
Citation: Dongmo, C.; Van der Poll,

J.A. An Improved User Requirements

Notation (URN) Models’ Construction

Approach. Systems 2023, 11, 301.

https://doi.org/10.3390/

systems11060301

Academic Editor: Vladimír Bureš

Received: 28 April 2023

Revised: 7 June 2023

Accepted: 8 June 2023

Published: 11 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

An Improved User Requirements Notation (URN) Models’
Construction Approach
Cyrille Dongmo 1,*,† and John Andrew Van der Poll 2,†

1 Department of Computer Science, School of Computing, College of Science, Engineering and Technology
(CSET), Science Campus, University of South Africa (Unisa), Johannesburg 1709, South Africa

2 Digital Transformation and Innovation, Graduate School of Business Leadership (SBL), Midrand Campus,
University of South Africa (Unisa), Midrand 1686, South Africa; vdpolja@unisa.ac.za

* Correspondence: dongmc@unisa.ac.za
† These authors contributed equally to this work.

Abstract: Semi-formal software techniques have been very successful in industry, government
institutions and other areas such as academia. Arguably, they owe a large part of their success
to their graphical notation, which is more human-oriented than their counterpart text-based and
formal notation techniques. However, ensuring the consistency between two or more models is
one of the known challenges of these techniques. This work looks closely at the specific case of the
User Requirements Notation (URN) technique. Although the abstract model of URN provides for
link elements to ensure the consistency between its two main components, namely, Goal-Oriented
Requirement Language (GRL) and Use Case Maps (UCM), the effective implementation of such
links is yet to be fully addressed. This paper performs a detailed analysis of the existing URN
models construction process and proposes an improved process with some guidelines to ensure, by
construction, the correctness and consistency of the GRL and UCM models. A case study is used
throughout the paper to illustrate the suggested solution.

Keywords: URN process; models consistency; GRL process; UCM process; jUCMNav

1. Introduction

Mainly due to their graphical modeling approach, which makes them flexible and
more human-oriented than, for example, text-based or mathematical-based notation tech-
niques, semi-formal (visual) methods have been very popular [1–3]. Most of them allow
for the modeling of various system view points at different abstraction levels including,
for instance, models specifying user requirements, system and architectural design. With
tools providing graphical objects to aid the specification and design of systems, the pro-
duction of graphical models for the system under development is made relatively easy.
However, some of the known challenges are in ensuring the consistency between different
models describing the same system and in proposing a bridging mechanism to facilitate the
transformation from one model to another. This problem is better understood when taken
from the perspective of the model-driven engineering (MDE) approach, where conceptual
models are continuously and progressively refined into more detailed ones until the text
or code implementing the last model is obtained. Thus, one of the main difficulties being
to develop a reusable and traceable transformation process to automatically generate a
lower-level model from the more abstract one. In the case of URN, such issue evidently calls
for the improvement of the existing (construction) methods. In this regard, this paper aims
to address the problem in URN with the purpose of improving its construction process.

URN provides link elements to ensure consistency between GRL and UCM models,
and in so doing, the correctness of URN models. To date, and to the best of our knowledge,
not much has already been done to reinforce such links at a practical level. In this regard,
we found it necessary to re-examine, in as much details as possible, the existing URN

Systems 2023, 11, 301. https://doi.org/10.3390/systems11060301 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11060301
https://doi.org/10.3390/systems11060301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0002-3139-6576
https://orcid.org/0000-0001-6557-7749
https://doi.org/10.3390/systems11060301
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11060301?type=check_update&version=2

Systems 2023, 11, 301 2 of 24

construction process focusing on the vertical relationship between GRL and UCM models
with the purpose of improving the existing process as well as the quality of the resulting
URN models.

The main contributions of this work includes the following:

• This work performs a detailed analysis of the existing URN modeling process, which
is an important step towards the improvement of the process.

• We also endeavored to establish the vertical relationship between GRL and UCMs,
where a UCM refines an input GRL. This lays the foundation for the development
of mechanisms to automate the GRL transformation into a UCM, especially in a
model-driven development approach.

• We propose an improved URN models’ construction process whereby GRL models are
constructed independently of UCMs and used as input to UCMs construction. Two
algorithms were developed for the improved GRL and UCMs construction processes
to facilitate their description and to lay the foundation for their implementation.

The remainder of this paper is organized as follows: Section 2 discusses the related
work, and Section 3 presents an overview of the User Requirements Notation (URN).
This includes the overview of GRL in Section 3.2, UCM in Section 3.3, and the jUCMNav
construction tool in Section 3.4. The existing URN models construction process is discussed
in Section 4, followed in Section 5 by an analysis of the process using a case study. Section 6
presents some challenges with the existing URN models construction process, and Section 7
proposes an improved URN process illustrated with a case study. Section 8 presents some
pointers for future works and Section 9 concludes the paper.

2. Related Works

Related works can be classified into three categories. The first and the most important
category includes the formal specification of graphical models. This category aims mainly to
validate or to ensure the correctness of the graphical model [4–6]. It has also contributed to
resolve the well-known challenge of integrating formal methods into the existing software
processes (see for example Abrial [7] (p. 766) and Alagar et al. [8] (Chapter 2)). The second
group comprises works pertaining to improve, transform or extend the syntax of the
graphical model with, for instance, text-based notations such as XML to facilitate model
construction and/or transformation [9–12]. The last category includes works addressing the
concept of refinement, which is very poorly integrated in semi-formal techniques [13–15].

Each of the first two categories focuses on validating (or improving the quality of)
individual models and hence does not (explicitly) address the relationship between different
diagrams. The last category largely addresses the refinement, especially in UML. However,
it should be observed that most of these works have each some particularities that distance
it from the core problem of this paper. For example, the work by Said [14] involves entities
in a UML-B model, which, as formalized elements, ought to naturally adhere to the formal
methods refinement rules. Kehrer and Edmund [13] derived (UML) refinement patterns,
from the UML template-based refinements, purposing to refine requirements from the
elicitation to the analysis and implementation. Although an example of operationalization
is given in Java, we failed to figure out how the patterns could, for example, help to analyze
and/or establish the refinement relationship between two different models such as Use
Case diagrams and class diagrams. In fact, in their conclusion, the authors clearly indicated
that the kind of models that could be created by adopting the proposed refinement patterns
was still to be investigated.

A similar work by Akhigbe et al. [16] suggests the use of mapping rules to statically
link GRL elements to those of UCM. The rules were formalized with OCL and integrated,
by means of meta-data, into the main URN tool which is jUCMNav. It is our observation
that the main weakness of the mapping rules is the limited flexibility and the broad nature
of the proposed rules that map not GRL elements to UCM elements but rather a group
of elements (GRL Intentional elements) to another group of UCM sub-maps. At an early
phase of software development, the flexibility of the requirements analysis and specification

Systems 2023, 11, 301 3 of 24

methods or techniques is valuable in the sense that, at such stage, alternative solutions
need to be elaborated and evaluated to facilitate decision making.

Sebastián, Gallud and Tesoriero [17] found in their systematic mapping of studies
on code generation with the model-driven architecture (MDA) technique that there are
few publications regarding the computation independent model (CIM) layer of the MDA
showing a research line that may be worth of exploration. In the same vein, this could be
an indicator of the challenges faced by software practitioners to develop abstract models to
accurately and consistently represent business requirements for the software system. In a
survey aiming to understand practitioners’ challenges on Software Modeling, Ozkaya and
Erata [18] found that models’ analysis and management are among the primary modeling
challenges for software practitioners.

3. An Overview of the User Requirements Notation (URN)

The User Requirements Notation (URN) is a standardized semi-formal, visual, re-
quirements notation that enables the elicitation, modeling and specification, as well as
the analysis and validation of user requirements including stakeholder goals [19–21]. It
comprises two complementary languages: the Goal-Oriented Requirement Language (GRL)
and the Use Case Maps (UCMs) [22].

3.1. The URN Meta-Model

The URN basic structural features in Figure 1 describes containers for URN, GRL and
UCM specifications [19].

Figure 1. URN conceptual model [19].

The URN meta-model, namely, URNspec is the root element of the URN specifica-
tion comprising a GRL specification (GRLspec), UCM specification (UCMspec), URN link
elements (URNlink) and meta-data. GRLspec specifies the meta-model for GRL speci-
fications which building blocks are GRL model elements (GRLmodelElement). On the
other side, UCMspec specifies the meta-model for UCM specifications. Similarly to GRL
specifications, the building blocks for a UCM specification are instances of the UCM model
elements (UCMmodelElement). Finally, URNlink is a container for all relationships be-
tween URN model elements, especially GRL and UCM model elements. Instances of URN
link elements are links connecting URN model elements from one to another.

3.2. The Goal-Oriented Requirement Language (GRL)

The Goal-Oriented Requirement Language, denoted GRL, is a visual modeling nota-
tion that aims to address the “Why” of a system at the requirements level, using concepts
such as actor, goal, softgoal, task, belief and resource to conceptualize requirements arti-
facts and the link to establish relationships between those artifacts [19,23,24]. The GRL

Systems 2023, 11, 301 4 of 24

meta-model from which GRL specifications are constructed (GRLspec) is described in detail
in the URN standard document [19]. The GRL model elements are partitioned into two
groups: The first includes objects of the class known as GRLLinkableElement, comprising
actors’ definitions and intentional elements that are used to model requirements artifacts.
An actor specifies an entity that has intentions and may develop strategies to perform their
intentions. They are therefore the containers of intentional elements. The second group is
formed by objects of the class named ElementLink. They are used to create dependencies
between actors, to model the decomposition of intentional elements and to specify the
contribution of some intentional elements to satisfy or satisfice other intentional elements.
Link elements are important concepts that serve to specify the decomposition, refinement
and operationalization of intentional elements.

3.3. The Use Case Maps (UCMs)

The Use Case Map (UCM) is a standardized scenario-based requirements notation tech-
nique whose original purpose is to bridge the gap between requirements and design [22,25].
The notation has been very successful due to the use of simple graphical elements to de-
scribe, in a map-like diagram, service functionalities superimposed on the organizational
structure of complex and distributed systems [26]. A UCM specification is constructed
from various model elements, abstracted by the meta-class named UCMmodelElement [19].
The UCMmodelElement constitutes the blueprint for UCMs’ building blocks that include
variables, scenarios, resources, components, responsibilities and UCMmap (see Figure 58,
URN [19]). The UCMmap meta-model in (Figure 60, URN [19]), is one of the most impor-
tant building block that combines, by means of node connectors (NodeConnection), most
of the UCM elements known as path elements to construct individual UCM maps.

The basic function of a UCM specification is to model and reason about systems
functionalities. An important characteristic of UCM is that UCM model elements can be
combined in different ways to construct mechanisms that specify different aspects of a
system. For example, the And-fork and And-join connectors associated with variables can
be used to specify concurrency or parallelism in a system.

3.4. The URN Construction Tool: jUCMNav

jUCMNav is an integrated environment for UCMs and GRL model construction [24,27].
It is a user-friendly graphical editor under the Java-based open-source Eclipse platform.
jUCMNav provides, among other functionalities, the support for exporting URN models to
external tools and those for importing from external sources. Such facilities allow jUCM-
Nav to communicate with other systems via different types of file formats including XML,
MSC (Message Sequence Charts) files and CSM (Core Scenario Model) files. The tool pro-
vides for visual link between the two URN models and implements strategies for evaluating
GRL models. It equally provides the mechanisms for UCM path traversal (see [28,29]).

4. The URN Models Construction Process

As supported by Liu [23], the basic URN construction process relies on a top-down
decomposition strategy. Generally, the higher-level objectives are progressively decom-
posed and operationalized into more fine-grained conceptual elements to form a graph that
constitutes a GRL model. This graph can thereafter be evaluated to establish the level of
satisfaction of the initial objectives. Three algorithms have been proposed and implemented
for the GRL model evaluation (see [30]). However, one may use any other appropriate
evaluation strategy to identify and analyze the elements of the model.

Figure 2 depicts an iterative construction process for URN models [23]. The GRL and
UCM models are interactively and iteratively constructed.

Systems 2023, 11, 301 5 of 24

Add New Scenarios or update existing in

UCM model

Elaboration of Non-

Functional Requirements

(softgoals) in GRL model

Softgoal Refinement in

GRL model

Softgoal
Operationalization in

GRL model

Intentional Elaboration of

Functional requirements

(goals) in GRL model

Goal Operationalization

in GRL model

Goal Decomposition in

GRL model

Elaboration of Scenario

in UCM model

Draw use case path with

responsibilities in UCM model

Refine UCM model by Factoring,

Stubbing and Layering

Problem descriptions,

Business objectives,

Use cases …

New architectural

design decisions

(tasks in GRL) are
made?

Map “Feasible” Design
Decisions into Scenarios

in UCM model

Yes

No

No

Architectural designDesign rationales

New Requirements

are discovered?

Yes
No

Binding Responsibility with

Components in UCM model

No More Factoring,

Stubbing, Layering?

Yes

No

Add New Requirements into GRL

model (FRs and NFRs)

Add new goals (softgoals)

into GRL model

Yes

All goals & softgoals

are sufficiently refined?

Figure 2. URN construction process [23].

The initial requirements in the form of use cases or scenarios, as well as functional
requirements (FRs) from the GRL model (mainly the GRL Tasks elements) are represented
with UCM graphical symbols to form the initial UCM model. Depending on the expected
level of detail, the initial UCM specification is progressively decomposed or refined until a
satisfactory level of detail is obtained. The followings sections discuss in more detail the
construction of the GRL and UCM models.

Systems 2023, 11, 301 6 of 24

4.1. The GRL Model Construction

With GRL, any entity with intentions (e.g., stakeholder), also known as a role-player,
is likely to be modeled as an “Actor”. GRL modeling distinguishes two complementary
aspects of business objectives or stakeholders intentions: goals describing non-functional
requirements (NFRs), namely, softgoals, and goals describing functional requirements,
namely, (hard) goals or simply goals. Those two types of goals are developed iteratively,
separately and interactively.

4.1.1. Developing Softgoals and (Hard) Goals

Each softgoal is iteratively refined and operationalized until some concrete design
decisions are derived. A softgoal refinement consists to uncover sub-goals required to
satisfice the refined softgoal. This is traditionally known as AND/OR decomposition
modeled in GRL with decomposition links. A softgoal or goal operationalization is a
process that consists to discover operational means necessary to satisfice the softgoal or
to achieve the goal being developed. Such operational means include three main GRL
intentional elements, namely, tasks, resources and beliefs. Those elements are linked to
the developed softgoal or goal by means of GRL link elements. Each such link clearly
specifies the nature and type of impact the intentional element will have on the satisfaction
of goal being developed [31]. As in the case of softgoals, each goal is decomposed and
operationalized until some concrete design decisions are obtained.

4.1.2. Developing Other Intentional Elements: Task, Resource and Belief

Although not explicitly represented in Figure 2, in general, as indicated in the URN
standard book, any GRL intentional element can be decomposed and be given a quantitative
or qualitative importance [19]. However in practice, the decomposition of GRL Belief
elements and, to some extent, the Resources is rarely encountered. On the contrary, the
AND/OR decomposition of GRL Task elements is very common. The main purpose of
decomposing a task is either to obtain more refined tasks that are easier to implement or to
uncover alternative means to implement it.

4.1.3. Connection Points between Softgoals and (Hard) Goals

At any point during the refinement of a softgoal, (hard) goals may be introduced,
causing, in the next step, the move from softgoal to (hard) goal analysis. From Figure 2, the
shift to UCM construction occurs whenever new architectural design decisions are made.

4.2. The UCM Construction

UCM modeling is an iterative process whereby scenarios’ paths (with path elements
such as responsibility points, connections points, etc.) are constructed and bound to
components. With complex systems, the initial UCM model is progressively refined until
the desired level of detail is obtained. Inputs to UCM are the functional requirements,
from the initial requirements, expressed as scenarios, use cases, operations, etc. GRL tasks,
resources and beliefs, from the GRL model, constitute in general the most important source
of input to UCM.

4.2.1. The Construction of UCM Paths and Path Elements

New input scenarios or use cases generally lead to the creation of new UCM paths
or paths segment, whereas an input such as an operation may lead to the update of an
existing UCM path or path segment (e.g., by adding a new responsibility point to a path
segment). The choice of the UCM element to be added as well as the selection of the path
or path segment to be updated are decided by the developer.

4.2.2. Drawing UCM Components and the Binding of UCM Paths to Components

Components are shapes used to represent architectural artifacts such as processes, sys-
tems and sub-systems. The ability to bind a UCM path, path segment and path elements to

Systems 2023, 11, 301 7 of 24

a UCM component renders the construction flexible. Such flexibility allows the practitioner
to either specify the scenarios first or to construct the architectural design of the system
first and bind the two sub-models only when a satisfactory state is obtained.

4.2.3. Refining the UCM Model

Techniques such as stubbing and layering are provided in UCM to refine the model
to reach the desired level of details. During the UCM modeling process, the shift to GRL
construction occurs whenever new requirements are discovered (Figure 2). Updating the
GRL when a new requirement is discovered is important to avoid modeling requirements
that do not contribute to achieving any known goal or softgoal. Such a requirement would
possibly introduce inconsistencies between the GRL and UCM models.

The Case Study Description

This case study was adapted from the book by Merx and Norman [32]. Consider a
software program that provides voters with the ability to vote in elections using a simple
computer-based interface (electronic voting or “e-voting”). The purpose of the program
is to make voting more accessible to the general public, given the rapid proliferation
of PCs around the world. From the comfort of their home, using the familiar Microsoft
Windows interface, voters can securely access ballots and vote their chosen representative or
proposition. This case study is first used in the analysis of the URN construction presented
in the previous section. In the same vein, the case study is used to illustrate our proposed
improved URN construction approach.

5. An Analysis of the URN Construction Process

This section is mainly about the vertical relationship between GRL and UCM models.
The question one may ask is: Does one of the models derive from the other? In other words,
can one model serve as input to the other? The answer to this question may help to rethink
and improve the internal URN process as well as the integration of URN into the existing
software processes. To address this question, we proceed by observing and analyzing the
URN construction approach discussed earlier in the previous sections. The approach is
followed to construct GRL and UCM models for the case study, and in so doing, we illustrate
our observations. Our perception of the standard URN construction process is summarized
in Figure 3, which is used for argumentation. The focus is on the following construction
phases: input to URN, the GRL specification (including an initial UCM sketching), the
UCM specification, and the URN outputs: GRL and UCM (final models).

Figure 3. Vertical relationship between GRL and UCM.

We have subdivided the GRL and UCM construction process into four phase to
facilitate the analysis that follows.

Systems 2023, 11, 301 8 of 24

5.1. The URN Inputs

Initially, the bulk of the URN inputs includes business objectives and stakeholders’
goals that justify the system in construction and constitute the main inputs to GRL. The
initial URN inputs may equally include functional requirements in the form of scenarios, use
cases, etc., which are direct inputs to UCM. However, when applying the URN modeling
approach to the case study, no input, appropriate for the URN modeling, was readily
available, indicating the difficulties to model URN models directly from the initial project
idea and/or description. Although URN aims to facilitate requirements analysis, the
requirements elicitation phase is not explicitly included in the URN process. The activities
of the requirements elicitation phase are comprehensively discussed in [33] (pp. 146–158).
In the context of this work, the outputs expected from the requirements elicitation include,
among others, the list of stakeholders, stakeholders’ goals and business use cases. To render
the case study usable, we have selected some of the desired information from the same
source and proposed others to make the case study more suitable for the purpose of its use.

5.2. Stakeholders

We have retained four stakeholders for this study: the voter, the vote officer, the
security and the voting subsystem or module, defined as follows:

• A voter is a person who fulfills the voting requirements related to, for instance, the
minimum age, the citizenship, the place of residence, etc. A voter must be registered
prior to the voting date.

• A vote officer ensures the good functioning of the voting system, the voting envi-
ronment and the respect by all actors of the rules and regulations surrounding the
voting process.

• A security company ensures the safety of the physical resources needed for the system.
• The system includes the hardware and software with all the desired functionalities.

5.3. Stakeholders’ Goals

In practice, each stakeholder would like the system in construction to achieve specific
goals. One of the activities of the requirements elicitation and analysis phase is to identify,
classify, eliminate duplicates and prioritize such goals. The following goals are considered
for the case study:

• A voter would probably like the system to be easy to use and to preserve the privacy
of the voters. For example, it should not be possible for any user to identify and
recognize the choice of a any voter.

• On the other hand, the vote officer is more concerned about the security of the entire
system.

Next, we also present a few selected activities of the organizations, namely, business
use cases represented in URN as Tasks.

5.4. Business Use Cases

The two business use cases considered are voter authentication and the voting process.

5.5. The URN Model of the Case Study

The GRL and UCM models obtained by applying the standard URN process to the
case study are represented, respectively, in Figures 4 and 5.

The process allows for the two models to be constructed simultaneously and inter-
actively. During the construction, goals are passed as inputs to GRL, whereas inputs
describing functional requirements are passed to both GRL and UCM and are therefore
likely to be processed concurrently in both GRL and UCM. This is particularly the case for
use cases or scenarios that are used in GRL to operationalize goals and constitute the main
inputs to UCMs. For instance, with the case study, the Authentication operation is used in
the GRL model to operationalize the softgoal named Software security (see Figure 4). The use

Systems 2023, 11, 301 9 of 24

case is specified in the UCM model with two scenario path segments. The first starts with
the starting point labeled voter password and ends with either of the two endpoints, Password
accepted or Password denied. The second starts with the starting point, Voter biometric, and
ends with either of the two endpoints, Biometric accepted or Biometric denied.

Figure 4. The GRL model of the case study.

Figure 5. The UCM model of the case study.

As commonly accepted, a software product is developed and used to achieve business
objectives that indeed justify the requirements of the system (see e.g., [34]). With regard
to the feasibility study, this is formulated as a question by Sommerville, does the system
contribute to the overall objectives of the organization? [33]. However, in the current URN
construction process, we have no guarantee that direct inputs to UCM are effectively going
to be processed in the GRL model to refine or operationalize any goals that ought to justify
them. Furthermore, processing the same URN input, independently in GRL and UCM, is

Systems 2023, 11, 301 10 of 24

a risky activity likely to create inconsistencies in the final URN models. For instance, an
input operation directly specified in UCM may be replaced in GRL with a more prioritized
task when used as alternative means to achieve a goal.

In the GRL model in Figure 4, both the biometric and password authentication are
used as alternative solutions to operationalize the Authentication goal. Meaning that one of
the two alternatives should be chosen as the operational mean to achieve the goal. However,
the two solutions were readily specified in UCM due to the fact that Password authentication
was readily available as input and passed to UCM before the GRL model was constructed.

5.6. Observation on GRL and UCM Models’ Construction

As shown in Figure 2, the GRL softgoals’ and goals’ refinement and operationalization
produce operational elements (actors, tasks, resources, beliefs) that constitute inputs to
UCM. The UCM modeling process transforms those inputs into architectural artifacts,
scenario paths or path segments including responsibility points, path connectors, etc.
Condition variables are also used to capture additional information (prose description)
wherever necessary. In the UCM modeling process, when a new requirement is discovered,
the process starts the GRL specification of the newly discovered goals and/or softgoals. The
bridging from the UCM specification to GRL whenever a new requirement is discovered
indicates the intention to keep both GRL and UCM complete and consistent. However,
a number of questions also arise. Does the bridging from UCM to GRL imply that all
inputs to URN should first be specified in GRL? If not, then one may be tempted to ask:
Why is the direct UCM specification of URN inputs allowed? As depicted in Figure 3, the
construction of the GRL model normally precedes that of UCM. This is mainly due to the
fact that most of the inputs to UCM are obtained from the constructed GRL model. Hence,
only a small portion of the UCM specification is actually constructed in parallel with GRL.
In the subsequent sections, we argue that some inconsistencies in the URN models are
generated during the parallel construction of its two sub-models.

Conceptually, UCM elements should be traceable from those of GRL. For example, for
a UCM component or actor, path or path segment, responsibility, etc., it should be possible
to point out a GRL element from which it was generated. However, this is not generally
the case because, during the UCM specification, there is no information associated to the
input element to indicate its origin, that is, whether it operationalizes a goal or a softgoal in
a GRL model. This is further complicated by the fact that, although GRL and UCM are all
parts of URN, they were designed with the possibility for one to exist without the other.
Therefore, the discussion in this paper is conducted under the assumption that the two
models of URN are used to develop the same system.

Going back to the analysis of the relationship between GRL and UCM, it is equally
important to note that some specific grouping of UCM elements (structuring), including the
binding of paths and paths elements to some components, ought to be justified by the need
to satisfy some goals or softgoals from GRL. For example, parallelism may be introduced
into a UCM map to achieve performance. However, when such a re-structuring action is
performed, there is nothing in the UCM model to justify the action, thus making it difficult
to link the action back to the softgoal in the GRL model that ought to be achieved.

5.7. Analysis of URN Outputs

The URN outputs include the GRL and UCM models. Although not formally proven,
based on the above observations, we believe the UCM model to be a refinement of the GRL
model. Assuming some of the UCM elements cannot be linked to any element of the GRL
model, one may rightfully ask: Why would a software engineer model functionalities that do not
support the business objectives? It is also important to note that the standard URN process in
Figure 2 does not include the GRL model evaluation. This is probably because the process
was proposed prior to the publication of the most recent URN reference document that
defines GRL strategies and model evaluation [19].

Systems 2023, 11, 301 11 of 24

6. Some Challenges with the Standard URN Process

From the above analysis of the standard URN process, a number of challenges and/or
risks, including the risk of inconsistency, the traceability problem, omission of relevant
requirements as well as the specification of irrelevant requirements, are perceptible.

6.1. Inconsistency between the GRL and UCM Models

The consistency problem in URN models has already been well demonstrated by
Akhaide et al. [16], who proposed mapping rules to relate GRL components to those of
UCM. This work focuses mainly on the source cause of the inconsistency. As discussed in
Section 6.4, the GRL model is at a higher abstraction level than UCM. Thus, the concurrent
construction of GRL and UCM is a risky approach that can cause a number of threats to
the quality of the final URN models, among which are the inconsistencies between the
GRL and UCM models. For instance, in the UCM model of the case study in Figure 5, the
two solutions for the security requirement are specified. On the other hand, in the GRL
graph in Figure 4, the two solutions are alternative tasks for which only the best has to be
considered. The problem arises because the password authentication, a business use case,
is one of the URN inputs and, due to the concurrent construction approach, was specified
in UCM without consideration of the GRL processing of the same input.

6.2. Traceability Problem

Inconsistencies in two or more models is an indicator of the difficulties to link some
elements of the more detailed or refined model to those of the abstract model. As dis-
cussed in the previous section, having the password and biometric authentication specified
altogether in the UCM model not only creates confusion in the system, but also makes
it difficult to trace down to the implementation level, which is a means to satisfice the
security goal. Furthermore, the testing and validation of the final software product is
equally affected as if the problem is not detected at the UCM modeling phase; it may be
easily propagated to the subsequent development phases. In the URN process, when a new
requirement is discovered in UCM, the GRL model is updated accordingly. However, it is
important to notice that, in some cases, the influence of non-functional requirements may
be more subtle. A few examples to illustrate include the following:

1. Parallelism may be introduced into a UCM to address a performance requirement
specified in GRL as a softgoal.

2. Stubs or layers may be needed in UCM to respond to a security requirement repre-
sented in GRL as a goal or softgoal. For example, to group together those functionali-
ties that require a certain level of security.

3. Some elements of a UCM may need to be re-arranged in a certain order to facilitate
for example the usability of the system.

These examples show how non-functional requirements in GRL can induce actions (per-
formed on UCM) that do not necessarily describe functional requirements represented
physically in the original GRL model. Additionally, UCM elements such as forks, stubs or
layers used in the above examples are not (conceptually) different from those created when
specifying functional requirements. Thus, there exist the difficulties to trace them back to
the original non-functional requirement and, consequently, the difficulty to validate the
final UCM model relatively to GRL.

6.3. Specification of Irrelevant Requirements

As pointed out in Section 6.1, specifying two or more alternative requirements in
UCM for which only one or fewer need to be selected, introduces in the system irrele-
vant requirements. This can become a very serious problem in complex systems with a
large number of requirements or critical systems for which a small mistake can lead to
adverse consequences.

Systems 2023, 11, 301 12 of 24

6.4. The Vertical Relationship between GRL and UCM Models

The meta-class URNlink (see Figure 1) specifies an important concept that introduces
the relationship between GRL and UCM elements. It allows URN modelers to think, among
others, about the traceability, refinement and composition between the objects specified in
the GRL and UCM models. Such a relationship is further illustrated in Figure 6.

Figure 6. The inspiring relationship between GRL and UCMs, extracted from [35].

To the best of the authors’ knowledge, before the OCL implementation of mapping
rules [16], the implementation of URNlink was limited to a visual connection between the
model elements of GRL and UCM. As discussed in the previous section, this brings forth
the importance to investigate the extent to which UCM elements can be traced back to
GRL ones.

From URN construction, it appears that each UCM element is linkable to GRL opera-
tional element(s) (principally, actors’ definitions, tasks, resources and beliefs) that collec-
tively contribute to satisfy GRL goals and softgoals. This is justifiable since GRL operational
elements representing functional requirements are directly specified in UCM as can be
observed in Figure 6.

7. An Improved URN Process

In the previous section, we argued that some problems in the URN models, notably,
the inconsistency and non-traceability, are due to the URN construction process, especially
when the two URN models are developed concurrently or when the UCM model is devel-
oped before the goal model. Although we cannot yet make a rigid conclusion regarding
the vertical relationship between GRL and UCM, we have at least provided convincing
elements to show that a UCM model is at a lower abstraction level than the GRL. This is
further supported by the fact that, from the current URN process, most UCM inputs are
obtained from the GRL model. Therefore, to correct some of the limitations of the current
process and, in so doing, improve the quality of the URN models, we propose in this section
an improved version of the URN construction process. This involves a three-step approach
with an improved GRL model construction, namely, the bridging approach to facilitate the
UCM specification of an input GRL model and an improved UCM model construction.

7.1. The Improved GRL Model Construction Process

Our proposed GRL process, illustrated in Figure 7, is based on the current URN process
in Figure 2, the main difference being that the process is now an independent module, with
two added tasks, that can be implemented, manipulated and/or updated independently of
any other part of the URN process. With an appropriate bridging method, the process can

Systems 2023, 11, 301 13 of 24

be linked to any other existing software methods or process not necessarily related to URN.

Problem description,

business objectives,

use cases, …

Requirements elicitation

and elaboration

Non-Functional

Requirements analysis

Functional

Requirements analysis

Softgoal refinement in

GRL model

Goal decomposition

in GRL model

Softgoal/Goal

operationalization in GRL

model

Softgoal is

sufficiently

refined?

Goal is

sufficiently

decomposed?

GRL model evaluation

Final GRL model /

Design rationales

New goal

Yes Yes

No No

Figure 7. The proposed GRL model construction.

7.1.1. Process Description

The inputs to the proposed GRL model construction are the same as those in Figure 2.
We have added the “Requirement elicitation and elaboration” phase in the process. As
discussed earlier, in practice and in most cases, the initial project description provides very
little information to enable the system developer to proceed directly with the requirements
specification. Thus, the necessity for this phase to explicitly proceed with the requirements
elicitation during which proper inputs to GRL are identified, analyzed and categorized
into, for instance, non-functional and functional requirements. Thereafter, the analysis
of non-functional and functional requirements can be performed followed by softgoals
and goals refinement and operationalization.The last step of the process is the GRL model
evaluation, whereby, based on the chosen strategy (e.g., [31]), alternative solutions to
softgoals and goals satisfaction are generated. Algorithm 1 summarizes the process and
therefore constitutes the first step toward its formalization.

Systems 2023, 11, 301 14 of 24

Algorithm 1: The improved GRL construction algorithm
input : Problem_description, Business_objectives, Use_case, Scenarios, . . .
output : GRLModel
begin

InputData←−
Problem− description, Business− objectives, Use− case, Scenarios, . . .

Requirements_Elicitation(In : InputData, Out : ListFRs, ListNFRs)
Initialize (GRLModel)
AnalysisOf(ListFRs, GRLModel)
AnalysisOf(ListNFRs, GRLModel)
foreach sgoal ∈ GRLModel do

while sgoal not sufficiently refined do
Refine(sgoal, GRLModel)

foreach goal ∈ GRLModel do
while goal is not sufficiently decomposed do

Decompose(goal, GRLModel)

Traverse(GRLModel, AllGoals)
foreach Elt in AllGoals do

Operationalize(Elt, GRLModel)
Evaluate(GRLModel)

7.1.2. The GRL Model of the Case Study

The GRL model of the case study obtained by applying the proposed GRL modeling
process is represented in Figure 8. Knowing that the GRL model construction mainly
depends on the developer’s analysis of the inputs and is therefore far from being a deter-
ministic process, we follow the line of thinking used to produce the model in Figure 4 and
avoid going into detail when refining and operationalizing the softgoals and goals. The
detailed refinement of goals would very likely lead to differences that may not be related
to the process but rather to the alternative perceptions or views of the problem by the
developer that may arise during detailed analysis of possible solutions.

Figure 8. The proposed GRL model of the case study.

Systems 2023, 11, 301 15 of 24

7.1.3. Presentation and Analysis of the GRL Model of the Case Study

As mentioned earlier, the GRL modeling process is not deterministic, and so, with the
same inputs, different developers may very likely produce models with some differences.
It is therefore important to consider, in addition to the output, the views of the developer.
That is why we strove to keep the model as simple as possible. In both cases where the
current and the proposed URN processes were applied to generate the resulting models,
respectively in Figures 4 and 8, the GRL elements describing the intentions of each of
the actors were included in the actor’s definition. The relationships between elements in
different actors were limited to the essentials. Such relationships require a more detailed
analysis of the system and hence are likely to introduce in the model elements that may
depend more on the developer’s perception of the problem than the process. With this
limitation, the two models are exactly the same. The two models might have been different
if the same outputs from the elicitation phase were not used in both processes.

From the initial requirements, the voter’s intention is for the system to be easy to use
which is specified as a softgoal, named easy to use in the GRL model. The two goals of
the “Vote officer” are to have a simplified voting process and a highly secured system. In
the refinement and operationalization phase, the analysis of the goals, which is relatively
subjective as depends highly on the developer’s judgment, results in the following:

1. Easy to use is decomposed into two complementary sub-goals: the first is GUI; having
a system with a graphical user interface would contribute to rendering the system
easy to use. The second goal is to Provide training and assistance by making training
videos, as well as online tips with audio instantly accessible to users. Hence, we (the
developers) are convinced that the system would be easy to use if the three tasks,
including the development of a graphical user interface, are altogether successfully
implemented. A different developer with more or less knowledge of the field, user
experience, existing tools, etc. may have a different understanding of the softgoal and,
hence, a different solution.

2. Having a Simplified vote process as intended by the vote officer would also contribute
to making the system easy to use. In return, developing a GUI in addition to the way
people cast votes would help to simply the voting process.

3. Another concern of the vote officer is for the entire system to be Highly secured. This
softgoal is decomposed into two complementary sub-softgoals: the Software security
and the Hardware security, which depends on a security company to ensure the safety of
the physical equipment. The software security is achieved through user Authentication.
A user can be authenticated by means of biometrics or a password.
The belief that a certain class of voters may not easily use a password is in favor of the
biometric solution.

The initial quantitative values were allocated to some elements mainly to render the
evaluation of the final GRL model possible. However, some light justifications can be
provided in some cases. For instance, based on the two beliefs that “a certain class of
voters may not easily use password” and that “Appropriate biometric can accommodate
everyone”, a higher quantitative value was allocated to the biometric authentication. This
could be different if the cost associated to each alternative solution was considered. After
the evaluation of the GRL model, based on the color of each element, namely, dark green
for the most prioritized alternative (in color printing) or simply the darkest (in black
and white printing), it appears, for instance, that the software security and the biometric
authentication are chosen over other alternatives. The evaluated GRL model is shown
in Figure 8. If this model is the selected one, then the password authentication will not
be considered in subsequent models as the chosen solution for user authentication is the
biometric authentication.

7.2. Preparing a GRL Model for UCM Specification

Despite the incontestable contribution of GRL to the analysis of functional and non-
functional requirements abstracted with the concepts of goals and softgoals, one of the

Systems 2023, 11, 301 16 of 24

limitations of the approach is the difficulty for a GRL model to serve as input [36]. Although
such difficulties maybe alleviated when applying GRL models to UCM specification, as
they both share the same tool support and are parts of the same standardized notation, for
the purpose of modularity and maintenance, it is important to have a bridging subsystem
between them. The main purpose of the subsystem would, for instance, be to traverse the
input GRL model and generate the information necessary for UCM modeling and ensure
traceability between the two models. We found it important to introduce the subsystem;
however, the full development of the system is outside the scope of this paper.

7.3. The Improved UCM Model Construction Process

In the first place, the proposed UCM modeling process is an independent process
that accepts as inputs generic tasks, scenarios, use cases and resources. Such inputs may
be generated directly from a GRL model or any other source. We have also made it
possible to have softgoals describing non-functional requirements as input. This may seem
unusual but not surprising because, for instance, since its creation, UCM has long been
used for early performance analysis of complex systems [37]. UCM has always been an
independent process since its creation and this was the case with the early UCM tool,
namely, UCMNav [38], as well as the most recent and current tool, jUCMNav [28,29]. The
proposed UCM process is represented in Figure 9 and discussed in the subsequent section.

Figure 9. The proposed UCM model construction.

Systems 2023, 11, 301 17 of 24

7.3.1. The UCM Process Description

The discussion on the proposed UCM process is conducted from the perspective of
addressing the consistency problem in the URN. In this regard, the UCM modeling is
performed with consideration of the GRL model, from which inputs to UCM are generated.
The entire process is depicted in Figure 9. The intermediary sub-system, named GRL-
UCM Bridging system, is intended to be a plugin (or added functionalities to the existing
tools) whose main purpose is to scan the input GRL model or part of it to generate all the
information needed for the UCM modeling, as well as information necessary to ensure the
traceability between the resulting UCMs and the input GRL model.

7.3.2. The Processing of the Standard Inputs

The commonly known inputs to UCM are generic tasks, describing functional re-
quirements, from a GRL model. GRL actors and resources are equally used in the UCM
specification. In the same vein, use cases or scenarios are also direct inputs to UCMs.
However, the processing of GRL tasks requires, in most cases, more effort for their analysis
than use cases and scenarios. Thus, there is necessity for the scenario elaboration phase
during which tasks and use cases are analyzed in detail to produce detailed scenarios and
alternatives. This analysis enables the drawing of use case paths and path segments with all
the other necessary path elements such as start points, responsibility points, end-point, etc.
in the next step. In addition, the analysis of other inputs such as GRL actors and resources
stimulates the drawing of architectural components and the binding of paths and path
segments to them. In practice, there is no prescribed order in the drawing of components
and use case paths. The processing of softgoals in UCM intervenes after the first draft of
UCMs is completed.

7.3.3. The Processing of the Input Softgoal

As illustrated in Section 6.2, a number of actions performed on the model in con-
struction are essentially conducted with the implicit intention to achieve non-functional
requirements and so to improve the quality of the model. The fact that such actions are
generally not documented further complicates the traceability and consistency problems.
To address this issue, we propose to formally process softgoals in UCMs. The idea is
to continuously perpetrate the impact of NFRs into intermediate models throughout the
software life cycle until the final product is built. The development of softgoals in UCM is
based essentially on the concept of Complementary Non-Functional Actions (CNF-Actions),
introduced by Dongmo [39] (pp. 62–66).

A CNF-Action is an abstraction of any action performed on an intermediate model
to achieve a softgoal describing an NFR in addition to the initial analysis performed in
GRL. In Figure 9, the “elaboration of the complementary non-functional actions” consists
to identify for a given softgoal the possible actions that can be performed on the UCM
in construction. The common characteristics of CNF-Actions are that they are generally
applied, not on individual element but on a subset or the entire UCM model. For example,
they can be used to guide the binding of scenario paths to architectural components, as
well as the re-structuring and refinement of the initial UCMs or part of it.

7.3.4. The Processing of a New Requirement

When a new requirement is discovered, it is recommended to first develop the re-
quirement in GRL to ensure consistency between the input GRL model and the UCMs in
construction. This recommendation is relevant only when inputs to UCMs are extracted
from an input GRL model. The bridging from UCM modeling to GRL is relatively easy
because the two models are constructed with the same tool support, jUCMNav. However,
it would require more effort if the two models rely on different construction tools, for
instance, when constructing a UML model from a GRL specification.

Systems 2023, 11, 301 18 of 24

7.3.5. The Iterative Nature of the Process

The UCM and GRL models construction is inherently iterative. With the UCM model
for instance, the drawing of scenario paths, path segment, architectural components as
well as the binding of scenario paths or path segments to the components is repeated for
each input, including new requirements discovered during the construction, which are
first analyzed in GRL. In the same vein, the refinement of the initial UCM model, which
is triggered by the desire for more details and the need to continuously perpetrate the
influence of NFRs into the model for the purpose of quality improvement or any other
reason, is repeated for each input softgoal or until the expected level of details is obtained.
The process is summarized in Algorithm 2.

Algorithm 2: The improved UCM construction algorithm
input : GRLModel
output :UCM
begin

PreProcess(GRLModel, ListSo f tGoals, ListFRs)
Scenario_Elaboration(ListFRs, ListScenarios)
Initialize(UCM)
while UCM is not sufficiently refined do

foreach scenario in ListScenarios do
DrawPathSegment(scenario, UCM)
if New requirement discovered then

Call Algorithm 1

CNFActions_Elaboration(listSo f tGoals, ListCNFactions)
BindElements(ListCNFactions, UCM)
Refine(UCM)

7.3.6. Traceability with Trace Operations

When a GRL model is used as input to UCM, each GRL element to be specified in
UCM is known even beforehand. This makes it possible to create an appropriate data
structure to keep a record that relates each GRL element to UCM elements used in its
specification. It may also keep records of actions performed on the UCMs to further achieve
an input softgoal. Such a data structure permanently saved in a file should be continuously
updated during the UCMs construction process until the final model is produced. Thus,
the functionalities to update the file, export it to other platforms and retrieve needed
information from the data structure also have to be implemented. The main purpose of the
trace operations is to make it possible for developers, at different software development
phases, to trace back, for each UCM element, the input GRL element being specified, or
to identify, for each input GRL element, the UCM elements used to specify it. In the same
vein, it would provide information on CNF-actions performed on the UCMs to achieve
or further satisfy an input softgoal. Trace operations, if successfully implemented, would
facilitate the validation of a UCM model relatively to the input GRL.

7.3.7. The Resulting UCMs

The final UCM model is produced when new requirements are all processed and the
model is sufficiently refined or the expected level of detail is obtained. The UCM model of
the case study is represented in Figure 10 and discussed in the next section. The model is at
a relatively higher abstraction level to facilitate the comparison with the UCM model in
Figure 5.

Systems 2023, 11, 301 19 of 24

7.4. The Application of the Proposed UCM Process to the Case Study

In this section, the case study described on Sections 4.2.3 and 5.1 is used to illustrate
the improved UCM process discussed in the previous section. The resulting UCM model is
compared to the one obtained from the same case study by applying the process in Figure 2
in order to identify possible improvements due to the proposed process.

Figure 10. The new UCM model of the case study.

7.4.1. Description of the UCM Model of the Case Study

The inputs to the UCM specification in Figure 10 were generated from the GRL model
in Figure 8. Each of the three actors from the input GRL model is transformed into a UCM
component. One of the actors, namely, the Security company is not specified in UCM
due to the fact that the Hardware security goal whose achievement requires the services
of the Security company was rejected in favor of the Software security goal. The three
actors specified in UCM are: Voter, Vote officer, and the subsystem voting system. On the
other hand, the tasks operationalizing the selected goals are specified; these are: Biometric
authentication, Cast vote, Provide training videos, and Tips with audio:

• “Biometric authentication” aims to achieve the software security goal. The scenario
specifying this operation is visually the most complicated despite our objective to keep
scenarios’ paths as simple as possible to facilitate the comparison of the suggested
UCM process with the existing one. This is especially due to the decision to have two
starting points: one from the voter component and the other from the Vote officer’s
component. Binding the starting point to a specific component facilitates the visual
interpretation of the model but is not a necessity. The main function, specified with
the responsibility point labeled Biometric authentication, is to authenticate a user using
the input biometric data. This results in a system accepting or denying access to
the system.

• “Cast a vote” is actually a process that can only be started after the voter has success-
fully been authenticated. A UCM process element is used to specify the process nature
of the task and a responsibility point to specify the abstract operation to cast a vote.

• The “Tips with audio” function is accessible by the user any time when the system
is running. The user activates the function represented by the responsibility point to
generate tips and audio that enable the system to provide the user with the appropriate
onscreen tips or an audio message. This functionality, as are the others, is represented
at a high level of abstraction. For example, it does not indicate when only tips or audio
is activated and how they are generated.

Systems 2023, 11, 301 20 of 24

• “Training videos” can be accessed at any time by the user during operation. The user
who wishes to watch the video has to activate the function to access training videos
represented by a UCM responsibility point. This is, in fact, an abstract representation
which has to be refined to unpack the complexity of the functionality.

7.4.2. Analysis of the UCM Model of the Case Study

This section briefly touches on three points: the comparison of the UCMs in Figures 5 and 10,
the traceability of GRL and UCM models, and the possible contribution of input softgoals
in the refinement of the UCM model.

As depicted in Table 1, most of the selected functionalities or generic tasks are specified
in both UCM models, except for the password authentication. As discussed earlier, the
presence of this functionality in the model in Figure 5 is due to the current construction of
UCM and GRL models allowed by the concurrent process. We argued earlier that this is
one source of inconsistency in URN models. On the other side, the absence of the same
task in the UCM in Figure 10 illustrates our suggestion to delay UCM modeling until the
final evaluated GRL model is obtained. In fact, from the GRL model in Figure 8, it is clear
that the biometric and password authentications are two alternative solutions for which
the biometric authentication is prioritized. Therefore, the password authentication should
not be implemented. With complex systems with hundreds of functionalities, if proper care
is not taken while developing the UCM and GRL models in parallel, the number of such
irrelevant functionalities introduced into the system can also be very high.

Table 1. Comparing the two UCMs.

Comparing the Two UCMs Based on Specified Functionalities

Task/Generic Operation UCM in Figure 5 UCM in Figure 10
(Current Process) (Improved Process)

Biometric authentication Yes Yes
Password authentication Yes No
Casting a vote Yes Yes
Generate Tips and Audio Yes Yes
Access training videos Yes Yes

Tracing UCM Elements from the Input GRL

Being able to trace the elements of the an input GRL model from the generated UCM is
important to ensure the consistency of the URN models. It can be observed from the UCM
in Figure 10 that the initial UCM, which is not yet refined, is closely related to the input
GRL model from which it was generated. In most cases, the names of GRL elements such
as the generic tasks and resources are still very similar in the UCM, making it relatively
easy to map the elements of the two models. We therefore suggest to create a mapping (or
a traceability) table as soon as the initial UCM is developed to link the elements of the two
models, and to update the table progressively when the UCM model is being refined. If
properly documented, the table can help, for instance, to guide the formulation of OCL
constraints as suggested by Akhigbe et al. [16] to ensure the consistency of both models. It
can equally be a good source of inspiration or a guide when refining the UCM model.

Refining the Initial UCM

In general, the initial UCMs need to be refined to reach the desired level of detail.
Even when the input scenarios are sufficiently detailed, the UCMs model produced would
very likely still need to be refined to include the properties or functionalities related
to the system as a whole such as, for instance, inter-process communication, network
communication, connecting sub-systems or plugins to the main system, etc. UCM elements
such as AndFork, AndJoin, OrFork, OrJoin, Timer, WaitingPlace, Failure points, Stubs and
Plug-ins are provided to serve this purpose.

Systems 2023, 11, 301 21 of 24

Considering the UCM model of the case study in Figure 10, each functionality/generic
task specified needs to be further analyzed and refined. It is relatively easy to observe
that the transformation from GRL to UCM did not bring any major change to the initial
GRL element. In most cases, for a given GRL task describing a (generic) functionality, the
transformation consisted to think about the triggering event and the possible postcondi-
tion(s) for the task. The triplet—triggering event/starting condition, the GRL task, and the
postcondition(s)—is therefore used to create a scenario path in UCM where:

1. A UCM start point specifies the triggering event or precondition.
2. A UCM responsibility point specifies the GRL task.
3. A UCM endpoint specifies each possible post-condition.

Although there are no prescribed transformation rules to guide the UCM modeling of
an input GRL graph, having an initial UCM map that is closely related to the input GRL
can considerably facilitate the traceability between the two models. Sketching a traceability
table linking back the elements of the initial UCM to those of the GRL graph could very well
facilitate the UCM refinement process and contribute to keep the different intermediary
models of the system being developed consistent. During the refinement, the source and
the why of UCM element(s) being refined would be easily accessible. This also justifies the
need to have softgoals (GRL elements describing non-functional requirements) as inputs
to UCM.

Traditionally, the refinement of a UCM functionality is (implicitly) based on its business
scenario and/or the developer’s understanding of the functionality. These two aspects
may not be enough to avoid, for instance, inconsistencies and errors in the refined model
if proper care is not taken during the refinement process. Furthermore, in addition to
the decomposition of individual functions, the system as a whole may also need to be
refined, for example, to decompose the entire system into sub-systems, specify network
communication, secure some critical parts of the system, etc. In this regard, we strongly
believe that the knowledge and continuous analysis of the input softgoals/non-functional
requirements, even though they are not explicitly represented in UCM, would provide
guidance during the process and help to improve the quality of the final model.

To conclude the section, let us consider the functionality to access the training videos.
When decomposing this function, a number of possibilities is considerable, among which
only the most appropriate ones should be retained:

• Keep a database of videos. For instance to ensure that all users access the same version
of the videos.

• Install a video player.
• Run a video player to play a downloaded video.
• Download a video and keep a copy in local host.
• Play a video directly online.
• Ensure a stable network connection.
• Others as needed.

Some of these activities can be combined to ensure access to the training videos. How-
ever, knowing that the functionality itself exist to facilitate user experience and considering
this goal when refining the functionality, would consequently limit the choice of activities
and the way to combine them to construct the business or system scenario. For example,
playing a video directly online seems to be an appropriate solution as it would require the
user to select a video (from those available in the shared database) and start playing. The
associated activities, including the network connection, would therefore be encapsulated in
a black box hiding their complexity to the user.

8. Future Work

It is now a duty to develop a tool to support the proposed URN process. To this end,
it seems appropriate to first investigate the best possible way to do so. For instance, to
literally modify the existing tool, it is necessary to develop a new plugin and attach to

Systems 2023, 11, 301 22 of 24

the existing jUCMNav tool or to develop a new tool from scratch independently from the
existing one. We are also considering the development of a framework or guidelines to
facilitate the analysis of softgoals in UCM modeling to improve the quality of the final
UCM maps and, hence, that of the URN.

Conducting an empirical study, to confirm the contribution of the proposed URN
process to improve the usability of URN as well as the quality of the resulting models,
would equally be a good motive for further efforts. A plausible means would be to develop
appropriate instruments to collect some statistical data on the use of this model from
different sources in order to obtain feedback about the models’ usability.

9. Conclusions

This work has analyzed the existing URN models’ construction process, identified
some sources of problems in the final URN models and proposed an improved construction
process. All the important ideas raised were illustrated using a reasonably sized case
study. The proposed URN models’ construction process consisted to the splitting of the
existing process into two independent, ordered and interrelated processes where the GRL
model is first constructed, followed by UCMs with inputs to UCM extracted from the
GRL model. Due to the (syntactic and semantic) limitations of GRL to serve as input
to other systems [36], it appears necessary to think about a mechanism to extract the
needed information from a GRL model to serve as inputs to other methods. We have
also endeavored to demonstrate the benefit of having softgoals describing non-functional
requirements as input to UCM and provided some means to effectively use softgoals in
UCM modeling. The use of non-functional requirements in a UCM specification is, in fact,
an attempt to address in URN the well-known challenging and well-supported long-lasting
problem of finding means to develop NFRs alongside the FRs [40,41].

Author Contributions: Conceptualization, C.D. and J.A.V.d.P.; methodology, C.D.; software, C.D.;
validation, J.A.V.d.P. and C.D.; formal analysis, J.A.V.d.P.; investigation,C.D. and J.A.V.d.P.; resources,
C.D.; writing—original draft preparation, C.D.; writing—review and editing, C.D. and J.A.V.d.P.;
supervision, J.A.V.d.P.; project administration, C.D.; funding acquisition, J.A.V.d.P. All authors have
read and agreed to the published version of the manuscript.

Funding: The APC of this article is funded by page fees from the University of South Africa (Unisa)
and the Unisa research professor fund of the joint author.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cervantes-Ojeda, J.; Gómez-Fuentes, M.; Chacón-Acosta, G. Can non-developers learn a simplified modeling notation quickly?

J. Softw. Evol. Process. 2022, 34, e2481. [CrossRef]
2. Grobelna, I. Scratch-Based User-Friendly Requirements Definition for Formal Verification of Control Systems. Inform. Educ. 2020,

19, 223–238. [CrossRef]
3. Canché, M.; Ochoa, S.F.; Perovich, D.; Gutierrez, F.J. Analysis of notations for modeling user interaction scenarios in ubiquitous

collaborative systems. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 5321–5333. [CrossRef]
4. van der Poll, J.A.; Kotzé, P.; Ahmed, S.; Thiruvengadam, P.; Asmaa, A. Combining UCMs and Formal Methods for Representing

and Checking the Validity of Scenarios as User Requirements. In Proceedings of the SAICSIT’03: Proceedings of the 2003 Annual
Research Conference of the South African Institute of Computer Scientists and Information Technologists on Enablement through
Technology, Johannesburg, South Africa, 17–19 September 2003; pp. 111–113.

5. Qaisar, A.M.; Dragos, T.; Johan, L. Using UML Models and Formal Verification in Model-Based Testing. In Proceedings of
the 2010 17th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, Oxford, UK,
22–26 March 2010; pp. 50–56. [CrossRef]

6. Rasoolzadegan, A.; Barforoush, A. Reliable yet flexible software through formal model transformation (rule definition). Knowl.
Inf. Syst. 2014, 40, 79–126. [CrossRef]

7. Jean-Raymond, A. Formal Methods in Industry: Achievements, Problems, Future. In Proceedings of the 28th International
Conference on Software Engineering, Shanghai, China, 20–28 May 2006; pp. 761–768. [CrossRef]

http://doi.org/10.1002/smr.2481
http://dx.doi.org/10.15388/infedu.2020.11
http://dx.doi.org/10.1007/s12652-019-01578-7
http://dx.doi.org/10.1109/ECBS.2010.13
http://dx.doi.org/10.1007/s10115-013-0621-2
http://dx.doi.org/10.1145/1134285.1134406

Systems 2023, 11, 301 23 of 24

8. Alagar, V.S.; Periyasamy, K. Specification of Software Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany,
2011.

9. Gherabi, N.; Bahaj, M. Robust representation for conversion UML class into XML Document using DOM. arXiv 2012,
arXiv:1205.5921.

10. Brink, L.; Stoter, J.; Zlatanova, S. UML-Based Approach to Developing a CityGML Application Domain Extension. Trans. Gis
2013, 17, 920–942. [CrossRef]

11. Amyot, D.; He, X.; He, Y.; Cho, D.Y. Generating Scenarios from Use Case Map Specifications. In Proceedings of the QSIC ’03:
Proceedings of the Third International Conference on Quality Software, Dallas, TX, USA, 6–7 November 2003; p. 108.

12. Abdelzad, V.; Amyot, D.; Alwidian, S.A.; Lethbridge, T.C. A Textual Syntax with Tool Support for the Goal-oriented Requirement
Language. In Proceedings of the Eighth International i* Workshop (ISTAR 2015), Ottawa, ON, Canada, 24–25 August 2015;
pp. 61–66.

13. Kehrer, T.; Ihler, E. Process-integrated refinement patterns in UML. In Proceedings of the 21st International Conference on
Software and Systems Engineering and their Applications (ICSSEA), Paris, France, 9–11 December 2008.

14. Said, M.Y.; Butler, M.; Snook, C. Class and state machine refinement in UML-B. In Proceedings of the Workshop on Integration of
Model-Based Formal Methods and Tools (Associated with IFM 2009), Eindhoven, The Netherlands, 2–3 November 2009.

15. Liu, Z.; Li, X.; Liu, J.; Jifeng, H. Consistency and refinement of UML models. In Consistency Problems in UML-Based Software
Development: Understanding and Usage of Dependency; Springer: Berlin/Heidelberg, Germany, 2004; p. 19.

16. Akhigbe, O.; Amyot, D.; Anda, A.A.; Lessard, L.; Xiao, D. Consistency Analysis for User Requirements Notation Models. In
Proceedings of the iStar, Beijing, China, 12–13 September 2016; pp. 43–48.

17. Sebastián, G.; Gallud, J.A.; Tesoriero, R. Code generation using model driven architecture: A systematic mapping study.
J. Comput. Lang. 2020, 56, 100935. [CrossRef]

18. Ozkaya, M.; Erata, F. Understanding Practitioners’ Challenges on Software Modeling: A Survey. J. Comput. Lang. 2020, 58, 100963.
[CrossRef]

19. ITU-T, Recommendation Z.151 (10/12), User Requirements Notation (URN)—Language Definition, Geneva, Switzerland. 2012.
Available online: https://www.itu.int/rec/T-REC-Z.151/en (accessed on 6 June 2023).

20. Amyot, D.; Mussbacher, G. URN: Toward a New Standard for the Visual Description of Requirements. In Telecommunications and
Beyond: The BroaderApplicability of SDL and MSC; Sherratt, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 21–37.

21. Amyot, D.; Mussbacher, G. User Requirements Notation: The First Ten Years, The Next Ten Years (Invited Paper). J. Softw. 2011,
6, 747–768. [CrossRef]

22. Buhr, R.J.A.; Casselman, R.S. Use Case Maps for Object-Oriented Systems; Prentice Hall: Hoboken, NJ, USA, 1999.
23. Liu, L.; Yu, E. From Requirements to Architectural Design—Using Goals and Scenarios. In Proceedings of the ICSE 2001, Toronto,

ON, Canada, 12–19 May 2001.
24. Roy, J.F.; Kealey, J.; Amyot, D. Towards Integrated Tool Support for the User Requirements Notation. In System Analysis and

Modeling: Language Profiles; Gotzhein, R., Reed, R., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2006; Volume 4320, pp. 198–215.

25. Buhr, R.J.A. Use Case Maps: A New Model to Bridge the Gap Between Requirements and Design. In Proceedings of the SCE
95—Conttribution to the OOPSLA 95 Use Case Map Workshop, Austin, TX, USA, 15 October 1995; pp. 1–4.

26. Amyot, D.; Buhr, R.J.A.; Gray, T.; Logrippo, L. Use Case Maps for the Capture and validation of Distributed Systems Requirements.
In Proceedings of the ISRE’99, Fourth International Symposium on Requirements Engineering, Limerick, Ireland, 7–11 June 1999.

27. Mussbacher, G.; Amyot, D. Goal and Scenario Modeling, Analysis, and Transformation with jUCMNav. In Proceedings of the
ICSE Companion, Washington, DC, USA, 16–24 May 2009; pp. 431–432.

28. Mussbacher, G.; Ghanavati, S.; Amyot, D. Modeling and Analysis of URN Goals and Scenarios with jUCMNav. In Proceedings
of the 2009 17th IEEE International Requirements Engineering Conference, Washington, DC, USA, 31 August–4 September 2009;
pp. 383–384. [CrossRef]

29. Amyot, D.; Rashidi-Tabrizi, R.; Mussbacher, G.; Kealey, J.; Tremblay, E.; Horkoff, J. Improved GRL Modeling and Analysis with
jUCMNav 5. In Proceedings of the iStar, Valencia, Spain, 17–18 June 2013; pp. 137–139.

30. Amyot, D.; Ghanavati, S.; Horkoff, J.; Mussbacher, G.; Peyton, L.; Yu, E. Evaluating goal models within the goal-oriented
requirement language. Int. J. Intell. Syst. 2010, 25, 841–877. [CrossRef]

31. Baslyman, M.; Amyot, D.; Mylopoulos, J. Reasoning about Confidence in Goal Satisfaction. Algorithms 2022, 15, 343. [CrossRef]
32. Merx, G.G.; Norman, R.J. Unified Software Engineering with Java; Prentice-Hall, Inc.: Hoboken, NJ, USA, 2006.
33. Sommerville, I. Software Engineering, 8th ed.; Addison-Wesley: Boston, MA, USA, 2007.
34. Herrmann, A.; Paech, B. MOQARE: Misuse-oriented quality requirements engineering. Requir. Eng. 2008, 13, 73–86. [CrossRef]
35. Gregor, V.B. User Requirements Notation (URN). Powerpoint Presentation. 2010. Available online: http://csis.pace.edu/

~marchese/CS775/Lectures/User%20Requirements%20Notation.pptx (accessed on 15 October 2021).
36. Mussbacher, G.; Amyot, D.; Heymans, P. Eight Deadly Sins of GRL. In Proceedings of the iStar, Trento, Italy, 28–29 August 2011;

pp. 2–7.
37. Dorin Bogdan, P.; Murray, W. Software Performance Models from System Scenarios. Perform. Eval. 2005, 61, 65–89. [CrossRef]
38. Miga, A. Application of Use Case Maps to System Design with Tool Support. Ph.D. Thesis, Carleton University, Ottawa, ON,

Canada, 1998.

http://dx.doi.org/10.1111/tgis.12026
http://dx.doi.org/10.1016/j.cola.2019.100935
http://dx.doi.org/10.1016/j.cola.2020.100963
https://www.itu.int/rec/T-REC-Z.151/en
http://dx.doi.org/10.4304/jsw.6.5.747-768
http://dx.doi.org/10.1109/RE.2009.56
http://dx.doi.org/10.1002/int.20433
http://dx.doi.org/10.3390/a15100343
http://dx.doi.org/10.1007/s00766-007-0058-9
http://csis.pace.edu/~marchese/CS775/Lectures/User%20Requirements%20Notation.pptx
http://csis.pace.edu/~marchese/CS775/Lectures/User%20Requirements%20Notation.pptx
http://dx.doi.org/10.1016/j.peva.2004.09.005

Systems 2023, 11, 301 24 of 24

39. Dongmo, C. Formalising Non-Functional Requirements Embedded in User Requirements Notation (URN) Models. Ph.D. Thesis,
The University of South Africa, Pretoria, South Africa, 2016. Available online: https://uir.unisa.ac.za (accessed on 6 June 2023).

40. Silva, A.; Pinheiro, P.; Albuquerque, A.; Barroso, J. A Process for Creating the Elicitation Guide of Non-functional Requirements.
In Software Engineering Perspectives and Application in Intelligent Systems; Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P.,
Prokopova, Z., Eds.; Springer International Publishing: Cham, Switezerland, 2016; pp. 293–302.

41. Cai, K.Y. Non-Functional Computing: Towards a More Scientific Treatment to Non-Functional Requirements. In Proceedings of
the 31st Annual International Computer Software and Applications Conference (COMPSAC 2007), Beijing, China, 24–27 July 2007;
Volume 2, pp. 493–494. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://uir.unisa.ac.za
http://dx.doi.org/10.1109/COMPSAC.2007.156

	Introduction
	Related Works
	An Overview of the User Requirements Notation (URN)
	The URN Meta-Model
	The Goal-Oriented Requirement Language (GRL)
	The Use Case Maps (UCMs)
	The URN Construction Tool: jUCMNav

	The URN Models Construction Process
	The GRL Model Construction
	Developing Softgoals and (Hard) Goals
	Developing Other Intentional Elements: Task, Resource and Belief
	Connection Points between Softgoals and (Hard) Goals

	The UCM Construction
	The Construction of UCM Paths and Path Elements
	Drawing UCM Components and the Binding of UCM Paths to Components
	Refining the UCM Model

	An Analysis of the URN Construction Process
	The URN Inputs
	Stakeholders
	Stakeholders' Goals
	Business Use Cases
	The URN Model of the Case Study
	Observation on GRL and UCM Models' Construction
	Analysis of URN Outputs

	Some Challenges with the Standard URN Process
	Inconsistency between the GRL and UCM Models
	Traceability Problem
	Specification of Irrelevant Requirements
	The Vertical Relationship between GRL and UCM Models

	An Improved URN Process
	The Improved GRL Model Construction Process
	Process Description
	The GRL Model of the Case Study
	Presentation and Analysis of the GRL Model of the Case Study

	Preparing a GRL Model for UCM Specification
	The Improved UCM Model Construction Process
	The UCM Process Description
	The Processing of the Standard Inputs
	The Processing of the Input Softgoal
	The Processing of a New Requirement
	The Iterative Nature of the Process
	Traceability with Trace Operations
	The Resulting UCMs

	The Application of the Proposed UCM Process to the Case Study
	Description of the UCM Model of the Case Study
	Analysis of the UCM Model of the Case Study

	Future Work
	Conclusions
	References

