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Abstract: This study presents a novel approach to a mixed-integer linear programming (MILP)
model for periodic inventory management that combines reinforcement learning algorithms. The
rolling horizon method (RHM) is a multi-period optimization approach that is applied to handle
new information in updated markets. The RHM faces a limitation in easily determining a prediction
horizon; to overcome this, a dynamic RHM is developed in which RL algorithms optimize the
prediction horizon of the RHM. The state vector consisted of the order-up-to-level, real demand,
total cost, holding cost, and backorder cost, whereas the action included the prediction horizon and
forecasting demand for the next time step. The performance of the proposed model was validated
through two experiments conducted in cases with stable and uncertain demand patterns. The
results showed the effectiveness of the proposed approach in inventory management, particularly
when the proximal policy optimization (PPO) algorithm was used for training compared with
other reinforcement learning algorithms. This study signifies important advancements in both the
theoretical and practical aspects of multi-item inventory management.

Keywords: can-order policy; mixed-integer linear programming; reinforcement learning; rolling
horizon method; inventory management

1. Introduction

In recent years, companies have increasingly adopted artificial intelligence (AI) to
optimize operations, resource allocation, and decision making. Reinforcement learning
(RL), a subfield of AI, has emerged as a critical research area because of its extensive impact
on various industry domains such as supply chain management, production, logistics,
quality control, and inventory management. In the realm of inventory management,
effective multi-item inventory management is crucial in maintaining optimal stock levels,
reducing costs, and effectively responding to dynamic market situations through efficient
replenishment planning.

In real-world cases, Samsung implemented an AI-based inventory management sys-
tem that uses machine learning algorithms to predict demand and optimize inventories [1].
Amazon also utilizes machine-learning-based demand forecasting, which combines his-
torical data, real-time data, and external factors such as weather [2]. Alibaba has also
applied AI-based demand forecasting to its online marketplace [3]. Global companies are
continually developing multi-item replenishment strategies to optimize their inventory in
response to diverse consumer needs.

Although some researchers have explored the application of RL to aspects of inventory
management such as demand forecasting, order quantity optimization, and reorder point
determination, research on RL-based replenishment strategies is still in its infancy [4]. Most
studies on multi-item replenishment strategies have traditionally focused on determining
the optimal order period (joint replenishment problem) or order quantity (can-order pol-
icy, COP) using operational research techniques, often struggling to manage conditions
characterizing the dynamic nature of real-world environments, such as unpredictable

Systems 2023, 11, 350. https://doi.org/10.3390/systems11070350 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11070350
https://doi.org/10.3390/systems11070350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0002-5473-5374
https://doi.org/10.3390/systems11070350
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11070350?type=check_update&version=2


Systems 2023, 11, 350 2 of 15

market demands. They are deterministic and incapable of incorporating real-time market
information updates during model execution. To overcome this limitation, the rolling
horizon method (RHM), which provides a mechanism for iteratively incorporating updated
information into the decision-making process, is applied. However, the RHM struggles
with easily setting the optimal prediction horizon, significantly affecting the efficiency of
replenishment decisions. To address this issue, this study incorporated RL into RHM to
dynamically optimize the prediction horizon, thereby enhancing the efficiency and effec-
tiveness of the multi-item replenishment strategy. In the semiconductor manufacturing
industry, the chips are produced by processing silicon wafers at a fabrication/test node,
assembling die and packages at an assembly/test node, and finalizing the product before it
is shipped to fulfill customer orders. In such circumstances, the supply chain experiences
significant variations in processing time, yield, and demand uncertainty, necessitating the
optimization of the prediction horizon tailored to the situation [5,6]. Thus, this innovative
combination of the RHM and RL creates a pathway for a more responsive and adaptive
inventory management system.

This study proposes a MILP model for a periodic COP, which is a widely used multi-
item replenishment strategy that accounts for the correlation between multiple items and
their integrated replenishment at regular intervals. The study also puts forward an RHM
for updating the actual demand for items in the planning horizon and managing the
replenishment schedules for future periods. Furthermore, this study introduces a dynamic
RHM with RL that sets the MILP model of a periodic COP as the environment and the
interval length of the RHM as the action space. Our research has two primary contributions.
First, it aims to offer a flexible and adaptive decision-making framework that addresses
the challenges of scalability and responsiveness to dynamic environments in real-world
inventory management. Second, by integrating the strengths of these techniques, this study
seeks to provide a scalable and adaptive solution to the inventory management challenges
faced by companies.

The remainder of this paper is organized as follows. Section 2 presents the literature
review. Section 3 introduces the assumptions, problem definitions, and optimization
models. Section 4 describes the development of the RHM and dynamic RHM using RL.
Section 5 presents the verification of the efficiency of the proposed optimization model
and algorithms through various numerical experiments. Section 6 presents academic and
managerial insights regarding the research. Finally, Section 7 summarizes the research and
concludes the paper.

2. Literature Review

This study focuses on three research areas of inventory management: COP, RHM, and
RL. Regarding COP, it is an inventory management approach that focuses on ordering items
in multi-item systems; researchers have explored this approach in different contexts. Kayiş,
Bilgiç, and Karabulut [7] examined a two-item continuous-review inventory system with
independent Poisson demand processes and economies of scale in joint replenishment and
proposed and modeled a COP as a semi-Markov decision process using a straightforward
enumeration algorithm. Nagasawa et al. [8] suggested a method for determining the
optimal parameter of a periodic COP for each item in a lost sales model using a genetic
algorithm. The primary goal was to minimize the number of orders, inventory, and
shortages compared to those in a conventional joint replenishment problem. Noh, Kim, and
Hwang [9] explored multi-item inventory management with carbon cap-and-trade under
limited storage capacity and budget constraints. The periodic coefficient of performance
was used to address this issue. However, previous studies have limitations in handling
demand and supply uncertainties and lack robust methods for optimizing replenishments
and minimizing costs.

The RHM is a planning and decision-making technique that involves breaking down a
long-term planning horizon into smaller overlapping sub-horizons. Many researchers have
employed the RHM to overcome the limitations of deterministic environments. Tresoldi
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and Ceselli [10] suggested a practical optimization approach based on the RHM to address
general single-product periodic-review inventory control challenges. Al-Ameri, Shah,
and Papageorgiou [11] aimed to develop a dynamic vendor-managed inventory (VMI)
system and proposed various optimization algorithms to solve the problem using the
RHM. The VMI system was modeled as a MILP model using a discrete-time representation
with a mathematical representation following the resource-task network formulation. Xie,
Wang, and Yang [12] investigated an infinite-horizon stochastic inventory system with
multiple supply sources and proposed a robust RHM. Noh and Hwang [13] created an
optimization model using MILP to address energy supply chain management (ESCM)
problems involving supplier selection in emergency procurement scenarios; the model
considered a single thermal power plant and multiple fossil fuel suppliers. To effectively
manage uncertainties, they employed an RHM capable of handling the ESCM under
uncertain conditions. As previous studies have shown, the RHM is widely used to solve
issues related to uncertainties and introduce dynamism to the MILP model.

Researchers have explored the application of RL in inventory management and used
training agents to make optimal ordering decisions through environmental interactions,
enabling inventory strategies to adapt dynamically to demand and supply uncertainties.
Kara and Dogan [14] studied two distinct ordering policies using RL and highlighted
the significance of age information in perishable inventory systems. The problem was
modeled using RL and optimized using Q-learning and SARAS (state–action–reward–state–
action) learning. Chen et al. [15] proposed a blockchain-based framework for agri-food
supply chains, offering product traceability and an RL-based supply chain management
method for making effective production and storage decisions for agri-food products
and thereby optimizing profits. The findings demonstrated that the RL-based supply
chain management method outperformed heuristic and Q-learning approaches in terms
of product profits. Chong, Kim, and Hong [16] presented a deep reinforcement learn-
ing method for optimizing apparel supply chains, focusing on the soft actor–critic (SAC)
model. A comparison of the six RL models revealed that the SAC model effectively bal-
anced the service level and sell-through rate while minimizing the inventory-to-sales ratio.
Meisheri et al. [17] tackled the challenges of multi-product, multi-period inventory man-
agement using deep RL. Their approach improved inventory control in several ways: the
simultaneous management of multiple products under realistic constraints, the need for
minimal retraining requirements for the RL agent when system changes occur, and the
efficient handling of multi-period constraints arising from varying lead times for differ-
ent products. Boute et al. [4] discussed the critical design aspects of deep RL algorithms
for inventory control, addressing implementation challenges and associated computa-
tional efforts. Many researchers have applied RL to inventory management research;
however, its application in this research is mostly limited to determining the number of
orders or production items. Departing from the application of RL in previous studies, this
study applies RL to improve the scheduling of the RHM, overcoming the limitation of the
MILP model.

3. Optimization Model

All the notations associated with the optimization model are presented in Appendix A.

3.1. Assumptions and Problem Definition

There are five assumptions in this study.

1 The system considers a periodic review COP in which a single buyer orders multiple items;
2 When the inventory level of an item drops below the reorder point, that item is replen-

ished along with any other item whose inventory level is below the can-order level.
Both the reorder point and COP are assumed to be constant;

3 The procurement lead time of each item is a multiple of the inventory review period of
a buyer;

4 There is a correlation between the items considered in the study;
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5 The demand for each item follows a specific probability distribution.

Problem Definition

This problem addresses a periodic COP that minimizes the total cost of a buyer when
the demand for an item follows a specific probability distribution and the supplier has a
procurement lead time. Specifically, the order placement follows a designated timeline.
Relying solely on reorder points for procurement decisions might expose the buyer to a
high risk of stock-outs until the subsequent order cycle. By implementing the periodic COP,
the buyer can leverage the can-order level to proactively replenish potentially out-of-stock
items, thus ensuring a sustained service level. Thus, the buyer periodically checks inventory
levels and determines the optimal order quantities of items based on pre-established reorder
points and the can-order level. Then, the buyer places an order that considers the lead time
for each item. The orders are replenished sequentially over time as the planning horizon
unfolds. The replenished items need to arrive within the planning horizon, and the last
ordering time of the buyer for each item, excluding the item-specific lead time, is T − Li.

3.2. Mathematical Model

In this section, the establishment of the MILP model for the periodic COP with
procurement lead time is described. The total cost of a buyer during the planning horizon
consists of the ordering, backordering, and holding costs. The ordering cost is determined
by the replenishment decision of a buyer at time t, and the ordering cost for planning
horizon T can be expressed as shown in Equation (1):

T−Li

∑
t=1

utyt, (1)

yt = 0 or 1, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li.

The planning horizon of a buyer is fixed, and their actual ordering period, excluding
the procurement lead time Li for each item, is T − Li. For example, if the planning horizon
is four weeks, and the procurement lead time for item i is one week, the last time to place
an order for item i is at the end of week three. Item i is replenished in the last planning
horizon, i.e., week 4. If the buyer orders an item in week 4, it will be replenished in week 5;
this replenishment is unintended, as it goes beyond the planning horizon. In Equation (1),
yt is a binary variable that determines the replenishment decision. If the buyer orders one
of the items, yt becomes one, and an ordering cost is incurred. If the buyer does not order
any items, yt is zero, and no ordering cost is incurred.

The holding cost of item i at time t is calculated based on the average inventory level
at time t. This level is the mean of the order-up-to level at the beginning of time t and the
inventory level at the end of time t. Equation (2) shows the holding costs for all the items
during the planning horizon:

T

∑
t=1

I

∑
i=1

hi
t

(
Oi

t + li+
t

2

)
. (2)

Equation (3) represents the backorder cost of item i during the planning horizon T:

T

∑
t=1

I

∑
i=1

bi
tl

i−
t . (3)

The total cost of a buyer is the sum of the order, holding, and backorder costs during
the planning period; this cost is mathematically represented in Equation (4):

TCcop =
T

∑
t=1

I

∑
i=1

(
hi

t

(
Oi

t + li+
t

2

)
+ bi

tl
i−
t

)
+

T−Li

∑
t=1

utyt. (4)
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Following this mathematical model, the MILP model was developed.

Minimize TCcop

subject to

Oi
t+Li = li

t−1 +
∼
x

i
t−Li−1, i = 1, 2, · · · , I, t = 1, . . . , Li − 1, Li, (5)

Oi
t − di

t = li
t, i = 1, 2, · · · , I, t = 1, 2, · · · , T, (6)

li
t = li+

t − li−
t , i = 1, 2, · · · , I, t = 1, 2, · · · , T, (7)

xi
t ≤ Myt, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (8)

li
t−1 + Mαi

t ≥ oi, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (9)

li
t−1 −M

(
1− αi

t
)
≤ oi, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (10)

Oi
t+Li ≤ li

t+Li−1 + xi
t + M

(
1− αi

t
)
, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (11)

Oi
t+Li ≥ li

t+Li−1 + xi
t −M

(
1− αi

t
)
, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (12)

li
t−1 + Mβi

t ≥ ci, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (13)

li
t−1 −M

(
1− βi

t
)
≤ ci, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (14)

ζ i
t ≤ βi

t, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (15)
I

∑
i=1

αi
t ≤ Mδt, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (16)

δt ≤
I

∑
i=1

αi
t, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (17)

ζ i
t ≤ δt, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (18)

ζ i
t ≥ δt + βi

t − 1, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (19)

Oi
t+Li ≤ li

t+Li−1 + xi
t + M

(
1− ζ i

t
)
, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (20)

Oi
t+Li ≥ li

t+Li−1 + xi
t −M

(
1− ζ i

t
)
, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (21)

xi
t ≤ M

(
αi

t + ζ i
t
)
, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (22)

Oi
t+Li ≤ li

t+Li−1 + M
(
αi

t + ζ i
t
)
, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (23)

Oi
t+Li ≥ li

t+Li−1 −M
(
αi

t + ζ i
t
)
, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (24)

yt, αi
t, βi

t, ζ i
t ∈ {0, 1}, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (25)

Oi
t, li+

t , li−
t ∈ Z+ + {0}, li

t ∈ Z, i = 1, 2, · · · , I, t = 1, 2, · · · , T, (26)

xi
t ∈ Z+ + {0}, i = 1, 2, · · · , I, t = 1, 2, · · · , T − Li, (27)

M is a big number.

Equation (5) shows that the net inventory level of the item expected at the end of
the planning period can be expressed as the sum of the previous order quantity and the
initial inventory level at the beginning of the period. Equation (6) represents the expected
net inventory level at the end of the period, with Equation (7) guaranteeing that the
inventory level is equal to the difference between the on-hand inventory and backorder
levels. Equation (8) represents the major ordering cost incurred when at least one item is
ordered, while Equations (9) and (10) represent the regulated ordering that occurs when the
inventory position falls below the reordering point. According to Equations (11) and (12),
if the inventory position at the end of the previous period is below the reorder point, the
item is ordered in an amount equal to the difference between the order-up-to level and the
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inventory level at the end of the previous period. Equations (13) and (14) can determine
whether the inventory level is below the can-order level. According to Equations (15)–(19),
if the inventory level of at least one item is below its reorder point, the following order
includes other items whose inventory levels are below their can-order levels. According to
Equations (20) and (21), if the inventory level at the end of the previous period is below
the can-order level, that item is ordered in an amount equal to the difference between its
order-up-to level and the inventory level at the end of the previous period. Equation (22)
represents the regulation of the ordering of items whose inventory levels are below the
reorder or can-order levels. Equations (23) and (24) indicate that the order-up-to-level is set
based on the inventory level, which is below the reorder point or can-order level.

4. Algorithms
4.1. Rolling Horizon Method

The RHM is a well-known approach in operations research, particularly in planning
and scheduling problems, where the objective is to make a series of decisions over time. By
breaking down the decision-making process into smaller overlapping subproblems, the
RHM enables the incorporation of updated information into mathematical programming
models and facilitates adaptation to changing conditions. The RHM consists of several
key components, including the control horizon, prediction horizon, planning horizon, and
time step. The prediction horizon refers to the interval length in which a model forecasts
demand or optimizes planning and scheduling. The planning horizon is the total time over
which a model optimizes its decisions, and the update frequency determines how often a
model is updated with new information. The RHM offers several advantages in the context
of inventory management, such as increased flexibility and adaptability to changing market
conditions. Furthermore, it can handle the deterministic problem of a MILP model. Figure 1
shows the concept of the RHM.
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- Order products based on the result of the optimal solution.
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Step 3. Update information
- Check inventory level based on real demand during the control horizon.
Step 4. Check iteration condition
- Repeat Step 2 and Step 3 at the end of the planning horizon.
Step 5. End RHM

4.2. Dynamic Rolling Horizon Method

This subsection discusses the proposed dynamic RHM based on state-of-the-art RL
algorithms and proximal policy optimization (PPO), which is a model-free on-policy al-
gorithm and a well-known policy gradient method. The PPO algorithm primarily differs
from other RL algorithms in that it optimizes a surrogate objective function to prevent
excessively large policy updates. The policy gradient loss function for a single trajectory in
the vanilla policy gradient method is expressed as follows:

L(θ) = Ej
[
log

(
πθ

(
aj
∣∣sj
))
∗ R
(
sj, aj

)]
, (28)

where πθ is the policy (with θ representing the policy parameters), aj is the action at
timestep j, sj is the state at timestep j. R

(
sj, aj

)
is the expected return (cumulative future

reward) function. The PPO algorithm modifies the policy gradient loss function to constrain
the policy updates, ensuring that the new policy π′θ does not deviate too much from the
old policy πθ . The loss function in PPO is as follows:

LPPO(θ) = Ej
[
min

(
rj(θ) ∗ A

(
sj, aj

)
, clip

(
rj(θ), 1− ε, 1 + ε

)
∗ A
(
sj, aj

))]
, (29)

where rj(θ) = π′θ
(
aj
∣∣sj
)
/πθ

(
aj
∣∣sj
)

is the probability ratio, and ε is a hyperparameter that
determines the degree of the policy update. The clip function ensures that rj(θ) is in the
range [1− ε, 1 + ε]. A

(
sj, aj

)
is the advantage function at timestep j. Therefore, the loss

function encourages policy updates to be small. Regarding LPPO(θ), it is maximized using
stochastic gradient ascent, with multiple epochs over the mini-batches of the collected tra-
jectories. The PPO algorithm repeatedly performs this process by collecting new trajectories
using the latest policy after each update.

Owing to the characteristics of the MILP model, demand information cannot be
updated in real time. To handle demand uncertainties, buyers predict future demand
and order items at the beginning of each period while simultaneously proposing future
replenishment quantities to suppliers, allowing both buyers and suppliers to prepare for
future uncertainties. A dynamic RHM with RL is a solution in which RH is applied to RHM.
Regarding the application of RL, the MILP model of the periodic COP and the interval
length of the RHM were set as the environment and action space, respectively. Figure 2
shows the framework of the dynamic RHM.
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The state in time step j includes the beginning and end of the control horizon during
the RHM progress. First, it involves the order-up-to-level of each item at the beginning
of the control period. Second, it involves the system information that is confirmed and
updated at the end of the control horizon after the calculation of the MILP model, which
includes the real demand, total cost (TCcur

j ), holding cost ( HCcur
j

)
, and backorder cost

(BCcur
j ) at the current time step. The equations related to the actual cost incurred at time

step j are as follows:

TCcur
j =

I

∑
i=1

(
hi

1

(
Oi

1 + li+
1

2

)
+ bi

1li−
1

)
+ u1y1, (30)

HCcur
j =

I

∑
i=1

hi
1

(
Oi

1 + li+
1

2

)
, (31)

BCcur
j =

I

∑
i=1

bi
1li−

1 . (32)

Additionally, when the control horizon ends, the difference between the order-up-
to level of each item and the actual demand is added to the order quantity determined
from the MILP model calculation in the previous time step. This calculation becomes
ordered up to the level for the next time step. Equations (30)–(32), which are based on
Equations (5) and (6), reflect the replenishment of the order quantity decided through
the MILP model in the previous time step. The state defined in this study is shown in
Equation (33). The state space of both the order-up-to level and actual demand increases in
accordance with the number of items.

Statej =
[
order up to level j, real demandj, TCcur

j , HCcur
j , BCcur

j

]
. (33)

The action state in time step j includes the prediction horizon of the RHM, the interval
length in the MILP model, and the forecasting demand. The upper limit of the prediction
horizon is determined based on the planning horizon set by the decision-maker. For
instance, if the decision-maker replenishes once a week and requires a two-month schedule
plan, the upper limit of the prediction horizon is eight weeks. The lower limit of the
prediction horizon is the sum of the control horizon and the longest lead time among the
items. If the control horizon is one week, and the longest lead time for an item is two weeks,
the prediction horizon, including the control period and lead time, is three weeks. Therefore,
in the aforementioned scenario, the total number of possible actions (or prediction horizons)
ranged from three to eight weeks. In dynamic RHM, both the prediction and planning
horizons are determined as positive multiples of the control horizon.

Actionj =
[

prediction horizonj, f orecasting demandj

]
. (34)

Rewards are a critical factor influencing the learning performance of RL. The dynamic
RHM employs a reward function that compares the total cost of the previous and current time
steps using Equation (30). Equation (35) represents the reward function used in this study:

Rewardj =
[

TCcur
j−1 − TCcur

j

]
, (35)

5. Numerical Experiments

Two types of numerical experiments were conducted to verify the dynamic RHM
performance. The first experiment was a comparison test among the RL algorithms ad-
vantage actor–critic (A2C), asynchronous advantage actor–critic (A3C), and PPO. Those
algorithms are famous model-free on-policy algorithms and can handle both discrete and
continuous actions. In the action space, the prediction horizon is set as discrete actions and
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forecasting demand is set as continuous actions. In the second experiment, an efficiency
improvement experiment was conducted under an uncertain demand pattern. The models
were trained for 5000 episodes (epochs), with each episode lasting 52 weeks. The buyer
considered three types of items. The reorder point and the can-order level for the items
were set as [20, 10, 10] and [30, 20, 20], respectively, and big-M was set to 100,000. According
to Equation (35), if the total cost of each time step is less than the total cost of the previous
time step, the buyer will have an appropriate order quantity and inventory level in response
to the demand. Table 1 lists the hyperparameters used in RL training. The proposed model
and algorithm were coded using PyTorch 2.0, Gymnasium 0.28, and Ray 2.4.0. The MILP
model was solved using the GUROBI Optimizer 10.0.0. Both observation normalization and
reward normalization were used to create a stable learning environment. The numerical
experiments were performed on a computer with Ryzen 5950x at 3.4 GHz, 128 GB RAM,
and GeForce RTX 3090.

Table 1. Hyperparameters in RL training.

Hyperparameter Explanation

Number of hidden layers 2
Number of hidden nodes 16

Learning rate 0.00005
Mini-batch size 128

5.1. Experiment Reflecting Situation with Demand Following a Specific Probability Distribution

In this experiment, only the interval length was set as the action of the agent. In this
case, a stable situation, in which the demand for the item followed a specific probabil-
ity distribution and fluctuated less, was considered. Thus, the action space was set as
Actionj =

[
prediction horizonj

]
. The input parameters for each item are listed in Table 2,

which shows that the out-of-stock costs are higher than the storage costs. It was assumed
that the demand followed a normal distribution, and the forecasted demand was assumed
to be the mean of the normal distribution. An evaluation reward was used to evaluate
the algorithms. The model received a reward during the evaluation process, which was
calculated after the epoch; this reward measured the degree to which the model generalized
the new data.

Table 2. Input parameters in the first experiment.

Item 1 2 3

Demand N
(
200, 252) N

(
100, 152) N

(
120, 102)

Holding cost 0.3 0.2 0.2
Backorder cost 1.3 1.4 1.5

Figure 3 shows the mean evaluation rewards for the dynamic RHM using the RL
algorithms. Although training continued, the evaluation rewards of the three algorithms
did not converge and were amplified within the same range, implying that the RL algo-
rithms had not been trained. The dynamic RHM sets both the order up-to-level and actual
demand as the state. Since the predicted demand was fixed as the average of the normal
distribution, the interval length, which was the action of the agent, did not significantly
affect performance improvement.
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5.2. Experiment Reflecting Situation with Demand Implying Uncertainty

This experiment aimed to confirm the efficiency of the dynamic RHM under an uncer-
tain demand pattern where the demand for the items did not follow a specific probability
distribution. Figure 4 shows the demand patterns for these items. Equation (33) was used
to represent the action space in this experiment. At each time step, the agent determines
the forecast demand for the next time step as an action.
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As shown in Figure 5, the evaluation reward converged as the number of training
episodes increased. Comparing the three types of RL algorithms, the state-of-the-art RL
algorithm PPO exhibited the best performance in terms of evaluation rewards, while
A2C and A3C were similar in terms of these rewards. At the beginning of the training,
the evaluation rewards of the three algorithms did not differ significantly; however, the
performance of PPO improved as learning progressed. In A2C and A3C, the evaluation
reward did not improve significantly after approximately 1300 episodes, indicating that
long-term learning was not significant. In contrast, PPO only converged after learning
approximately 2000 times or more. However, in this experiment, the time required by PPO
to learn episodes was disadvantageously approximately twice as long as that required by
A2C and AC3; PPO produced better results with less learning (episodes of less than 1000).
Thus, the dynamic RHM with PPO was more efficient compared to the dynamic RHM with
the other two algorithms.
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Figure 6 shows the comparison of computing time among AC2, AC3, and PPO. A3C,
with its asynchronous update feature, exhibits the fastest training times across different
training scales, from 1000 to 5000 training. PPO, though more computationally demanding
per update and exhibiting the longest training times in this comparison, is more practical
due to its stability and efficiency. This result presents the importance of choosing the
appropriate algorithm based on the specific requirements of computational resources, the
problem complexity, and the desired balance between speed and stability.
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5.3. Comparision Experiment of Dynamic RHM Regarding Interval Length

In this experiment, I evaluate the performance of three RL algorithms post 5000 episodes
of training. The test is conducted over a planning horizon of 10 weeks. Table 3 presents
the results of this experiment, showing interval lengths proposed by each of the three
algorithms. Consistent with the outcomes depicted in Figure 5, PPO demonstrates the most
efficient performance, as indicated by the lowest total cost. In contrast, A2C exhibits a
relatively higher total cost.
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Table 3. Results of comparison experiments regarding interval length.

Week 1 2 3 4 5 6 7 8 9 10 Total
CostAlgorithm Interval Length during 10 Weeks

A2C 3 3 3 5 3 2 3 6 7 6 4515.50

A3C 3 3 3 5 5 3 3 4 2 3 4359.50

PPO 3 3 3 4 3 3 3 2 5 3 4235.15

Analyzing the results in conjunction with those from Section 5.2, it appears that A3C
can apply effective learning within a shorter time. However, it is crucial to note that the
performance of RL algorithms can be highly dependent on the specific problem and the
hyperparameters used. Furthermore, due to the stochastic nature of RL, the results could
vary if the experiment were to be repeated.

6. Insights
6.1. Academic Insights

This study contributes to the existing literature on RL-based inventory management by
proposing a MILP model for periodic COP and integrating it with RL algorithms. The RHM
has been widely used to solve MILP problems; however, determining the optimal prediction
horizon can be difficult. Many studies have used the prediction horizon as a sensitivity
analysis tool or relied on the choice of the decision-maker. This study presents a new
direction for RL research. The dynamic RHM presented in this study uses RL to improve the
response of the existing RHM to market conditions. The proposed algorithm addresses the
dynamic nature of multi-item inventory management and provides a flexible framework
for updating demand information at planning intervals. The traditional mathematical
programming approach with the latest RL algorithms is presented as a new research
direction for multi-item inventory management.

6.2. Managerial Insights

The proposed algorithm provides an adaptive solution for companies (buyers) to
manage the market and their associated suppliers under uncertain conditions. Using this
method, the buyer can simultaneously determine the optimal order quantity while setting
the optimal schedule (prediction horizon) according to market changes. In particular, the
ordering period is a specific period. If a buyer orders an item using only the reorder point,
there is a high probability that the item will be out of stock until the next order period.
Using this periodic COP model, buyers can use the can-order level to order items that may
soon be out of stock and thereby maintain a stable service level. Therefore, through the
contributions of this study, decision-makers can improve the overall efficiency of inventory
management systems.

7. Conclusions

In this paper, a MILP model for periodic COP, a well-known multi-item replenishment
policy, is developed. Also, a dynamic RHM to optimize the prediction horizon using
RL algorithms is introduced. To reflect practical scenarios, we considered the lead time
until the buyer ordered and received a product. The RHM was applied to enable the
demand for a product to follow a normal distribution or respond to uncertain situations.
The RHM has traditionally been widely used to solve the deterministic problem of MILP;
however, determining the appropriate prediction horizon can be challenging. Therefore,
this study presents a dynamic RHM in which RL algorithms are used to determine its
prediction horizon.

The proposed MILP model was selected as the environment for the dynamic RHM. The
state vector consisted of the up-to-level order, real demand, total, holding, and backorder
costs. The action vector was the prediction horizon of the RHM and forecasting demand for
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the next time step. The reward was defined as the difference between the total cost of the
previous and current time steps. Thus, if the total cost of each time step was less than the
total cost of the previous time step, the buyer would have an appropriate order quantity
and inventory level in response to the demand. Three model-free-policy RL algorithms,
namely A2C, A3C, and PPO, were used to build the dynamic RHM.

Three experiments were conducted to determine the efficiency of the proposed MILP
model and algorithm. The first experiment considered a situation in which the demand
was stable and normally distributed. Here, the action vector comprised only the prediction
horizon, but learning did not converge even after 5000 epochs. In the second experiment, a
situation in which the demand was uncertain was considered, and the original action vector
was used. The results revealed that all three RL algorithms had been well-trained. The PPO
algorithm performed the best among the three algorithms, even with a small number of
epochs. However, A3C completed the learning faster than the other two algorithms. The
third experiment compares the three RL algorithms regarding interval lengths. Again, PPO
obtains the lowest total cost among the three algorithms.

This study presents an innovative intersection of RL with a traditional mathematical
programming model for multi-item inventory management. It extends the RHM and
offers a dynamic solution to overcome the weaknesses of the MILP model. In practice, the
proposed adaptive algorithm boosts inventory management efficiency by preventing stock-
outs and improving decision making under uncertain market conditions, representing
a significant advancement in both academic and practical realms. However, there are
also some limitations to be addressed. First, only three RL algorithms (A2C, A3C, and
PPO) were considered for comparison. Other RL algorithms and variations may yield
different results and potentially provide better results. Second, this study only considered
the periodic COP. The proposed model did not account for factors such as multi-echelon
supply chains, capacity constraints, the perishability of items, and supply chain disruptions.
There are opportunities for future research to respond to these limitations. First, other
RL algorithms, such as Deep Q Networks, can be considered. Second, the dynamic RHM
framework can be extended to handle more complex real-world scenarios, such as those
involving multi-echelon supply chains, the inventory management of perishable items, or
supply chain disruptions.
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Nomenclature

AI Artificial Intelligence
COP Can-order Policy
MILP Mixed-integer linear programming
RHM Rolling horizon method
RL Reinforcement learning
A2C Advantage actor–critic
A3C Asynchronous advantage actor–critic
PPO Proximal policy optimization
DQN Deep-Q network
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Appendix A. Notations

Index
i item, i = 1, . . . , I
t period, t = 1, . . . , T
j timestep, j = 1, . . . , J

Decision variables
yt Binary variable when an order is confirmed during period t
Oi

t Order-up-to-level of item i at period t
αi

t If li
t drops below oi, then αi

t = 1; otherwise, αi
t = 0

βi
t If li

t drops below ci, then βi
t = 1; otherwise, βi

t = 0
ζ i

t If li
t drops below ci, and at least one item is ordered in period t, then ζ i

t = 1;
otherwise, ζ i

t = 0
PH j Prediction horizon at timestep j

Variables
li
t Inventory level of item i at the end of period t

li+
t On-hand inventory level of item i at the end of period t

li−
t Backorder inventory level of item i at the end of period t
xi

t Order quantity of item i at period t
δt Number of items ordered at period t
θ Parameters of the policy
ε Hyperparameter in PPO controls the degree of policy update

Parameters
ut Ordering cost at period t
bi

t Backorder cost of item i at period t
hi

t Holding cost of item i at period t
li
0 Initial inventory level of item i
∼
x

i
t Replenishment quantity of item i, which is ordered before the planning horizon, at

period t
di

t Forecasted demand of item i during period t
∼
d

i

t Real demand of item i during period t
ci Can-order level of item i
oi Reorder point of item i
Li Lead time of item i
M Large number
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