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Abstract: This paper addresses the issue of the conventional DGM(1, N) model’s prediction results not
taking into account the grey system theory pri1nciple of the “non-uniqueness of solutions”. Firstly, before
presenting the interval grey action quantity, the practical significance of grey action quantity is examined.
In the DGM(1, N) model, the grey action quantity is transformed into an interval grey action quantity.
Then, the calculation of the parameters uses the least squares method. A DGM(1, N,⊗c) model containing
interval grey action is then built, and meanwhile, the program code for DGM(1, N, ⊗c) is provided.
Lastly, the aforementioned model is used to forecast the hydroelectricity consumption of China. The
findings indicate that it produces more rational outcomes than the traditional DGM(1, N) model. Overall,
the research carries significant pragmatic implications for broadening the conceptual underpinnings of
multivariate grey forecasting models and enhancing their structural arrangement.
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1. Introduction

As the global phenomenon of the greenhouse effect continues to escalate, tackling
climate change has become an expeditious concern for nations worldwide [1]. To this end,
the Chinese government announced “Opinions on Fully and Accurately Implementing the
New Development Concept and Doing a Good Job in Carbon Peak and Carbon Neutrality
Work” in October 2021. This policy delineates the dual carbon objectives of accomplishing
carbon neutrality by 2060 and carbon peaking by 2030. In this context, hydroelectricity sig-
nifies a propitious and valuable option for supporting sustainable development strategies
due to its status as a clean and renewable energy source with abundant resources, mature
technology, and a reliable operation [2]. Hydroelectricity consumption is an essential
basis for water resource planning, development, and scheduling. Therefore, a rational
and precise prognostication of hydroelectricity consumption can furnish a hydroelectricity
resource development system with a reference point for planning, policy formulation, and
other pertinent considerations.

According to existing research, the forecasting models of hydroelectricity consumption
may be divided into two principal categories, namely statistical methods and machine
learning techniques. These statistical models comprise ARIMA and its improvements [3,4],
fuzzy Bayesian methods [5], and multiple regression models [6]. Machine learning ap-
proaches, such as artificial neural network models [7] and SVM [8], are also commonly
utilized for hydroelectricity generation and consumption forecasting. While both statistical
and machine learning models have significantly improved forecasting accuracy, they neces-
sitate data distributions that conform to model assumptions and require extensive sample
data. However, in real life, the cost and time constraints of data collection sometimes make
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it difficult to obtain sufficient data, and the grey system theory adequately addresses the
problem of modeling data from a limited sample size.

The grey system theory is an original Chinese doctrine created by Professor Deng,
which focuses on “small data, poor information” uncertainty systems, where “some infor-
mation is known, and some information is unknown” [9]. Scholars typically use multivari-
ate grey forecasting models to model predictions for real-world forecasting problems, with
the systematic variables being influenced by multiple factors [10]. The multivariate grey
prediction model, which treats all unknown elements as grey quantities and all known
factors as drivers of a system’s behavior, holds vital significance in the theory of grey
prediction. By introducing driving factors and grey action quantities, multivariate grey
prediction models provide more reasonable modeling mechanisms and are more consistent
with the structural ambiguity of grey systems, where “some information is known, and
some information is unknown”.

Traditional multivariate grey prediction models often suffer from jumping errors,
which can lead to inaccurate predictions. To address this issue, Xie [11] introduced the
DGM(1, N) model, which has gained widespread use for addressing related forecasting
problems due to its applicability for small data sets, ease of learning, and simple modeling
process. Moreover, researchers have continuously expanded and refined the conceptual
framework of the conventional DGM(1, N) model, leading to a multitude of innovative
research outcomes. These research results mainly include parameter optimization [12,13],
considering drive control [14,15], considering time lag characteristics [16,17], construction
of the exponential power model [18,19], time lag combined with linearity [20], time lag
combined with nonlinearity [21], fractional order modeling [22], and spatial proximity
effects [23]. These studies have illustrated that the employment of said models has the
potential to substantially boost the DGM(1, N) model’s forecasting precision. However,
these models produce number outputs, which do not align with the grey system’s tenet of
the “non-uniqueness of solutions”.

The grey systems theory recognizes that a multitude of internal and external factors
that occur erratically can influence the evolution and improvement of a system [24]. The
lack of a well-defined functional correlation between independent and dependent variables
presents difficulties in predicting the developmental trajectory of a system. As the scope of
grey forecasting models in real life expands, this emerging theoretical system needs to be
continuously optimized and improved with new practical problems. One key characteristic
of grey systems is that the available information about the current system may not uniquely
determine its future development, resulting in a non-unique solution for the grey prediction
model. However, traditional grey prediction models produce real numbers, contrary to
the tenet of the “non-uniqueness of solutions” in grey systems. In response to the above
problems, the GM(1, 1) has been improved by introducing an interval grey action measure,
which satisfies the “non-uniqueness of solutions” principle [25]. Existing research has
mainly focused on univariate forecasting models and has not investigated multivariate
forecasting models. Therefore, the objective of this research is to employ the DGM(1, N)
model to recover the interval uncertainty manifestation of the grey action c. Depending on
this, we propose a DGM(1, N, ⊗c) model, which utilizes the interval grey number with a
known possibility degree function as the output of both the simulation and prediction.

This paper aims to solve the problem of the simulation and prediction results of the
traditional DGM(1, N) model not satisfying the “non-uniqueness of solutions” principle.
This study explores the meaning of grey action quantity and recovers the interval uncer-
tainty form of grey action. Based on the DGM(1, N) model, a new model called DGM(1, N,)
is proposed, which incorporates interval grey action. The fundamental contribution of
this research is the suggestion of a new DGM(1, N, ⊗c) model that utilizes interval grey
action quantity. The new model’s calculation results conform to the “non-uniqueness of
solutions” principle and are represented as interval grey numbers. The proposed model is
put into effect for predicting the hydroelectricity consumption in China, and the outcomes
demonstrate that it is more rational than the traditional model.
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The succeeding sections of this essay shall be arranged in the subsequence. The
fundamental structure of the DGM(1, N) model is introduced in Section 2. Section 3
explores the interval grey action quantity “c” by thoroughly investigating the importance
of this particular quantity. In Section 4, we propose and derive a new DGM(1, N) that
incorporates the interval grey action quantity. Section 5 chooses the forecast of China’s
residential consumption as an example for a numerical experiment. We apply the proposed
model to forecast the hydroelectricity consumption of China in Section 6. Subsequently, we
evaluate the reasonableness of the outcomes by comparing and contrasting them. Finally,
in the conclusion section, we summarize the findings of this study.

2. DGM(1, N) Model

Definition 1. Let the sequence of system characteristics data be X(0)
1 =

(
x(0)1 (1), x(0)1 (2), · · · , x(0)1 (n)

)
.

And the correlation factor series are X(0)
i =

(
x(0)i (1), x(0)i (2), · · · , x(0)i (n)

)
, i = 2, 3, · · · , N. The

1-AGO sequence of X(0)
j is X(1)

j (j = 1, 2, · · · , N). Then

x(1)1 (k) = β1x1
1(k− 1) + ∑N

i=2 βix
(1)
i (k) + c (1)

is a multivariate discrete grey forecasting model, called DGM(1, N) for short [11].

Theorem 1. Let the sequences X(0)
j , X(1)

j be as shown in Definition 1, and let

B =


x(1)1 (1) x(1)2 (2) · · · x(1)N (2) 1
x(1)1 (2) x(1)2 (3) · · · x(1)N (3) 1

...
...

. . .
...

...
x(1)1 (n− 1) x(1)2 (n) · · · x(1)N (n) 1

, Y =


x(1)1 (2)
x(1)1 (3)

...
x(1)1 (n)

. (2)

Subsequently, the sequence of the parameter estimates β̂ = [β1, β2, · · · , c]T is obtained
through the approach of least squares, whereby:

(1) When n = N + 2, β̂ = B−1Y, |B| 6= 0,

(2) When n > N + 2, β̂ =
(

BT B
)−1BTY,

∣∣BT B
∣∣ 6= 0,

(3) When n < N + 2, β̂ = BT(BT B
)−1Y,

∣∣BT B
∣∣ 6= 0.

The proof process is shown in the literature [11].

Theorem 2. Let B, Y, β̂ be as described in Theorem 1 and β̂ = [β1, β2, · · · , c]T = (BT B)−1BTY.
Let x̂(1)1 (1) = x(0)1 (1), then, the time response equation for the system behavior sequence X(0)

1 isx̂(1)1 (k) = βk−1
1 x̂(1)1 (1) + ∑k

r=2 βk−r
1 ∑N

i=2 βix
(1)
i (r) + 1−βk−1

1
1−β1

c,

x̂(0)1 (k) = x̂(1)1 (k)− x̂(1)1 (k− 1)
k = 2, 3, · · · , n. (3)

Proof of Theorem 2. Using mathematical induction, we prove that, when k = 2, there is

x(1)1 (2) = β1 x̂(1)1 (1) + ∑N
i=2 βix

(1)
i (2) +

1− β1

1− β1
c = β1x(1)1 (1) + ∑N

i=2 βix
(1)
i (2) + c. (4)

The conclusion is correct.
Assume that the conclusion holds when k = m− 1, that is
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x̂(1)1 (m− 1) = βm−2
1 x̂(1)1 (1) + βm−3

1 ∑N
i=2 βix

(1)
i (2) + · · ·+ ∑N

i=2 βix
(1)
i (m− 1) +

1− βm−2
1

1− β1
c. (5)

According to Equation (1), when k = m

x(1)1 (m) = β1x(1)1 (m− 1) + ∑N
i=2 βix

(1)
i (m) + c. (6)

When Equation (5) is substituted into Equation (6), it results in simplification:

x̂(1)1 (m) = β1

[
βm−2

1 x̂(1)1 (1) + βm−3
1 ∑N

i=2 βix
(1)
i (2) + · · ·+ ∑N

i=2 βix
(1)
i (m− 1) + 1−βm−2

1
1−β1

c
]

+∑N
i=2 βix

(1)
i (m) + c

= βm
1 x̂(1)1 (1) + βm−2

1 ∑N
i=2 βix

(1)
i (2) + · · ·+ ∑N

i=2 βix
(1)
i (m) +

1−βm−1
1

1−β1
c.

(7)

From the above equation, the conclusion remains applicable even in the event of
k = m. Therefore, it is possible to state that the equation describing the time response for
the system behavior sequence X(0)

1 is Equation (3). �

3. The Interval Grey Number

The DGM(1, N) model comprises several essential parameters. The development
coefficient, β1, is one such parameter. Another crucial parameter is the driver term, which
is denoted by ∑N

i=2 βix
(1)
i (k), where βi is the driving coefficient. The parameter c is the grey

action quantity. The parameter c is particularly noteworthy, as it reflects the comprehensive
impact of various unknown and complicated elements of the system. Nevertheless, the
model ignores the uncertainty of c and treats c as a grey quantity for calculation, leading to
unique results.

In the field of cybernetics, each input variable corresponds to a unique output variable,
where the input variable represents the “cause” and the output variable represents the
“effect”. Figure 1 illustrates the relationship between the system inputs and the output
results of the multivariate discrete grey forecasting model. Specifically, the driver term and
grey action quantity c are considered to be the system’s causes, with c representing the grey
cause and the output variable x(1)1 (k) representing the white fruit [25]. The computation
of the model’s parameters β̂ = [β1, β2, · · · , c]T is carried out through the least squares
approach, as stated in Theorem 1. These parameters are computed as numbers. However,
the grey action quantity c represents the system’s combined effect of uncertainty and
complexity [26], which is essentially grey uncertainty and should be conveyed as a grey
number of the form. Therefore, reducing c to the shape of an actual number is a simplifying
treatment under the condition of incomplete information. The grey action c is estimated
and represented by the DGM(1, N) model as a deterministic actual number, resulting in a
unique grey prediction result, which violates the tenet of the “non-uniqueness of solutions”
in the circumstance of insufficient and imprecise information. The grey action c in the
DGM(1, N) model is estimated and represented as a deterministic actual number.

This study aims to develop a novel model in complex systems that utilizes the interval
grey number pattern of c. Since c is an interval grey number, it follows that the DGM(1, N)
model’s results should be expressed as interval grey numbers. This further realizes the
non-uniqueness of the calculation results of the model under uncertain conditions.

In cybernetics, inputs and outputs have a one-to-one correspondence. At different
points in time, the magnitude of the grey action quantity varies. Therefore, c2, c3, · · · ,
and cn are not equal, that is, c2 6= c3 6= · · · 6= cn [27]. Figure 2 illustrates the relationship
between the inputs and outputs of the DGM(1, N) model with different values of c. The
parameter c in Theorem 1 approximately represents the grey action c2, c3, · · · , cn, which
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ignores the differences in the system’s information at different points in time. The results
based on Theorem 1 are approximate solutions. Therefore, this paper will fully use the grey
action quantity’s information by restoring the grey number format within a known interval.
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The grey action quantity’s value may be calculated using formulas for c2, c3, · · · , cn
based on Equation (1) when k is a different value.

c2 = x(1)1 (2)− β1x(1)1 (1)−∑N
i=2 βix

(1)
i (2)→ k = 2

c3 = x(1)1 (3)− β1x(1)1 (2)−∑N
i=2 βix

(1)
i (3)→ k = 3

...
cn = x(1)1 (n)− β1x(1)1 (n− 1)−∑N

i=2 βix
(1)
i (n)→ k = n

. (8)
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Let c = { c2, c3, · · · , cn} be the sequence of the grey action quantities of the DGM(1, N)
model. We define cmax as the set cmax = {c2, c3, · · · , cn}, and cmin as cmin = {c2, c3, · · · , cn}.
The grey action quantity, denoted by ⊗c ∈ [cmin, cmax], is represented as an interval grey
number. The grey system theory employs the function of a possibility degree, which
serves to express the probability of a grey number adopting various values within its
domain of greyness. Alternatively, it indicates the likelihood of a precise value being the
authentic representation of a grey number, symbolized by fk(x) [28]. It is probable that
the representation of the interval grey number’s “true value,” usually denoted by ⊗̃k, is
achieved by fully accounting for the available information. If the interval grey action
⊗c ∈ [cmin, cmax] has a larger possible degree function, fk(xt) corresponds to a point xt
within its grey confines. The greater the probability that xt will be true, the closer xt is to
⊗̃k. The “kernel” of the interval grey number is the projection point on the X-axis of the
center of gravity of the closed geometry formed by its possible degree function [29].

According to the interpretation of the possible degree function [26], Figure 3 displays
the possible degree function of⊗c ∈ [cmin, cmax]. It is possible to account for the uncertainty
of the system inputs and adhere to the grey theory principle of the “non-unique solutions”
by using the interval grey action amount.
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4. Construction of the DGM(1, N, ⊗c) Model
4.1. DGM(1, N, ⊗c) Model

Definition 2. Assume the sequences X(0)
j , X(1)

j are as defined in Definition 1, β1, βi are as shown

in Theorem 1, ⊗c ∈ [cmin, cmax] is the grey action quantity, P = [β1, β2, . . . , βN , c⊗]
T is the grey

number parameter column, denoted

x(1)1 (k) = β1x(1)1 (k− 1) + ∑N
i=2 βix

(1)
i (k) +⊗c (9)

as the DGM(1, N, ⊗c) model with grey action quantities, referred to as the DGM(1, N, ⊗c) model.
⊗c ∈ [cmin, cmax] are grey quantities whose the possibility degree function is a triangle with the
vertex c.

Theorem 3. Let the sequences X(0)
j , X(1)

j , βi, and ⊗c be as shown in Definition 2, then

(1) Assuming x̂(1)1 (1) = x(0)1 (1) is the starting value, the DGM(1, N, ⊗c) model’s time response
equation is

x̂(1)1min
(k) = βk−1

1 x̂(1)1 (1) + ∑k
r=2 βk−r

1 ∑N
i=2 βix

(1)
i (r) +

1− βk−1
1

1− β1
cmin, (10)
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x̂(1)1mid
(k) = βk−1

1 x̂(1)1 (1) + ∑k
r=2 βk−r

1 ∑N
i=2 βix

(1)
i (r) +

1− βk−1
1

1− β1
c, (11)

x̂(1)1max
(k) = βk−1

1 x̂(1)1 (1) + ∑k
r=2 βk−r

1 ∑N
i=2 βix

(1)
i (r) +

1− βk−1
1

1− β1
cmax (12)

(2) Its cumulative reduction equation is

x̂(0)1min
(k) = x̂(1)1 (k)− x̂(1)1 (k− 1)

= βk−2
1 x̂(1)1 (β1 − 1) +

N
∑

i=2
βix

(1)
i (k)− βk

1cmin, k = 2, 3, · · · , n.
(13)

x̂(0)1mid
(k) = βk−2

1 x̂(1)1 (β1 − 1) +
N

∑
i=2

βix
(1)
i (k)− βk

1c, k = 2, 3, · · · , n. (14)

x̂(0)1max
(k) = βk−2

1 x̂(1)1 (β1 − 1) +
N

∑
i=2

βix
(1)
i (k)− βk

1cmax, k = 2, 3, · · · , n. (15)

The DGM(1, N, ⊗c) model extends the DGM(1, N) model, obtained by expanding c
from a number to an interval grey number ⊗c. This is illustrated by the equation derived
from Theorem 3. This model has several characteristics due to the addition of interval grey
action quantity, including:

(1) The structure of the DGM(1, N, ⊗c) model incorporates the characteristics of grey
numbers. In this model, ⊗c is regarded as an interval grey number with a known
possibility function ⊗c ∈ [cmin, cmax], thus enabling the uncertainty feature.

(2) The DGM(1, N, ⊗c) model calculation results are interval grey numbers ⊗(k). Its
results are non-unique within an uncertain system, thus satisfying the tenet of the
“non-uniqueness of solutions”.

(3) When the possible degree function for ⊗c has the shape of a triangle, this reduces the
grey domain and narrows the range of possible true values. The maximum possible
value of ⊗c is ⊗̃c = c, and the largest possible value of the associated interval grey
number ⊗(k) is ⊗̃(k) = x̂1mid(k). The simulation results of the DGM(1, N) model
are included, demonstrating the DGM(1, N, ⊗c) model’s compatibility. The findings
of the interval grey number acquired using the DGM(1, N, ⊗c) model are judged
to be more reliable than the actual numerical values obtained using the traditional
model. Therefore, this model can aid decision makers in comprehending the future
advancement of the subject.

4.2. Modeling Steps of DGM(1, N, ⊗c) Model

The modeling procedures for the DGM(1, N, ⊗c) model with grey action quan-
tity are explained below, in conjunction with the modeling and analysis methodology
mentioned above.

Step 1: The calculation of the grey correlation. Firstly, we calculate the correlation
between the dependent and independent variables. Subsequently, taking into consideration
the magnitude of the correlation, we ascertain the sequence of independent factors that are
strongly correlated.

Step 2: Data processing. The dimensionless processing of the raw data, followed by
their first-order cumulative series.

Step 3: Parameter estimation. Using Equation (9), we create the DGM(1, N, ⊗c) model
and estimate its parameters according to Theorem 1.

Step 4: The construction of the interval grey action quantity. We calculate the model’s
parameters according to Theorem 1 and combine them with Equation (8) to obtain a range
of values for the interval grey action quantity ⊗c.
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Step 5: Calculating the simulation and prediction values. Combining the parameter
values from Step 4 and Equations (13)–(15) yields the model’s time response equation,
which is then simulated and predicted.

Step 6: The analysis of the results. We analyze the reasonableness of the results using
the given computations.

In summary, Figure 4 depicts the flowchart for modeling the DGM(1, N, ⊗c) model,
and the DGM(1, N, ⊗c) model’s code is available from the following link: https://github.
com/HongtaoRen/GreyPrediction (accessed on 19 June 2023).

Systems 2023, 11, x FOR PEER REVIEW  8  of  16 
 

 

consideration the magnitude of the correlation, we ascertain the sequence of independent 

factors that are strongly correlated. 

Step 2: Data processing. The dimensionless processing of the raw data, followed by 

their first-order cumulative series. 

Step  3: Parameter  estimation. Using Equation  (9), we  create  the DGM(1, N,  ⊗  ) 

model and estimate its parameters according to Theorem 1. 

Step 4: The construction of the interval grey action quantity. We calculate the model’s 

parameters according to Theorem 1 and combine them with Equation (8) to obtain a range 

of values for the interval grey action quantity ⊗ . 

Step 5: Calculating the simulation and prediction values. Combining the parameter 

values  from Step 4 and Equations  (13)–(15) yields  the model’s  time response equation, 

which is then simulated and predicted. 

Step 6: The analysis of the results. We analyze the reasonableness of the results using 

the given computations. 

In summary, Figure 4 depicts the flowchart for modeling the DGM(1, N, ⊗ ) model, 

and  the  DGM(1,  N,  ⊗   )  model’s  code  is  available  from  the  following  link: 

https://github.com/HongtaoRen/GreyPrediction (accessed on 1 July 2023). 

Start

Collect raw data sequence

Whether the correlation between the dependent 
and independent variables is satisfied?

End

Calculation of grey correlation

Data processing

Parameter estimation

Construction of interval grey action quantity

Calculating simulation and prediction values

Analysis of the results

N

Y

 

Figure 4. Flowchart of DGM(1, N, ⊗ ) model. 

5. Numerical Experiment 

This study focuses on the total electricity consumption of China as the subject of the 

numerical  validation. The GDP,  total population,  total  energy  consumption,  and  con-

sumption  level  of  residents  are  selected  as  the primary  factors. The data  on  the  total 

Figure 4. Flowchart of DGM(1, N, ⊗c) model.

5. Numerical Experiment

This study focuses on the total electricity consumption of China as the subject of the
numerical validation. The GDP, total population, total energy consumption, and consumption
level of residents are selected as the primary factors. The data on the total electricity consump-
tion of China are sourced from the China Electricity Council (https://cec.org.cn/) (accessed on
1 June 2023), while the data on GDP, total population, total energy consumption, and residents’
consumption level are obtained from the China Statistical Yearbook. A grey correlation analysis
is utilized to screen the main influencing factors, with the correlation threshold set to 0.6.
Based on the results of the correlation calculation, GDP and total energy consumption are
identified as independent variables. To better verify the model’s performance, the sample data
are divided into two parts in this paper. The first nine years (2010–2018) are used for the model
construction, and the last three years (2019–2021) are used for the model prediction. The

https://github.com/HongtaoRen/GreyPrediction
https://github.com/HongtaoRen/GreyPrediction
https://cec.org.cn/
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aforementioned data are used to construct the DGM(1, N, ⊗c) model and the calculation
results are presented in Table 1.

Table 1. Actual data and various simulation and prediction values.

k. x(0)1 x̂(0)1min x̂(0)1max x̂(0)1mid

k = 2 46,928 46,026.27087 47,839.70479 46,985.47378
k = 3 49,591 50,522.05199 49,249.53788 49,848.96475
k = 4 53,223 52,169.98529 53,062.92776 52,642.30083
k = 5 55,233 55,161.59802 54,535.00674 54,830.16704
k = 6 55,500 56,162.90393 56,602.59254 56,395.47408
k = 7 59,198 59,404.07514 59,095.53896 59,240.87714
k = 8 63,077 63,461.78291 63,678.28743 63,576.30143
k = 9 69,163 67,271.10431 67,119.17980 67,190.74493
k = 10 72,255 70,163.04833 70,269.65606 70,219.43772
k = 11 75,110 71,001.85391 70,269.65606 70,962.28461
k = 12 83,128 80,571.45061 80,623.94476 80,599.21704

Utilizing the aforementioned calculation outcomes, Figure 5 depicts the distribution
of the total electricity consumption of China, along with the associated simulation and
prediction data.
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The total electricity consumption of China is influenced by various factors, and since
the information known in real life cannot uniquely determine the future development of the
system, its prediction results should appear nonunique. According to the results of Table 1
and Figure 5, the simulation and prediction results derived from the DGM(1, N, ⊗c) model
are interval grey numbers, which are consistent with the principle of the “non-uniqueness
of solutions” in the context of incomplete information in the grey system theory. The new
model’s architecture fulfills the essential characteristics of uncertainty. According to the
calculation results of DGM(1, N, ⊗c) in Table 1 and Figure 5, the results obtained from
the kernel of the interval grey action are the calculation results of the DGM(1, N) model.
However, because the new model is an extended model of the DGM(1, N) model, affected
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by the modeling effect of the DGM(1, N) model, the results of the new model in recent
years do not contain actual data, and there are certain errors.

6. Case Study

Previous literature studies [30–34] have identified several factors that influence hydro-
electricity consumption, such as economic development level, the scale of hydroelectricity
development, demographic factors, and the consumption structure of the population. Con-
sidering the accessibility and practicality of the data, this study employs GDP to represent
economic development level, total population to represent demographic factors, hydro-
electricity production to represent the scale of hydroelectricity, and the consumption level
of the population to represent the structure of residential consumption. The data on the
hydroelectricity consumption of China and the factors influencing it for 2010–2021 are
shown in Table 2, which were obtained from the China Statistics Yearbook and BP Statistics
Review of World Energy. The consumption of hydroelectricity (EJ) is recorded as X1. The
GDP (billion yuan), hydroelectricity production (million tons), population (10,000 people),
and consumption level of the population are recorded as X2, X3, X4, and X5 in that order.
As the difference in magnitude between different indicators can affect the modeling effects
of the model, all the data are dimensionless before modeling. A validation process is carried
out using a dataset divided into two parts to assess the efficacy of the model in this research.
Specifically, the first nine years of data (2010–2018) are utilized to construct the model, and
the last three years (2019–2021) are used for the model forecasting.

Table 2. The hydroelectricity consumption of China and its explanatory variables from 2010 to 2021.

Year Hydroelectricity Consumption
X1

GDP
X2

Hydroelectricity Production
X3

Population
X4

The Consumption
Level of the Population

X5

2010 7.11 412,119.2 711.38 134,091 10,575
2011 6.83 487,940.2 688.05 134,916 12,668
2012 8.52 538,580 862.79 135,922 14,074
2013 8.93 592,963.2 909.61 136,726 15,586
2014 10.34 643,563.1 1059.69 137,646 17,220
2015 10.81 688,858.2 1114.52 138,326 18,857
2016 11.11 746,395.1 1153.27 139,232 20,801
2017 11.16 832,035.9 1165.07 140,011 22,969
2018 11.42 919,281.1 1198.89 140,541 25,245
2019 12.08 986,515.2 1272.54 141,008 27,504
2020 12.50 1,015,986.2 1321.71 141,212 27,438
2021 12.25 1,143,669.7 1300 141,260 31,072

Step 1: The calculation of the grey correlation. As the strength of each factor’s impact
on the main system behavior sequence varies, to avoid redundancy of the influencing
factor variables, the degree of correlation between each influencing factor variable and the
main system behavior variable was first calculated using a grey correlation analysis before
modeling. Moreover, this was used to finally decide the model’s independent variables. A
higher grey correlation degree indicates a stronger association between the variables. We
chose a correlation threshold of 0.6 to determine the model’s independent variables. Any
influencing factor with a correlation degree greater than 0.6 was chosen as an independent
variable for the modeling. Let the correlation degree between X1 and the independent
variables X2, X3, X4, and X5 be γ

(
X(0)

1 (k), X(0)
p (k)

)
. The formula for calculating the grey

correlation degree [9] is when p = 2, 3, 4, 5.

γ
(

x(0)1 (k), x(0)p (k)
)
=

min
p

min
k

∣∣∣x(0)1 (k)− x(0)p (k)
∣∣∣+ ξ

max
p

max
k

∣∣∣x(0)1 (k)− x(0)p (k)
∣∣∣∣∣∣x(0)1 (k)− x(0)p (k)

∣∣∣+ ξ
max

i
max

k

∣∣∣x(0)1 (k)− x(0)p (k)
∣∣∣ . (16)

γ
(

X(0)
1 (k), X(0)

p (k)
)
=

1
n ∑n

k=1 γ
(

x(0)1 (k), x(0)p (k)
)

. (17)
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In Equation (16), the resolution factor ξ is usually taken as 0.5. Using Equations (16) and (17),
the correlations of the influencing factors were calculated as γ12 = 0.6447, γ13 = 0.9091,
γ14 = 0.5855, and γ15 = 0.5874. X2 and X3 had a strong correlation with X1, and can be
classified as strongly correlated factors. Therefore, the variables X2 and X3 were chosen for
the modeling.

Step 2: The dimensionless processing of the raw data according to the selected vari-
ables to obtain a sequence of characteristic system data and relevant factors. Subsequently,
Table 3 presents the outcomes of calculating the cumulative sequence of the first order.

Table 3. The calculation results of x(0)j (k) after dimensionless processing and x(1)j (k).

k. x(0)1 (k) x(0)2 (k) x(0)3 (k) x(1)1 (k) x(1)2 (k) x(1)3 (k)

k = 1 1 1 1 1 1 1
k = 2 0.96 1.18 0.97 1.96 2.18 1.97
k = 3 1.20 1.31 1.21 3.16 3.49 3.18
k = 4 1.26 1.44 1.28 4.42 4.93 4.46
k = 5 1.45 1.56 1.49 5.87 6.49 5.95
k = 6 1.52 1.67 1.57 7.39 8.16 7.52
k = 7 1.56 1.81 1.62 8.95 9.97 9.14
k = 8 1.57 2.02 1.64 10.52 11.99 10.78
k = 9 1.61 2.23 1.69 12.13 14.22 12.47

Step 3: Solve for the model parameters. Based on Theorem 1, the matrices B and Y
may be derived as follows

B =



1 2.18 1.97 1
1.96 3.49 3.18 1
3.16 4.93 4.46 1
4.42 6.49 5.95 1
5.87 8.16 7.52 1
7.39 9.97 9.14 1
8.95 11.99 10.78 1
10.52 12.22 12.47 1


, Y =



1.96
3.16
4.42
5.87
7.39
8.95

10.52
12.13


The parameter column β̂ can be obtained from β̂ = [β1, β2, . . . , c]T as

β̂ = [β1, β2, . . . , c]T =
(

BT B
)−1

BTY =


−0.2094
−0.0494
1.2149
−0.1115


Step 4: The construction of the interval grey action volume ⊗c ∈ [cmin, cmax]. As seen

from Definition 1, the data for the development factor β1 and the driving term factors βi,
x(0)i (k), and x(1)i (k) are known.

According to Equation (8), the amount of grey action ck at this point k is obtained as

Cs = { c2, c3, · · · , c9}
= {−0.1162,−0.1204,−0.0930,−0.1122,−0.1134,−0.1138,−0.1096,−0.1138}

Then
cmax = max{ c2, c3, · · · , c9} = −0.0930;

cmin = min{ c2, c3, · · · , c9} = −0.1204.
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Therefore, the interval grey action quantity ⊗c ∈ [cmin, cmax] can be expressed as

⊗c ∈ [−0.1204,−0.0930], ⊗̃c = c = −0.1115

Step 5: Calculating the simulation and prediction values. Based on Theorem 2 and
the vector P = [β1, β2, . . . , c⊗]

T , when k = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 the calculations for
x̂(0)1min

, x̂(0)1max
and x̂(0)1mid

are presented in Table 4.

Table 4. Actual data and various simulation and prediction values.

k. x(0)1 x̂(0)1min x̂(0)1max x̂(0)1mid

k = 2 6.83 6.795522 6.9904382 6.858557
k = 3 8.52 8.568377 8.5275547 8.555175
k = 4 8.93 8.756065 8.7646151 8.758830
k = 5 10.34 10.488537 10.486746 10.487958
k = 6 10.81 10.778083 10.778458 10.778205
k = 7 11.11 11.100164 11.100085 11.100139
k = 8 11.16 11.131717 11.131734 11.131723
k = 9 11.42 11.483249 11.483246 11.483248
k = 10 12.08 12.217202 12.217211 12.217210
k = 11 12.50 12.643550 12.64355 12.643551
k = 12 12.25 12.182753 12.182755 12.182754

Then

⊗(2) ∈ [6.795522, 6.9904382], x̂(0)1 (2) = ⊗̃(2) = 6.858557;
⊗(3) ∈ [8.5275547, 8.568377], x̂(0)1 (3) = ⊗̃(3) = 8.758830;
⊗(4) ∈ [8.756065, 8.7646151], x̂(0)1 (4) = ⊗̃(4) = 8.758830;
⊗(5) ∈ [10.486746, 10.488537], x̂(0)1 (5) = ⊗̃(5) = 10.487958;
⊗(6) ∈ [10.778083, 10.778458], x̂(0)1 (6) = ⊗̃(6) = 10.778205;
⊗(7) ∈ [11.100085, 11.100164], x̂(0)1 (7) = ⊗̃(7) = 11.100139;
⊗(8) ∈ [11.131717, 11.131734], x̂(0)1 (8) = ⊗̃(8) = 11.131723;
⊗(9) ∈ [11.483246, 11.483249], x̂(0)1 (9) = ⊗̃(9) = 11.483248;
⊗(10) ∈ [12.217202, 12.217211], x̂(0)1 (10) = ⊗̃(10) = 12.217210;
⊗(11) ∈ [12.643550, 12.64355], x̂(0)1 (10) = ⊗̃(10) = 12.643551;
⊗(12) ∈ [12.182753, 12.182755], x̂(0)1 (11) = ⊗̃(11) = 12.182754

Step 6: The analysis of the rationality of the results. Figure 6 displays the raw data
along with the various simulated and predicted data, based on the calculations presented
above. Before illustrating the model’s reasonableness as demonstrated in this paper, an
analysis of the inadequacies associated with the DGM(1, N) model for simulating the
hydroelectricity consumption of China was performed.

The parameter c signifies the combined impact of numerous intricate and uncertain
factors in the traditional DGM(1, N) model, thereby rendering it intrinsically uncertain
and necessitating its representation as a grey number. Nonetheless, when applying the
DGM(1, N) model to a specific system, parameter c is determined through the least squares
method, resulting in a unique numerical value. This approach neglects the grey number
action quantity’s uncertainty characteristics, resulting in a less reliable simulation. As
a grey prediction model, the DGM(1, N) model operates with incomplete information
and reveals the complexity and variability of a system’s influencing factors. The grey
system theory’s principle of the “non-uniqueness of solutions” indicates that solutions for
incomplete information and uncertainty are not unique. Consequently, the DGM(1, N)
model’s simulation and prediction results should also be non-unique [27].



Systems 2023, 11, 394 13 of 16Systems 2023, 11, x FOR PEER REVIEW  13  of  16 
 

 

 

Figure 6. Comparisons of raw data with simulation and prediction data. 

The parameter  c  signifies the combined impact of numerous intricate and uncertain 

factors  in the traditional DGM(1, N) model,  thereby rendering  it  intrinsically uncertain 

and necessitating its representation as a grey number. Nonetheless, when applying the 

DGM(1, N) model  to  a  specific  system,  parameter  c   is determined  through  the  least 

squares method, resulting in a unique numerical value. This approach neglects the grey 

number action quantity’s uncertainty characteristics, resulting  in a  less reliable simula-

tion. As a grey prediction model, the DGM(1, N) model operates with incomplete infor-

mation and reveals the complexity and variability of a system’s influencing factors. The 

grey system theory’s principle of the “non-uniqueness of solutions” indicates that solu-

tions  for  incomplete  information  and  uncertainty  are  not  unique.  Consequently,  the 

DGM(1, N) model’s simulation and prediction results should also be non-unique [27]. 

This paper calculates and compares grey action quantities at distinct time points to 

obtain the representation of the interval grey action amount  c  [25]. A model known as 

DGM(1, N, ⊗ ) is constructed, taking into consideration the aforementioned information. 

The  aforementioned model  enhances  the DGM(1, N) model’s  rationality  through  the 

means below. 

(1) The proposed model’s architecture fulfills the critical features of uncertainty that are 

typically  associated with  grey  prediction models.  In  this model,  the  grey  action 

amount  is  represented by an  interval grey number  that has a  foregone possibility 

function. The model introduces the notion of interval grey action, facilitating the res-

titution of the interval grey number form of  c  in situations where the information is 

incomplete.  Furthermore,  it  also  achieves  a  compartmentalized  structure  distinct 

from the DGM(1, N) model. 

(2) The proposed model’s simulation and prediction outcomes satisfy the “non-unique-

ness of solutions” principle. This model produces a sequence of interval grey num-

bers instead of a singular numerical outcome, which distinguishes it from the con-

ventional DGM(1, N) model. 

(3) The proposed model is consistent with the “least information” tenet of the grey sys-

tems theory. This model can effectively utilize the information on grey quantities at 

various time points. In contrast, the conventional model estimates the grey effect us-

ing the least squares approach, which ends up as an actual number, a simplification 

that results in the omission of important information.   

Figure 6. Comparisons of raw data with simulation and prediction data.

This paper calculates and compares grey action quantities at distinct time points to
obtain the representation of the interval grey action amount c [25]. A model known as
DGM(1, N, ⊗c) is constructed, taking into consideration the aforementioned information.
The aforementioned model enhances the DGM(1, N) model’s rationality through the
means below.

(1) The proposed model’s architecture fulfills the critical features of uncertainty that
are typically associated with grey prediction models. In this model, the grey action
amount is represented by an interval grey number that has a foregone possibility
function. The model introduces the notion of interval grey action, facilitating the
restitution of the interval grey number form of c in situations where the information
is incomplete. Furthermore, it also achieves a compartmentalized structure distinct
from the DGM(1, N) model.

(2) The proposed model’s simulation and prediction outcomes satisfy the “non-uniqueness
of solutions” principle. This model produces a sequence of interval grey numbers
instead of a singular numerical outcome, which distinguishes it from the conventional
DGM(1, N) model.

(3) The proposed model is consistent with the “least information” tenet of the grey
systems theory. This model can effectively utilize the information on grey quantities
at various time points. In contrast, the conventional model estimates the grey effect
using the least squares approach, which ends up as an actual number, a simplification
that results in the omission of important information.

(4) The outcome obtained through the DGM(1, N, ⊗c) model provides more informative
results. Specifically, the DGM(1, N, ⊗c) model prediction structure takes the form
of intervals, which can offer decision makers a clearer understanding of the range
of variation in the system. In contrast, the traditional DGM(1, N) model relies on a
deterministic real number as its forecast result, which tends to make decision makers
doubt its reliability. Thus, having a definite interval rather than a definite number can
enhance the informativeness of the prediction, making it easier for decision makers to
assess a system’s behavior and make informed decisions.

(5) The proposed model extends the DGM(1, N) model, which is compatible with it.
Specifically, when ⊗̃c = c in the DGM(1, N, ⊗c) model, the calculation results are
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x̂1mid(k). The aforementioned outcome is consistent with the conventional DGM(1, N)
model’s simulated and predicted findings. Thus, we can conclude that the DGM(1, N,
⊗c) model is compatible with the DGM(1, N) model. However, as can be seen from
the results in Figure 6, due to the modeling effect of the DGM(1, N) model, the new
model has had some errors in terms of simulation and prediction in recent years and
does not contain actual data, which is also the limitation of the model in this paper.

Based on the above results, China’s hydroelectricity consumption shows an overall
increasing trend, but there is a noticeable fluctuation in its hydroelectricity consumption
during the forecasting period. Therefore, the government should adopt reasonable energy
price regulation measures. Dynamic adjustments in energy prices can help to guide con-
sumers to make rational use of their energy, while providing a stable operating environment
for energy enterprises.

According to the forecast results for 2021, China’s hydroelectricity consumption
demonstrates a declining trend. To further achieve the goal of low-carbon development,
the government could implement policies to promote the development and utilization of
renewable energy sources, such as solar and wind energy, as well as support the research
and application of new clean energy technologies. These measures will facilitate the op-
timization of the energy structure and promote the development of an environmentally
friendly economy.

When forecasting hydroelectricity consumption, this study primarily considered the
influence of domestic gross domestic product (GDP) and hydroelectricity production. In
2021, domestic GDP shows an upward trend, but hydroelectricity consumption, on the
other hand, experiences a decline, possibly due to a decrease in hydroelectric production.
This pattern was also evident in 2011, further validating the close correlation between
hydroelectricity consumption and hydroelectric production. Hence, the country should
intensify its efforts towards developing and utilizing hydroelectric resources to promote
the growth of clean energy. Given that hydroelectricity consumption is influenced by
multiple factors, leading to interval-based forecasting results, the government should
establish an emergency energy reserve mechanism to ensure sufficient energy reserves
during unforeseen circumstances.

7. Conclusions

This study addressed the problem of the traditional DGM(1, N) model’s prediction
results, which do not account for the “non-uniqueness of solutions” principle in the grey
system theory.

We converted the DGM(1, N) model’s grey action quantity back into an interval grey
action quantity by adding it. Subsequently, we established a DGM(1, N, ⊗c) model, which
includes the interval grey action quantity. The proposed model has several advantages,
including the grey prediction uncertainty feature due to the characteristics of the grey
numbers present in its structure. Additionally, the DGM(1, N, ⊗c) model’s simulation and
prediction outcomes are interval grey numbers, satisfying the “non-uniqueness of solu-
tions” principle. To verify the model’s reasonableness, we forecasted the hydroelectricity
consumption of China using the DGM(1, N, ⊗c) model. The results demonstrated a higher
level of reasonableness in the simulation and prediction results. Finally, based on the re-
search results, it was proposed that the government should regulate energy prices, increase
the development and utilization of hydropower, expand its investment in renewable energy,
and establish emergency energy reserves to promote the achievement of low-carbon goals.
Although this paper simply expanded the c to an interval grey number ⊗c ∈ [cmin, cmax],
the proposed DGM(1, N, ⊗c) model made it a true grey attribute.

However, the model still has the defect of not including all the actual values in the pro-
cess of its modeling. To further enhance the modeling effectiveness and rationality of grey
forecasting models, we will use DGM(1, N, ⊗c) as the foundation of our study and explore
the grey attributes of other grey prediction models in greater depth in future research.
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