
Citation: Esangbedo, M.O.; Tang, M.

Evaluation of Enterprise

Decarbonization Scheme Based on

Grey-MEREC-MAIRCA Hybrid

MCDM Method. Systems 2023, 11,

397. https://doi.org/10.3390/

systems11080397

Academic Editors: Shaojian Qu, Ying

Ji and M. Faisal Nadeem

Received: 30 June 2023

Revised: 23 July 2023

Accepted: 31 July 2023

Published: 2 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Evaluation of Enterprise Decarbonization Scheme Based on
Grey-MEREC-MAIRCA Hybrid MCDM Method
Moses Olabhele Esangbedo * and Mingcheng Tang

School of Management Engineering, Xuzhou University of Technology, No. 2 Lishui Road, Yunlong District,
Xuzhou 221018, China
* Correspondence: moses@xzit.edu.cn; Tel.: +86-151-09289227

Abstract: Engineering and technological breakthroughs in sustainability play a crucial role in re-
ducing carbon emissions. An important aspect of this is the active participation of enterprises in
addressing carbon reduction as a systemic approach. In response to government incentives in the
People’s Republic of China, Chinese enterprises have developed carbon reduction systems to align
their organizational goals with national long-term plans. This paper evaluates the carbon reduction
schemes employed by six companies as a multi-criteria decision-making (MCDM) problem. To this
end, we propose a new hybrid MCDM method called the grey-MEREC-MAIRCA method. This
method combines the recently developed method based on the removal effects of criteria (MEREC) for
weighting and multi-attribute ideal-real comparative analysis (MAIRCA) based on the grey system
theory. The proposed hybrid method provides the additional benefit of accounting for uncertainty in
decision making. Notable findings of this research, based on the decision-maker scores, are that the
control of direct carbon emissions and energy-saving efficiency are top priorities. In contrast, com-
mitting to corporate social responsibility through carbon public welfare and information disclosure
are considered lesser priorities. Furthermore, the ranking results obtained using this method are
compared with those from the classical weighted sum model and the technique for order preference
by similarity to ideal solution (TOPSIS), confirming the selection of the best company. Despite the
limitation of the proposed method and the additional steps needed in the evaluation, it opens up
opportunities for future research to develop simpler MCDM methods under uncertainty.

Keywords: carbon reduction; sustainability; multi-criteria decision making; grey system theory;
enterprise performance; TOPSIS; weighted sum model

1. Introduction

Global sustainability is one of the challenges faced by humanity today. The benefits
of carbon reduction are well-known, as they help mitigate the effects of global warming,
improve public health, and enhance plant and animal diversity. To promote these benefits,
the Chinese government has set short and long-term goals, which are estimated to require
an additional capital investment of US $14–17 Trillion in green infrastructure [1]. Chinese
enterprises that align their operations with these dual goals, also known as the double-
carbon goals, have a higher chance of benefiting from government incentives and avoiding
penalties for excessive carbon emissions. The double carbon goal, or dual carbon goal,
implemented by the Chinese government reflects its commitment to carbon reduction.
The immediate goal is for China to reach its “carbon peak” by 2030, and the ultimate goal
is for China to achieve “carbon neutrality” by 2060. These goals have driven Chinese
enterprises to re-engineer their business practices to align with national plans. Evaluating
the performance of these enterprises in their carbon reduction efforts is important as a
self-assessment feedback system to ensure the double carbon goals are met.

The evaluation of enterprise decarbonization systems is addressed as a multi-criteria
decision-making (MCDM) problem. An MCDM problem involves assessing decision
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alternatives based on their performance values in each evaluation criterion, which are
weighted according to their level of importance to the decision makers (DMs) [2]. Lots
of MCDM methods have been developed to solve decision problems, and they may be
classified into compensatory and non-compensatory techniques [3]. Compensatory tech-
niques are methods where a lower performance value of an alternative in one criterion
can be balanced by a higher performance value in some other criteria. Examples of com-
pensatory techniques include the weighted sum model (WSM), also known as the simply
additive weighting (SAW) [4], technique for order preference by similarity to ideal solution
(TOPSIS), and complex proportional assessment of alternatives (COPRAS). Conversely,
non-compensatory techniques do not possess the balancing properties of using higher per-
formance values of an alternative in one criterion to makeup for the lower ones. Examples
of non-compensatory techniques are elimination and choicetranslating reality (ELECTRE
III) [5], VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje; multi-criteria
optimization and compromise solution), and preference ranking organization method for
enrichment evaluations (PROMETHEE II) methods [6,7].

While there are objective and scientific methods to measure the carbon emissions of
an enterprise, the associated costs can be significant. An alternative and cost-effective
approach is the use of expert opinions, measured as latent constructs by a group of DMs,
but this introduces a certain level of uncertainty. To account for this uncertainty in the
evaluation, the grey system theory (GST) is employed in this research. The grey system is
defined as a system with incomplete information, where some information is known and
some is unknown [8]. For example, the GST has been applied in sustainability for contractor
selection in the installation of floating solar power panels [9] and the construction of photo-
thermal power stations [10]. They employed the FUCOM, SWARA, GRA (Grey Relational
Analysis) as hybrid MCDM methods [11]. These green electricity solutions facilitate the
attainment of the overall goal of decarbonization. Accounting for uncertainty is one of
the benefits of grey-MEREC-MAIRCA Furthermore, the term decarbonization refers to the
reduction in carbon dioxide emissions (CO2) in the atmosphere, with the ultimate goal of
eliminating CO2 from energy consumption and manufacturing processes. Additionally,
in this paper, the term “scheme” refers to the system with plans that an enterprise assigns for
decarbonization. In other words, evaluating a decarbonization scheme involves assessing a
company’s current performance, their current approach, and future plans towards reducing
carbon emissions. The terms “enterprise” and “company” are used interchangeably in this
context because the case presented focuses on for-profit companies. However, this study
can also be replicated in non-profit organizations and businesses.

There is evidence to show that China is making progress in its efforts to reduce
carbon emissions. Zhou et al. [12] reported the outcomes of the initial allocation of inter-
provincial carbon emission rights in China at the provincial level. Xu et al. [13] showed that
government regulation with financial incentives can promote carbon reduction, and this
was validated using evolutionary game modeling. Yi and Li [14] demonstrated that a carbon
tax will unequivocally reduce carbon emissions based on the optimization of a two-echelon
supply chain consisting of manufacturers and sellers. Interestingly, through a scientific
approach of multi-scenario simulation, Zhang et al. [15] showed that moderate government
supervision at the beginning of low-carbon development in enterprises contributes more to
decarbonization. While progress is being made by the government, more can be achieved
with the involvement of enterprises.

This research is motivated by the need to understand the performances, plans and
strategies enterprises are using to cut their carbon footprint. The aim of the research is to
evaluate the carbon emission reduction systems and plans of six companies by improving
the improved-MEREC and improved-MAIRCA as a hybrid MCDM method that captures
uncertainty represented as grey numbers. To achieve this aim, a hierarchical model is
presented, and the grey-MEREC-MAIRCA hybrid method is proposed. This paper presents
a new perspective for assessing enterprises based on their sustainability performance using
a novel model. Therefore, the main contribution of the paper is an extension of the method
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based on the removal effects of criteria (MEREC) with the grey system theory, and the
proposed of grey-MEREC method. Another contribution is the hierarchical model for
evaluating carbon reduction at the enterprise level.

The remaining sections of this paper are as follows: Section 2 presents the literature
review on trends in carbon reduction as an MCDM problem. Section 3 presents the
hierarchical model along with the methods used for weighting and evaluating enterprises.
Section 4 presents the results of the evaluation and analyses, comparing them with other
traditional MCDM methods. Finally, Section 5. draws a conclusion.

2. Literature Review
2.1. Enterprise Decarbonization

Before the Chinese government presented its double-carbon plans, which set the time
frame for carbon peak in 2030 and net-zero carbon emissions in 2060, Rockström et al. [16]
suggested a decarbonization plan. They referred to the period from 2017 to 2020 as
the “No-brainers period”, emphasizing the need to reduce fossil fuel consumption by
2020. From 2020 to 2030, they identified the “Herculean Efforts” phase, calling for the
implementation of intelligent and distributive actions. The period from 2030 to 2040 is
known as the “Many Breakthroughs period”, during which discontinuing the use of oil in
the energy mix is a key objective. Lastly, the period from 2040 to 2050 is referred to as the
"Revise, Reinforce period," involving feedback processes. Griscom et al. [17] highlighted
various climate mitigation potentials, including reforestation, forest conservation, proper
agricultural and grassland nutrition management, and the impact of peat on wetlands.

The primary focus for achieving carbon reduction is to transition towards net-zero
carbon emissions. Davis et al. [18] identified several areas where net-zero solutions can be
implemented, such as solar power, wind energy, nuclear power, hydrogen synthetic gas,
compressed air energy storage, hydropower pump storage, and other storage solutions such
as thermal and batteries. In a qualitative analysis of the literature, Minx et al. [19] presented
the main approaches for negative emission technologies (NETs), including afforestation
and reforestation, bioenergy carbon capture and storage, biochar, improved weathering,
direct air capture, ocean fertilization, and soil carbon sequestration. Drawing attention to
demand-side solutions for mitigating climate change, Creutzig et al. [20] highlighted the
importance of improving transportation through electric vehicles (EVs) and lightweight
vehicles, enhancing energy efficiency in buildings by installing energy-efficient appliances,
promoting a shift towards healthy fresh foods over processed foods in the food sector,
and improving the manufacturing process and equipment to enhance the sustainability of
manufactured products and services.

The use of management information systems can make a positive contribution to
carbon reduction. Zvezdov and Hack [21] employed enterprise resource planning software
that continuously accounts for carbon emissions, fulfilling its information technology role
by enhancing the efficiency, scalability, and reliability of the business’s stock-keeping units.
This simplifies data collection and improves computational accuracy with consistency.
Ma and Tao [22] conducted a regression analysis, demonstrating that the digitization of
enterprises can significantly reduce carbon emissions.

Grubler et al. [23] introduced low-energy solutions that focus on reducing energy
demand and achieving sustainable development goals without relying on negative energy
technologies. These solutions encompass various strategies, including the implementation
of high-service efficiency thermal end-use technologies, doubling the rate of retrofits,
and establishing new building standards to decrease energy intensity in thermal comfort.
Additionally, they emphasize the importance of reducing electricity intensity in lighting,
appliances, and consumer goods, as well as lowering electricity consumption in road-based
modes of transportation, particularly in public and commercial buildings. The authors
also stress the significance of improving manufacturing and construction processes in
the upstream industry and enhancing the efficiency of freight transportation through
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advancements in trucking and rail systems. It is crucial to prioritize carbon reduction, both
with and without negative emission technologies, in order to enhance global sustainability.

Game theory has been employed to study carbon reduction strategies, shedding more
light on the potential outcomes of implementing different approaches. Wu et al. [24] applied
game-based learning theory to develop evolutionary low-carbon strategies, considering
the players as government and enterprises. The results suggest that government incentives,
such as subsidies and regulations, play a crucial role in determining the diffusion rate of
low-carbon strategies. Fan and Xu [25] presented an enterprise equilibrium game that
combined direct subsidies and indirect tax incentives, developing a bi-objective bi-level
linear model under uncertainty constraints. Qu and Sun [26] introduced a three-stage
dynamic game to improve carbon tax in enterprises. They found that a moderate carbon
tax is sufficient to drive decarbonization in an enterprise, while higher taxes may not be
conducive to promoting carbon emissions reduction, thus suggesting a unified carbon tax.
In another study, Geng et al. [27] conducted an evolutionary game analysis on forming
enterprise alliances towards carbon reduction. The research indicates that evolutionary
stable strategies for enterprises equally require technical support. Based on their findings,
some enterprises underreport their carbon emissions, which exceeds the critical emission
level, leading to dishonest carbon emission reporting.

It is worth mentioning that in 2010, Gell [28] presented a framework for a carbon-
constrained healthcare enterprise. The main costs associated with controlling carbon
emissions in this framework include operational cost, supply chain cost, capital expendi-
ture, emission and energy waste cost, and effluent and other waste cost. Zhao et al. [29]
employed the theory of planned behavior to identify the behavioral intentions of employees
towards the goal of carbon neutrality in the petrochemical enterprise. Their study revealed
that employees’ psychological motivation and behavioral intentions towards low-carbon
behavior are positively influenced by their perception of daily work and the economy of
energy-saving measures. Sindhwani et al. [30] extracted 15 critical factors for implementing
net-zero emissions and ranked them using Pythagorean fuzzy delphi analytic hierarchy pro-
cess combined compromised solution (CoCoSo). They found that the lack of professional
expertise on net-zero emissions, software with an in-depth understanding of building infor-
mation modeling (BIM) and building energy analysis, and project management techniques
are the main factors hindering net-zero emission and promoting resilience with social value
creation. The use of MCDM methods under uncertainty requires further research.

2.2. MEREC with Related MCDM Methods

First and foremost, a comprehensive overview of MCDM methods as a systematic
literature review was presented by Ayan et al. [31], summarizing the MEREC method.
Similarly, a systematic literature review of classical MCDM methods streamlined to green
logistics and low-carbon transportation was presented by Tian et al. [32]; the WSM and
TOPSIS were among the methods applied towards decarbonization.

The MEREC method, which was developed two years ago, has gained significant pop-
ularity among researchers and is being increasingly applied in various domains, including
transportation and logistic management. In particular, the MEREC method, developed
by Keshavarz-Ghorabaee et al. [33], employs logarithmic measurements to calculate the
removal effect on the performance of alternatives. For instance, Simic et al. [34] inte-
grated the MEREC and CoCoSo methods with the Fermatean fuzzy model to address
uncertainty when evaluating urban transportation plans during the COVID-19 pandemic.
Deveci et al. [35] devised a decision support system for evaluating sustainable urban
transportation in the metaverse. They utilized the q-rung orthopair fuzzy set (q-ROFS) in
combination with the stepwise weight analysis ratio assessment (SWARA) and MEREC
methods to determine the weights of evaluation criteria. The weighted sum product
method was employed to assess public transportation options.

When evaluating thermal materials for vehicles, Nicolalde et al. [36] combined en-
tropy and the MEREC method with VIKOR, COPRAS, and TOPSIS to assess the best
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material. The consensus across all three evaluation methods identified the same opti-
mal material. Mishra et al. [37] utilized the MEREC method along with the RS method
for weighting in the assessment of battery energy storage systems (BESS). This versatile
application of BESS includes home use, grid support, and electric vehicle charging. In an-
other study, Mishra et al. [38] combined the MEREC method with SWARA for weighting.
They employed the double normalization-based multiple aggregation (DNMA) method
using single-valued neutrosophic sets, an extension of fuzzy sets, to select the optimal
location for siting a lithium–ion battery factory, which is essential for EV manufacturing.
Ul Haq et al. [39] applied the single-valued neutrosophic (SVN) number method along
with the MEREC method and measurement alternatives and ranking according to the
compromise solution (MARCOS) for the selection of sustainable materials, specifically
lighter-weight aircraft wing spars made of different alloys. In a previous work, Mishra [40]
employed the SVN number method with the MEREC method and MULTIMOORA for
assessing low-carbon tourism strategies.

Normalization is essential in MCDM because the choice of normalization method
can significantly impact the ranking of alternatives. Various normalization techniques are
employed, including linear normalization (sum, maximization, max-min), non-linear max-min
normalization, logarithm normalization, and vector normalization [41–44]. Ivanovic et al. [45]
introduced the MEREC double normalization MARCOS method for selecting the optimal
truck mixer concrete pump. Hezam [46] proposed a hybrid approach that combined intu-
itionistic fuzzy set with MEREC, rank sum, and DNMA to assess alternative fuel vehicles,
including electric vehicles (EVs), hydrogen vehicles, and hybrid EVs. Bosvovic et al. [47]
presented a ranking order method accounting for two-step normalization (AROMAN) for
evaluating the last mile of EV delivery. AROMAN utilizes both linear and vector normaliza-
tion techniques to obtain the aggregated weighted and normalized decision matrix. These
EVs can be changer using clean energy.

The MEREC method has found application in the design of experiments. Trung
and Thinh [48] combined entropy and MEREC to determine the weights of criteria for
evaluating a turning process machine. They compared the ranking of eight experiments
based on Taguchi design using TOPSIS, EAMR, MAIRCA, and MARCOS methods to select
the best alternative. Nguyen et al. [49] employed the Taguchi design of experiment to
select the optimal dressing process for internal grinding. They conducted comparative
studies using the MEREC and entropy weighting methods, along with TOPSIS, MARCOS,
Evaluation by an area-based method of ranking (EAMR), and MAIRCA methods to identify
the best design. Le et al. [50] combined MEREC and MABAC to evaluate cylinder dressing
parameter settings based on the Taguchi design of the experiment. The optimal settings
were confirmed using the TOPSIS and MARCOS methods. Esangbedo et al. [51] combined
Taguchi design with grey relational analysis to optimize the cost and quality of a nanotube
composite used in computer numerical control machines.

There are some applications of the MEREC method in information technology. Ku-
mar et al. [52] presented an application of the MEREC method in information technology,
specifically in prioritizing solid-state drive (SSD) as a MCDM problem. They utilized the
Bonferroni operator to combine entropy, MEREC, and the criteria importance through the
inter-criteria correlation (CRITIC) weighting method. The MARCOS method was employed
for evaluations, and the obtained results were compared with ranks determined by TOPSIS,
ARAS, MABAC, SAW, WASPAS, CoCoSo, and EDAS methods. Chaurasiya and Jain [53]
applied the Pythagorean fuzzy MEREC method along with the SWARA weighting method
using the MARCOS method to evaluate a hospital management system.

Some industrial applications of the MEREC are presented as paramount to the reduc-
tion in carbon; Keshavarz-Ghorabaee [54] combined the SWARA and MEREC methods
to determine the weights and assess the distribution center of a detergent and hygienic
company. However, this study was limited by the application of a crisp set instead of
linguistic values. Miskic et al. [38] combined the MEREC and MARCOS methods, con-
verting linguistic variables into fuzzy triangular numbers, to evaluate Industry 4.0 in a
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logistic center. Yu et al. [55] utilized four MCDM methods to evaluate offshore wind turbine
selection. They aggregated group decision-making preferences using interval 2-tuple lin-
guistic values with power weighted average (PWA), and obtained criteria weights using the
SWARA II and MEREC methods. The turbines were then evaluated using the cumulative
prospect theory (CPT) and CoCoSo method. A similar study on offshore wind turbine
assessment using the MEREC method and a simplified version of the best-worst method
was conducted by Yu et al. [56]. Narayanamoorthy et al. [57] extended the Fermatean fuzzy
set to the MEREC method and utilized the (multiplicative multi-objective optimization by
ratio analysis) MULTIMOORA method to address the problem of renewable energy power
plant selection. Gligoric et al. [58] applied the MEREC method to verify their studies on
the efficiency evaluation of mineral deposits based on the symmetry point of the criterion
weighting method. Rani et al. [59] applied the entropy and MEREC methods combined
with additive ratio assessment (ARAS) to address the selection problem of food waste
treatment technology.

Generally, the MEREC method is commonly applied in a single-level hierarchical
model. However, this paper introduces a novel approach by presenting a multi-level
hierarchical model that utilizes the MEREC method for group decision-making. Table 1
provides a summary of the applications of the MEREC method. Commonly, in real-world
decision-making, we are faced with uncertainties that the original MEREC and MAIRCA
approaches are unable to address. This limitation has been addressed by other researchers
who extended the MEREC method by incorporating fuzzy sets. It is worth noting that this
paper is the first to combine the MEREC method and MAIRACA based on the grey system
theory for group decision-making under conditions of uncertainty.

Table 1. Application of the MEREC and it hybrid method.

Weighing Evaluation Uncertainty Applications Researchers
Methods Methods Methods

MEREC DNMARCOS – Truck mixer concrete pump Ivanovic et al. [45]

MEREC MULTIMOORA Fermatean fuzzy
set

Renewable energy power plant loca-
tion

Narayanamoorthy
et al. [57]

MEREC MULTIMOORA Single-Valued
Neutrosophic Set
(SVNS)

low-carbon tourism strategies) Mishra, Saha, et al. [40]

MEREC MARCOS SVNS Aircraft Sustainable material selection Ul Haq et al. [39]

MEREC Symmetry point
of Criterion

– Mineral deposit Gligoric et al. [58]

MEREC MABAC Cylinder dressing parameter setting Le et al. [50]

MEREC MARCOS Fuzzy Industry 4.0 in logistics center Miskic et al. [60]

MEREC CoCoSo Fermatean Fuzzy
Model

Urban transportation plan Simic et al. [61]

MEREC SMART, WASPAS ROG for interval
type-2 fuzzy sets
(IFS)

Supplier selection and order allocation Keshavarz-
Ghorabaee [62]

MEREC,
Rank Sum (RS)

DNMA Intuitionistic
Fuzzy set

Alternative fuel vehicle Hezam et al. [46]

MEREC, RS MARCOS IFS Battery Energy Storage Systems Mishra et al. [37]
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Table 1. Cont.

Weighing Evaluation Uncertainty Applications Researchers
Methods Methods Methods

MEREC SWARA DNMA SVNS Locations selection for lithium-ion bat-
teries factory

Mishra et al. [38]

MEREC, SWARA WASPAS – Detergent and hygienic product distri-
bution center

Keshavarz-
Ghorabaee [54]

SWARA, MEREC Weighted Sum
Product Method

Q-rung orthopair
fuzzy set

Sustainable public transportation Deveci et al. [63]

MEREC, SWARA MARCOS Pythagorean
fuzzy method

Hospital management system Chaurasiya & Jain [53]

PWA, SWARA II,
MEREC

CPT & CoCoSo Interval 2-tuple
linguistic

offshore wind urbine selection Yu et al. [55]

Entropy, MEREC TOPSIS, EAMR,
MAIRCA, MARCOS

– Turning process Trung & Thinh [48]

Entropy, MEREC VIKOR, COPRAS,
TOPSIS

– Thermal Material selection for vehicle Nicolalde et al. [36]

Entropy, MEREC TOPSIS,
MARCOS, EAMR

– Dressing process for Internal grinding Nguyen et al. [49]

Entropy, MEREC ARAS Fermatean fuzzy food waste treatment technology selec-
tion

Rani et al. [59]

Entropy MEREC,
CRITIC

MARCOS – SSD assessment Kumar et al. [52]

3. Methodology

The use of a hierarchical model addressing an MCDM problem provides a granular
assessment of alternatives, considering the details of the evaluation criteria. The weights of
the criteria are objectively computed using the proposed grey-MEREC and extended to the
MAIRCA for rankings. The criteria used in this study are presented in Figure 1 and are
explained as follows:

3.1. Evaluation Criteria
3.1.1. Carbon Emission (C1)

This considers all possible areas where there could be carbon emissions. Direct
emissions (C1−1) measure the immediate carbon emissions from fossil fuel combustion,
production process emissions, and emissions during logistics and transportation. It also
takes into account emissions from the waste disposal process, including illegal carbon
emissions. Indirect emissions (C1−2): This considers less apparent carbon emissions, such
as those resulting from electricity and heat consumption, as well as heat consumption
emissions. Other emission considerations (C1−3) may be overlooked, including emissions
from biofuel consumption, carbon emissions from office buildings, and commuting and
travel carbon emissions.
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Figure 1. Hierarchical Model for Enterprise Carbon Reduction (See Section 3.1 for more details).

3.1.2. Energy Efficiency (C2)

This measures how much work can be performed in relation to the energy used. Energy
savings (C2−1) refer to the proportion of renewable energy consumption, the green lighting
ratio, and energy consumption per unit output. Resource utilization (C2−2) measures how
our resources are managed, including the unit industrial water consumption, industrial
water reuse rate, and industrial solid waste management. Furthermore, the company’s
commitment to emission reduction Products (C2−3) can be observed through the product
carbon code and conduct, green packaging parameters, green supply chain and logistics
practices, and recycling guidelines.

3.1.3. Technological Advancement (C3)

The measure assesses the progress made in investing in new solutions that reduce
or eliminate emissions. Research and development (R&D) investment with application
(C3−1) is crucial for carbon reduction. The results of R&D can be observed through the
application of low-carbon technology and digital intelligence, as well as the reduction in
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the use of carbon-containing raw materials through investment in low-carbon technological
transformation. The emission reduction plan (C3−2) is evaluated through various factors,
such as the control of coal consumption, the adoption of emission reduction technologies,
the strategy for renewable energy use coupled with carbon capture and storage, and the
implementation of low-carbon construction practices for facilities.

3.1.4. Environment Management (C4)

It encompasses the integration of management science with engineering. The central
aspects include supply chain management (C4−1), which involves green supplier manage-
ment, examining the proportion of low-carbon purchases, and implementing preferential
policies that favour low-carbon suppliers. Additionally, the low carbon system (C4−2) plays
a vital role, encompassing components such as the low-carbon enterprise construction
system, greenhouse gas management system, energy management system, green pro-
curement and logistics management system, and low carbon monitoring and assessment
system. Moreover, adhering to national directly measured certification management (C4−3)
is crucial. This involves obtaining relevant environmental management system certifica-
tions, energy management system certifications, green product certifications, and regularly
conducting cleaner production audits.

3.1.5. Corporate Social Responsibility (C5)

This measure reflects how an enterprise supports its immediate community in the
effort towards carbon reduction. Organizational behavior (C5−1) is taken into account,
including practices such as low carbon consumption, implementing a carbon ticket mecha-
nism, and adopting low carbon office initiatives. Carbon public welfare (C5−2) involves the
participation of enterprises in public welfare projects that generate carbon sinks, corporate
initiatives towards public welfare, purchasing emission reductions through carbon sink
projects, and the development of carbon public welfare products. Lastly, information
disclosure (C5−3) considers whether the company is transparent in its dealings with carbon
emissions, as this can have an impact on the public. It involves aspects such as volun-
tary disclosure of complete information and objectives, along with the use of clear and
understandable language in disclosures for the public to comprehend.

3.2. Grey-MEREC

The grey system theory with the method based on the removal effects of crite-
ria (grey-MEREC) is a hybrid MCDM weighting method. In this paper, the interval-
grey number is used, and some of its basic operations involving two grey numbers are:
⊗P = [p, p] and ⊗Q = [q, q] are [64,65]:

• Addition: ⊗P +⊗Q = [p + q, q + q]
• Subtraction: ⊗P−⊗Q = [p− q, p− q]
• Multiplication: ⊗P×⊗Q = [min(pq, pq, pq, pq), max(pq, pq, pq, pq)]

• Division: ⊗P÷⊗Q = [p, p]×
[

1
q , 1

q

]
.

Based on the MEREC [33] approach, the main idea of grey-MEREC is to first obtain
the grey normalized decision matrix. The kernel is then obtained, and subsequently,
the logarithmic performance of the alternatives is calculated. Each criterion is then removed
to obtain the deviation for each alternative, which is used to determine the final weight.
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Step 1: Construct the grey decision matrix. The grey decision matrix is constructed
based on the grey performance values (xij) of alternative-i and criterion-j, where there are
m alternatives and n criteria. The grey decision matrix is then formed.

⊗X =



⊗x11 ⊗x12 · · · ⊗x1j · · · ⊗x1n
...

...
. . .

...
. . .

...
⊗xi1 ⊗xi2 · · · ⊗xij · · · ⊗xin

...
...

. . .
...

. . .
...

⊗xm1 ⊗xm2 · · · ⊗xmj · · · ⊗xmn

 (1)

Step 2: Normalize the grey decision matrix (⊗N). The normalization approach used
scales the grey decision matrix to a unit value, where ⊗nx

ij represents the elements of the
normalized decision matrix. For beneficial criteria (j ∈ B), where higher performance
values are better, and for cost criteria (j ∈ H), where lower performance values are better.

⊗nx
ij =

[
nx

ij, nx
ij

]
=



[min
l

xl j

xij
,

min
l

xl j

xij

]
if j ∈ B

[
xij

max
l

xl j
,

xij
max

l
xl j

]
if j ∈ H

(2)

Step 3: Calculate the kernel of the normalized decision matrix. This involves a
whitenization process to obtain crisp numbers from grey numbers. The elements of the
kernel matrix, K, are obtained using Equation (3).

kx
ij = (nx

ij + nx
ij)/2 (3)

Step 4: Calculate the overall performance of the alternatives (Si). This is achieved by
applying a non-linear logarithmic function, as described in Equation (4). The result is that
a smaller kernel value corresponds to a larger overall performance.

Si = ln

(
1 +

(
1
m ∑

j

∣∣∣ln(kx
ij

)∣∣∣)) (4)

Step 5: Calculate the performance of the alternatives by removing each criterion. When
each criterion-j is removed, it results in a set of performance results for each alternative,
denoted as m. The performance result set for the removed criterion is computed using
Equation (5).

S′ij = ln

(
1 +

(
1
m ∑

k,k 6=j
|ln(nx

ik)|
))

(5)

Step 6: Compute the summation of absolute deviations. This step is performed to
determine the effect of removing the overall performance obtained in Step 4 and the
performance of the removed criteria from Step 5. The computation is performed using
Equation (6).

Ej = ∑
i

∣∣∣S′ij − Si

∣∣∣ (6)

Step 7: Determine the final weights of the criteria. This involves calculating the local
weights and then the effective weights. The local weights represent the fractional contribu-
tion of each criterion to its higher-level weight, which contributes to the overall goal.

The local weight are calculated, then the effective weight are calculated. The local
weights make the factional contribution to its higher level weight that amount to the
overall goal.
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• The local weights are calculated using Equation (7).

w′j =
Ej

∑k Ek
(7)

• The effective weight is obtained by multiplying the local weight of the first-level
criteria with the local weight of the second-level criteria. Equation (8) represents
this calculation.

wj = w′p × w′p−q (8)

The final weight, grey-MEREC, can be used in conjunction with other MCDM evalua-
tion methods.

3.3. Grey-MAIRCA

Based on the multi-attributive ideal-real comparative analysis (MAIRCA) [66], the main
idea of the grey-MAIRCA is after constructing the grey decision matrix, the grey theoretical
ratings matrix and the grey real matrix are obtained, then the gap between them is com-
puted. The value of the criteria function used for ranking is determined from the total gap.
Lastly, the best alternative is determined based on the rankings.

Step 1: Construct the grey decision-making matrix (⊗X). This matrix is obtained
from a grey decision table and consists of the grey performance values for each alter-
native (i) based on the evaluation criteria (j). The elements of the grey decision matrix
(⊗xij; i =1, 2, . . . n; j = 1, 2, . . . m) represent the performance values, with n being the number
of criteria and m being the number of alternatives. The construction of the grey decision
matrix (⊗X) is defined by Equation (9).

⊗X =

C1 C2 · · · Cn
A1
A2
...

Am


⊗x11 ⊗x12 . . . ⊗x1n
⊗x21 ⊗x22 ⊗x2n

...
...

. . .
...

⊗xm1 ⊗xm2 . . . ⊗xmn

 (9)

Step 2: Define the preferences for the choice of alternatives, PAi . It is generally assumed
that the decision-makers (DMs) have neutral preferences towards all the alternatives. This
means that they have no preference for one alternative over the others. In other words,
the DMs have equal preference towards all the alternatives. This neutrality is expressed
using Equation (10), and it holds true as shown in Equation (11).

PAi =
1
m

;
m

∑
i=1

PAi = 1, i = 1, 2, . . . , m (10)

PA1 = PA2 = . . . = PAm (11)

Step 3: Calculate the elements of the theoretical ratings matrix (⊗Tp).

Tp =

w1 w2 · · · wn
PA1
PA2

...
PAm


tr11 tr12 · · · tr1n
tr21 tr22 · · · tr2n

...
...

. . .
...

trm1 trm2 · · · trmn

 (12)

Tp =
w1 w2 · · · wn

PAi

(
tp1 tp2 · · · tpn

) = (
PAi · w1 PAi · w2 · · · PAi · wn

)
(13)
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It should be noted that if the weights are grey values, then the resulting elements
would also be grey, leading to a grey theoretical ratings matrix, as shown in Equation (14).

⊗Tp =

⊗w1 ⊗w2 · · · ⊗wn
PA1
PA2

...
PAm


⊗tr11 ⊗tr12 · · · ⊗tr1n
⊗tr21 ⊗tr22 · · · ⊗tr2n

...
...

. . .
...

⊗trm1 ⊗trm2 · · · ⊗trmn

 (14)

Tp =
⊗w1 ⊗w2 · · · ⊗wn

PAi

(
⊗tp1 ⊗tp2 · · · ⊗tpn

) = (
PAi · ⊗w1 PAi · ⊗w2 · · · PAi · ⊗wn

)
(15)

Step 4: Define the elements of the real ratings matrix (Tr). This matrix is obtained by
multiplying the elements of the theoretical ratings matrix with the elements of the grey
decision matrix.

⊗Tr =

C1 C2 · · · Cn
A1
A2
...

Am


⊗tr11 ⊗tr12 · · · ⊗tr1n
⊗tr21 ⊗tr22 · · · ⊗tr2n

...
...

. . .
...

⊗trm1 ⊗trm2 · · · ⊗trmn

 (16)

In Equation (17) , beneficial criteria are calculated using the formula:

⊗trij =
[
trij, trij

]
= tpij ×

[(
xij − x−i
x+i − x−i

)
,

(
xij − x−i
x+i − x−i

)]
(17)

In Equation (18), non-beneficial (cost) criteria are calculated using the formula:

⊗trij =
[
trij, trij

]
= tpij ×

[(
xij − x+i
x−i − x+i

)
,

(
xij − x+i
x−i − x+i

)]
(18)

where ⊗xij = [xij, xij], obtained for from the grey decision matrix in Equation (9), x+i =

max(x1, x2, . . . xm) and x−i = min(x1, x2, . . . xm) representing the maximum and minimum
values of the upper and lower bound of observed criterion by alternatives.

Step 5: Calculate the total gap matrix (G). This matrix represents the difference between
the theoretical and real matrices. The elements of the gap matrix are obtained using an
arbitrary distance measure between two grey numbers. As the gap reduces, the alternative
tends towards the ideal alternative. When the gap is zero, the alternative is considered
ideal, which is the best. The gap matrix (G) is computed using Equation (19), the maximum
absolute difference between the upper and lower bounds of the grey numbers is taken as
the distance measure, denoted as max

i
|tpij − trij| for the upper bound and max

i
|tpij − trij|

for the lower bound.

G = | ⊗ Tp −⊗Tr| =


g11 g12 . . . g1n
g21 g22 . . . g2n

...
...

. . .
...

gm1 gm2 . . . gmn

 =


| ⊗ tp11 −⊗tr11| | ⊗ tp12 −⊗tr12| . . . | ⊗ tp1n −⊗tr1n|
| ⊗ tp21 −⊗tr21| | ⊗ tp22 −⊗tr22| . . . | ⊗ tp2n −⊗tr2n|

...
...

. . .
...

| ⊗ tpm1 −⊗trm1| | ⊗ tpm2 −⊗trm2| . . . | ⊗ tpmn −⊗trmn|

 (19)

where | ⊗ tpij −⊗trij| = max
i

[
|tpij − trij|, |tpij − trij|

]
represents the arbitrary distance be-

tween the elements of the theoretical and real matrices.
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Step 6: Calculate the final values of criteria functions (Qi) for each alternative. This is
achieved by summing the gaps for all criteria to obtain the total gap for each alternative.
These total gaps are then ranked to determine the final values of the criteria functions.

Qi =
n

∑
j=1

gij, i = 1, 2, . . . , m (20)

4. Result and Analysis

In this research, six heavy machinery companies have come together to form an
alliance with the common goal of decarbonization. Each company, referred to as Company-
one (A1) to Company-six (A6), has individually evaluated their decarbonization schemes
in order to identify the best practices and rank their performances. The evaluation process
involved six decision-makers (DM1 to DM6), who conducted visits and tours of the com-
panies. Following the visits, the decision-makers were provided with score sheets to grade
in percentage (0–100%) the performance of each company using the evaluation criteria
outlined in Section 3.1. Table 2 presents the scores given by the decision-makers to each
company, while Figure 2 displays the scatter plot of these scores. The steps described in
Section 3 were employed to evaluate the companies, and these steps are summarized in the
flowchart depicted in Figure 3.

Table 2. Scores obtained from decision makers (%).

Decision- Criteria (m)/ C1 C1−1 C1−2 C1−3 C2 C2−1 C2−2 C2−3 C3 C3−1 C3−2 . . . C5−3
Makers Companies (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) . . . (19)

DM1

A1 85 82 80 76 66 66 90 78 79 69 60 . . . 88
A2 99 85 75 78 66 66 89 73 75 66 62 . . . 98
A3 92 79 79 68 73 67 92 77 80 74 65 . . . 69
A4 94 77 86 76 68 68 82 82 80 73 67 . . . 92
A5 97 83 87 85 67 72 96 86 79 68 70 . . . 99
A6 94 80 79 92 72 70 84 70 75 62 62 . . . 94

DM2

A1 88 80 85 85 75 75 80 90 84 90 85 . . . 80
A2 97 95 80 90 95 90 80 95 99 95 90 . . . 95
A3 97 95 90 95 86 95 90 80 98 95 95 . . . 87
A4 95 95 95 95 95 90 95 85 96 95 90 . . . 88
A5 88 95 90 95 87 90 85 95 97 95 95 . . . 84
A6 86 85 80 75 89 85 90 85 88 90 90 . . . 93

DM3

A1 80 70 80 75 82 77 85 77 85 80 86 . . . 73
A2 83 73 75 80 75 85 80 75 80 75 83 . . . 76
A3 77 78 82 85 78 80 88 80 79 85 72 . . . 80
A4 79 80 77 81 83 79 78 83 73 82 79 . . . 82
A5 80 81 79 77 82 90 72 85 90 79 77 . . . 79
A6 81 85 80 88 81 83 77 88 82 81 76 . . . 89

DM4

A1 88 83 80 77 100 67 66 66 90 66 77 . . . 83
A2 89 84 77 79 67 78 77 64 77 68 78 . . . 89
A3 90 79 78 88 79 84 86 63 79 70 77 . . . 93
A4 79 85 85 80 81 82 87 60 69 80 80 . . . 89
A5 69 78 86 78 77 80 80 71 80 83 85 . . . 79
A6 92 80 83 81 73 75 79 80 81 81 82 . . . 73
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Table 2. Cont.

Decision- Criteria (m)/ C1 C1−1 C1−2 C1−3 C2 C2−1 C2−2 C2−3 C3 C3−1 C3−2 . . . C5−3
Makers Companies (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) . . . (19)

DM5

A1 80 80 80 80 70 60 80 70 70 80 80 . . . 60
A2 80 90 60 70 70 100 70 90 80 100 70 . . . 70
A3 80 80 70 90 90 70 60 90 90 100 80 . . . 80
A4 80 90 90 80 80 90 90 90 90 90 70 . . . 80
A5 90 90 80 90 70 90 90 90 80 70 80 . . . 90
A6 80 90 60 60 60 100 80 70 80 60 90 . . . 80

DM6

A1 97 78 68 85 67 78 76 68 86 67 87 . . . 96
A2 80 90 80 90 90 100 80 90 90 90 100 . . . 80
A3 98 95 98 98 97 99 95 96 96 97 97 . . . 97
A4 87 94 92 90 86 93 97 88 88 87 85 . . . 84
A5 75 88 79 86 85 83 84 86 86 88 85 . . . 86
A6 80 86 83 84 70 80 70 70 90 80 90 . . . 90
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Figure 2. Scatter plots of decision-maker scores about the companies.
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Figure 3. Flowchart for evaluating decarbonization scheme.

4.1. Grey-MEREC for Group DM Weighting

The the ratings of the the DMs are converted to a grey decision table as shown in
Table 3. Next, the weights of the criteria is obtained using the procedure in Section 3.2.

Step 1: Construct the grey decision matrix (⊗X). This is obtained from Table 3 using
Equation (1). To calculate the grey decision matrix, the ratings provided by the DMs
are used. Each row represents an alternative (company) and each column represents a
criterion. The values in the table are the grey performance values, denoted as ⊗xij, where i
corresponds to the alternative and j corresponds to the criterion.
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Table 3. Grey decision table.

Index (m) Companies/Criteria A1 A2 A3 A4 A5 A6

1 C1 [80, 97] [80, 99] [80, 98] [79, 95] [69, 97] [80, 94]
2 C1−1 [78, 83] [84, 95] [79, 95] [77, 95] [78, 95] [80, 90]
3 C1−2 [68, 85] [60, 80] [70, 98] [85, 95] [79, 90] [60, 83]
4 C1−3 [76, 85] [70, 90] [68, 98] [76, 95] [78, 95] [60, 92]
5 C2 [66, 100] [66, 95] [73, 97] [68, 95] [67, 87] [60, 89]
6 C2−1 [60, 78] [66, 100] [67, 99] [68, 93] [72, 90] [70, 100]
7 C2−2 [66, 90] [70, 89] [60, 95] [82, 97] [80, 96] [70, 90]
8 C2−3 [66, 90] [64, 95] [63, 96] [60, 90] [71, 95] [70, 85]
9 C3 [70, 90] [75, 99] [79, 98] [69, 96] [79, 97] [75, 90]

10 C3−1 [66, 90] [66, 100] [70, 100] [73, 95] [68, 95] [60, 90]
11 C3−2 [60, 87] [62, 100] [65, 97] [67, 90] [70, 95] [62, 90]
12 C4 [70, 97] [80, 100] [80, 97] [79, 97] [84, 90] [80, 93]
13 C4−1 [63, 88] [61, 90] [66, 100] [66, 96] [66, 100] [60, 80]
14 C4−2 [69, 87] [66, 95] [60, 99] [65, 100] [67, 90] [60, 95]
15 C4−3 [60, 98] [70, 85] [60, 99] [79, 98] [60, 93] [60, 85]
16 C5 [70, 89] [80, 92] [80, 98] [88, 95] [80, 93] [80, 95]
17 C5−1 [60, 86] [60, 87] [70, 98] [80, 98] [70, 86] [75, 92]
18 C5−2 [78, 90] [70, 96] [77, 99] [60, 98] [68, 95] [60, 92]
19 C5−3 [60, 96] [70, 98] [69, 97] [80, 92] [79, 99] [73, 94]

By following Equation (1), the grey decision matrix is constructed based on the ratings
provided by the decision makers.

⊗X =



[80, 97] [78, 83] [68, 85] [76, 85] [66, 100] . . . [60, 96]
[80, 99] [84, 95] [60, 80] [70, 90] [66, 95] . . . [70, 98]
[80, 98] [79, 95] [70, 98] [68, 98] [73, 97] . . . [69, 97]
[79, 95] [77, 95] [85, 95] [76, 95] [68, 95] . . . [80, 92]
[69, 97] [78, 95] [79, 90] [78, 95] [67, 87] . . . [79, 99]
[80, 94] [80, 90] [60, 83] [60, 92] [60, 89] . . . [73, 94]


Step 2: Normalize the grey decision matrix (⊗N). The normalized grey decision

matrix is constructed using the elements ⊗nx
ij, as given in Equation (2). Since all the

evaluation criteria are considered beneficial criteria (j ∈ B), the normalization process is
performed accordingly.

⊗N =



[0.711, 0.863] [0.928, 0.987] [0.706, 0.882] [0.706, 0.789] . . . [0.625, 1]
[0.697, 0.863] [0.811, 0.917] [0.75, 1] [0.667, 0.857] . . . [0.612, 0.857]
[0.704, 0.863] [0.811, 0.975] [0.612, 0.857] [0.612, 0.882] . . . [0.619, 0.87]
[0.726, 0.873] [0.811, 1] [0.632, 0.706] [0.632, 0.789] . . . [0.652, 0.75]
[0.711, 1] [0.811, 0.987] [0.667, 0.759] [0.632, 0.769] . . . [0.606, 0.759]

[0.734, 0.863] [0.856, 0.963] [0.723, 1] [0.652, 1] . . . [0.638, 0.822]


Step 3: Calculate the kernel of the normalized decision matrix. This step involves

transforming the grey numbers to white numbers using Equation (3).

K =



0.787 0.957 0.794 0.748 . . . 0.813
0.78 0.864 0.875 0.762 . . . 0.735
0.783 0.893 0.735 0.747 . . . 0.744
0.8 0.905 0.669 0.711 . . . 0.701

0.856 0.899 0.713 0.7 . . . 0.683
0.798 0.909 0.861 0.826 . . . 0.73


The kernel matrix, denoted as K, is obtained by applying the kernel transformation

to the elements of the normalized decision matrix. This transformation converts the grey
numbers to crisp (white) numbers, enabling further analysis and calculations.
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Step 4: Calculate the overall performance of the alternatives (Si). This is obtained
using Equation (4), where m = 19.

Si =
(
0.598 0.582 0.571 0.566 0.571 0.595

)T

Step 5: Compute the summation of absolute deviations. The absolute deviation is
computed using Equation (5).

Sij =



0.575 0.57 0.575 0.576 . . . 0.574
0.559 0.556 0.556 0.559 . . . 0.56
0.548 0.545 0.549 0.549 . . . 0.549
0.542 0.538 0.546 0.544 . . . 0.545
0.545 0.544 0.549 0.55 . . . 0.55
0.571 0.568 0.57 0.571 . . . 0.573


Step 5: Compute the summation of absolute deviations. The absolute deviation

is computed using Equation (6), which is the absolute deviation between the overall
performance values (Si) and the performance (S′ij) is calculated for each alternative.

Ej =
(
0.1432 0.162 0.1384 0.1338 . . . 0.1311

)
Step 6: Determine the final weights of the criteria. To determine the final weights of

the criteria, the local weights are calculated.
The local weights are obtained using Equation (7).

W ′j =
(
0.1988 0.3731 0.3187 0.3082 . . . 0.3247

)
Effective weights is obtained using Equation (8). The weights are

Wj =
(
0.1988 0.3731 0.3187 0.3082 . . . 0.3247

)
(21)

W1 = 0.1988, W2 = 0.0742, W3 = 0.0634, W4 = 0.0613, W5 = 0.1916, W6 = 0.0641,
W7 = 0.0622, W8 = 0.0653, W9 = 0.2057, W10 = 0.1011, W11 = 0.1046, W12 = 0.2015,
W13 = 0.0678, W14 = 0.0666, W15 = 0.0672, W16 = 0.2024, W17 = 0.0689, W18 = 0.0678,
W19 = 0.0657.

In other words, the criteria weight used in this research C1 is 0.1988 ; C1−1 is 0.0742;
C1−2 is 0.0634; C1−3 is 0.0613; C2 is 0.1916 C2−1 is 0.0641; C2−2 is 0.0622; C2−3 is 0.0653; C3
is 0.2057 C3−1 is 0.1011; C3−2 is 0.1046; C4 is 0.2015 C4−1 is 0.0678; C4−2 is 0.0666; C4−3 is
0.0672; C5 is 0.2024 C5−1 is 0.0689; C5−2 is 0.0678; C5−3 is 0.0657.

Based on the scores and importance assigned to the criteria, it is determined that the
most important criterion is direct carbon emission (C1−1), with the highest weight. This
criterion should receive the most attention and effort in pursuit of decarbonization. The
second most important criterion is energy saving (C2−1), which also deserves significant
attention in decarbonization efforts. On the other hand, the criteria of carbon public
warfare (C5−2) and information disclosure (C5−3) are deemed less important in the context
of decarbonization. These criteria should receive comparatively less effort and focus in the
pursuit of decarbonization objectives.

4.2. Grey-MAIRCA for Ranking Enterprise

Following the steps presented in Section 3.3 and using the weights obtained in Section 4.1,
the rankings of these six companies based on the DMs’ preferences are as follows:
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Step 1: Construct the grey decision-making matrix (⊗X). This matrix is constructed
using the last level of the hierarchical structure, based on Equation (9).

⊗X =



[78, 83] [68, 85] [76, 85] [60, 78] [66, 90] . . . [60, 96]
[84, 95] [60, 80] [70, 90] [66, 100] [70, 89] . . . [70, 98]
[79, 95] [70, 98] [68, 98] [67, 99] [60, 95] . . . [69, 97]
[77, 95] [85, 95] [76, 95] [68, 93] [82, 97] . . . [80, 92]
[78, 95] [79, 90] [78, 95] [72, 90] [80, 96] . . . [79, 99]
[80, 90] [60, 83] [60, 92] [70, 100] [70, 90] . . . [73, 94]


It should be noted that the grey decision matrix used for weighting in Equation (1) is

different from the grey decision matrix used in Equation (9) for ranking. The ranking matrix
excludes the first-level criteria as it is a latent value obtained from the second-level criteria.

Step 2: Define the preferences for the choice of alternatives ⊗PAi . In this paper,
the DMs are neutral, meaning they have no preference for the alternatives. Based on
Equation (10), for the 6 alternatives, PAi =

1
6 = 0.1667.

Step 3: Calculate the elements of the theoretical ratings matrix (Tp). This matrix is
obtained based on Equation (13), using the weights obtained in Section 3.2, as given in
Equation (22).

W = (0.074 0.063 0.061 0.064 0.062 0.065 0.101 0.105 0.068 0.067 0.067 0.069 0.068 0.066) (22)

The theoretical ratings is:

Tp = (1.237 1.056 1.021 1.068 1.036 1.088 1.685 1.743 1.129 1.110 1.119 1.148 1.130 1.096)× 10−2 (23)

Step 4: Define the elements of the real ratings matrix (Tr). This matrix is computed
using Equation (16).

⊗Tr =

C1−1 C1−2 · · · C5−3
A1
A2
...

A6


⊗tr1,1 ⊗tr1,2 · · · ⊗tr1,14
⊗tr2,1 ⊗tr2,2 · · · ⊗tr2,14

...
...

. . .
...

⊗tr6,1 ⊗tr6,2 · · · ⊗tr6,14


Since the criteria for evaluation are all beneficial, Equation (17) is used to calculate the

real ratings matrix (Tr).

⊗Tr =



[0.687, 4.122] [2.223, 6.948] [4.3, 6.719] . . . [0, 10.112]
[4.809, 12.365] [0, 5.559] [2.688, 8.063] . . . [2.809, 10.674]
[1.374, 12.365] [2.779, 10.561] [2.15, 10.213] . . . [2.528, 10.393]
[0, 12.365] [6.948, 9.727] [4.3, 9.407] . . . [5.618, 8.989]

[0.687, 12.365] [5.281, 8.338] [4.838, 9.407] . . . [5.337, 10.955]
[2.061, 8.931] [0, 6.392] [0, 8.6] . . . [3.652, 9.551]

× 10−3

Step 5: Calculate the total gap matrix (G). The gap is calculated using Equation (19).

G = | ⊗ Tp −⊗Tr| =



11.678 8.338 5.913 · · · 10.955
7.557 10.561 7.525 · · · 8.146

10.991 7.782 8.063 · · · 8.427
12.365 3.613 5.913 · · · 5.337
11.678 5.281 5.375 · · · 5.618
10.305 10.561 10.213 · · · 7.303

× 10−3
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Step 6: Calculate the final values of the criteria functions (Qi) by alternatives. This is
obtained using Equation (20).

Qi =
(
0.1449 0.1396 0.1390 0.1184 0.1217 0.1471

)T

Finally, sort and rank the companies as follows: A4 is in the 1st position, A5 is in the
2nd position, A3 is in the 3rd position, A2 is in the 4th position, A1 is in the 5th position,
and A6 is in the 6th position. In other words, company-four (A4) has the best scheme
in decarbonization.

4.3. Comparison of Using the Weighted Sum Model and TOPSIS

The weighted sum model (WSM) and the technique for order preference by similar-
ity to ideal solution (TOPSIS) were applied to verify the rankings and confirm the best
company. Both methods utilized white data, and the DMs’ points in Table 2 were aggre-
gated to construct a decision matrix. The MEREC weights in Equation (21) were used for
this comparison.

4.3.1. WSM for Ranking Enterprise

The weighted sum model (WSM), also known as the simple additive weighting (SAW)
method, is a linear aggregation of the normalized performance values of the alternatives
based on the weights of the criteria. It is computed using Equation (24).

AWSM
i =

n

∑
j=1

x∗ijwj, (24)

where x∗ij is the normalized performance value of the decision matrix. Here, x∗ij =
xij

max xij
,

which is beneficial criteria normalization.

X =



403 393 403 . . . 407
444 372 407 . . . 432
428 415 439 . . . 426
441 448 421 . . . 433
434 422 434 . . . 438
421 385 392 . . . 430

 (25)

X∗ =



0.908 0.877 0.918 . . . 0.929
1.000 0.830 0.927 . . . 0.986
0.964 0.926 1.000 . . . 0.973
0.993 1.000 0.959 . . . 0.989
0.977 0.942 0.989 . . . 1.000
0.948 0.859 0.893 . . . 0.982


AWSM =

(
0.893 0.946 0.963 0.978 0.964 0.915

)T

The alternative with the largest value is considered the best. Based on the WSM
rankings, A4 is in the 1st position, A5 is in the 2nd position, A3 is in the 3rd position, A2 is
in the 4th position, A6 is in the 5th position, and A1 is in the 6th position.

4.3.2. TOPSIS for Ranking Enterprise

The technique for order preference by similarity to ideal solution (TOPSIS) is a well-
known classical method that utilizes both the ideal and non-ideal solutions to determine the
best alternative. The TOPSIS method is chosen because of its wide acceptability. DMs are
very familiar with the computation, the use of vector normalization, and the dual-reference
points for evaluation, namely, the ideal solution and anti-ideal solution. The decision
matrix, as given in Equation (25), is normalized as a vector using Equation (26).
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x∗ij
xij√

∑n
i=1 x2

ij

(26)

Then, the normalized decision matrix is obtained as given in Equation (27).

X∗ =



0.384 0.395 0.395 . . . 0.388
0.423 0.373 0.399 . . . 0.412
0.408 0.417 0.430 . . . 0.407
0.420 0.450 0.413 . . . 0.413
0.413 0.424 0.426 . . . 0.418
0.401 0.387 0.384 . . . 0.410

 (27)

Next, the weighted normalization matrix X′ is computed, where each element of the
matrix is computed as x′ij = wj × x∗ij ,

X′ =



0.0285 0.0250 0.0242 . . . 0.0255
0.0314 0.0237 0.0245 . . . 0.0271
0.0302 0.0264 0.0264 . . . 0.0267
0.0312 0.0285 0.0253 . . . 0.0272
0.0307 0.0268 0.0261 . . . 0.0275
0.0297 0.0245 0.0236 . . . 0.0270

.

The ideal solution and anti ideal solution are obtained using Equation (28) and
Equation (29), respectively.

X+ =

{(
max

i
vij | j ∈ J+

)
,
(

max
i

vij | j ∈ J−
)
| i = 1, . . . , m

}
=
{

x+1 , . . . , x+j , . . . , x+n
}

(28)

X+ =
(
0.0314 0.0285 0.0264 . . . 0.0275

)
X− =

{(
max

i
vij | j ∈ J+

)
,
(

max
i

vij | j ∈ J−
)
| i = 1, . . . , m

}
=
{

x−1 , . . . , x−j , . . . , x−n
}

(29)

X− =
(
0.0285 0.0237 0.0236 . . . 0.0255

)
The distances of the alternatives from the ideal solution and the anti-ideal solution are

calculated using Equation (30) and Equation (31), respectively.

Si+ =

√√√√ n

∑
j=1

(
x′ij − x+j

)2
(30)

S+ =
(
0.0139 0.0083 0.0052 0.0039 0.0062 0.0121

)T

Si− =

√√√√ n

∑
j=1

(
x′ij − x−j

)2
(31)

S− =
(
0.0039 0.0101 0.0116 0.0140 0.0111 0.0074

)T

Lastly, the closeness values for each alternative are determined and ranked using
Equation (32).

Ci∗ =
Si−

(Si+ + Si−)
(32)

C+ =
(
0.2186 0.5499 0.6910 0.7812 0.6425 0.3791

)T
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According to the rankings obtained from the grey-MEREC-MAIRCA, WSM, and TOP-
SIS methods, the company with the highest closeness value is considered the best. The rank-
ings are as follows: A4 is in the 1st position, A3 is in the 2nd position, A5 is in the 3rd
position, A2 is in the 4th position, A6 is in the 5th position, and A1 is in the 6th position.

While the rankings obtained from the grey-MEREC-MAIRCA, WSM, and TOPSIS
methods might not be the same, it is noted that all three methods ranked Company-
four (A4) as the best. Additionally, all three methods ranked Company-two (A2) in the
fourth position, while Company-five (A5) is ranked in the second position by both the
grey-MEREC-MAIRCA and TOPSIS methods. Figure 4 illustrates the rankings from all
three methods. Furthermore, the Spearman’s rho (ρ) correlations, Kendall’s Tau B (τ)
correlations, weighted correlations (rw), and similarity coefficients (WS) [67] provided in
Table 4 indicates a strong correlation among the methods.

A1 A2 A3 A4 A5 A6

Grey-MEREC-MAIRACA WSM TOPSIS

1st

2nd

4th
3rd

5th

6th

Figure 4. Rankings comparison.

Table 4. Correlation of MCDM methods.

Correlation Grey-MEREC-MAIRCA WSM TOPSIS

Grey-MEREC-MAIRCA

Spearman’s rho –
Kendall’s Tau B –

Weighted Correlation (rw) –
WS-Coefficient –

WSM

Spearman’s rho 0.943 –
Kendall’s Tau B 0.867 –

Weighted Correlation (rw) 0.902 –
WS-Coefficient 0.885 –

TOPSIS

Spearman’s rho 0.886 0.943 –
Kendall’s Tau B 0.733 0.867 –

Weighted Correlation (rw) 0.976 0.927 –
WS-Coefficient 0.989 0.958 –

5. Conclusions

The challenge of global warming is faced by all of humanity, not just scientists and
engineers. Enterprises that provide goods and services should join the bandwagon to
champion the course of carbon reduction. Forming alliances by companies presents the
opportunity for synergistic benefits, including companies adopting the best practices of
the other companies, which is the ideal alternative. This paper evaluates and ranks six
enterprises’ decarbonization schemes using a new hybrid MCDM method based on as-
sessments provided by experts in the form of points. The proposed hybrid multi-criteria
decision-making (MCDM) method is named grey-MEREC-MAIRCA. The evaluation pro-
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cess begins by developing a hierarchical model to assess the performance of the companies.
Subsequently, decision makers (DMs) assign points to each company as performance values
for each criterion. As the points are subjective, a certain level of uncertainty is inherent
in group decision-making. To address this uncertainty in both weighting and ranking,
the grey system theory (GST) is utilized in the grey-MEREC-MAIRCA approach. Based
on the companies’ performance, as graded by the DMs using the grey-MEREC-MAIRCA
method, Company-four (A4) is ranked as the best in terms of decarbonization.

While it will be possible to objectively measure the performance of the companies,
such as the amount spent and budgeted for R&D (C3−1), some can only be measured as
a latent construct, for example, organization behavior (C5−1). The range to account for
uncertainty would be more precise if when objective measurements were used instead of
subjective measurements based on the scoring of points by the company given by the DMs.
Further studies can be performed to combine both subjective and objective assessment,
i.e., measuring the performance value of the companies and the MCDM weighting method.
Most importantly, researchers, industry practitioners, and policy makers should persist in
their efforts with more funding allocation towards reducing direct carbon emissions (C1−1).
Lastly, a longitudinal study of the companies on their contribution to the ultimate goal of
decarbonization can be conducted for the next several decades, preferably till the year 2060.
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Abbreviations
The following abbreviations are used in this manuscript:

ARAS Additive Ratio Assessment
AROMAN A Ranking Order Method Accounting for Two-Step Normalization
BESS Battery Energy Storage Systems
CoCoSo Combined Compromise Solution
COPRAS COmplex PRoportional ASsessment of alternatives
CPT Cumulative Prospect Theory
CRITIC Criteria Importance Through the Inter-criteria Correlation
DMs Decision-Makers
DNMA Double Normalization-Based Multiple Aggregation
EAMR Evaluation by an Area-based Method of Ranking
EVs Electric Vehicles
GRA Grey Relational Analysis
GST Grey System Theory
MAIRCA Multi-Attribute Ideal-Real Comparative Analysis
MARCOS Measurement Alternatives and

Ranking according to the Compromise Solution
MCDM Multi-Criteria Decision Making
MEREC Method based on the Removal Effects of Criteria
MULTIMOORA Multiplicative Multi-Objective Optimization by Ratio Analysis
NETs Negative Emission Technologies
PWA Power Weighted Average
q-ROFS Q-Rung Orthopair Fuzzy Set
SMART Simple Multi-Attribute Rating Technique Extended to Ranking
SSD Solid-State Drive
SVNN Single-Valued Neutrosophic
SWARA Stepwise Weight Analysis Ratio Assessment
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TOPSIS Technique for Order Preference by Similarity to Ideal Solution
WASPAS Weighted Aggregated Sum Product Assessment
VIKOR VIseKriterijumska Optimizacija I Kompromisno Resenje

(Multicriteria Optimization and Compromise Solution)
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