lead to efficient composable models that are less computationally
intensive to execute while remaining accurate for their modeling purpose.

It is also important to note that the above analysis of composable modeling approaches
may be used in conjunction with any of the previously proposed complexity measures
discussed in Section 2. Our analysis captures the complexity due to interactions that occur
between component models of a given interaction system model and does not capture the com-
plexity internal to individual component models. Thus, any desired method may be used
to measure the complexity of individual component models and the resulting complexity
for the composed model as a whole can be computed using the analysis presented here.

9. Conclusions

This paper presents a probabilistic analysis comparing the complexity and compu-
tational efficiency of two prevalent composable modeling techniques, co-simulation and
closure modeling. We also discuss the motivations for composable modeling, provide an
overview description of the two techniques, discuss trade-offs to consider when selecting
an appropriate technique for a given modeling and simulation application, and identify
modeling situations that are amenable to either of the composable techniques examined.
The aim is to progress the understanding of existing composable modeling techniques
and aid modeling practitioners and stakeholders in making informed decisions about the
selection of an appropriate modeling technique for a particular modeling application.

Future work could extend the analysis provided here to include composed models
with cyclic interaction graphs (Definition 7, Section 7). Intuitively, it can be seen that for a
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composed model with a cyclic interaction graph, the computational efficiency advantage
that closure modeling has over co-simulation may be reduced. Another direction of
future work could focus on analyses that provide tighter bounds on the complexity and
computational efficiency of co-simulation models.

As discussed by Henriksen in his discourse on complexity in the modeling and
simulation community [27], the first mandate of complex systems modelers is to reduce
complexity. Composable modeling approaches have been designed explicitly to reduce
complexity and are especially appropriate for the multi-scale and multi-domain modeling
and simulation problems that are now commonplace. Furthermore, this study points to
the potential for a hybrid modeling approach that leverages both the co-simulation and
closure modeling techniques. Such an approach enables modelers to judiciously select
which interaction relationships between sub-systems to model via a co-simulation tech-
nique and which to model via a closure technique. This may lead to efficient composable
models that are less computationally intensive to execute while remaining accurate for their
modeling purpose.
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