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Abstract: The rapid growth of cloud computing has led to the development of the Software-Defined
Network (SDN), which is a network strategy that offers dynamic management and improved per-
formance. However, security threats are a growing concern, particularly with the SDN controller
becoming an attractive target for malicious actors and potential Distributed Denial of Service (DDoS)
attacks. Many researchers have proposed different approaches to detecting DDoS attacks. However,
those approaches suffer from high false positives, leading to low accuracy, and the main reason
behind this is the use of non-qualified features and non-realistic datasets. Therefore, the deep learning
(DL) algorithmic technique can be utilized to detect DDoS attacks on SDN controllers. Moreover, the
proposed approach involves three stages, (1) data preprocessing, (2) cross-feature selection, which
aims to identify important features for DDoS detection, and (3) detection using the Recurrent Neural
Networks (RNNs) model. A benchmark dataset is employed to evaluate the proposed approach
via standard evaluation metrics, including false positive rate and detection accuracy. The findings
indicate that the recommended approach effectively detects DDoS attacks with average detection
accuracy, average precision, average FPR, and average F1-measure of 94.186%, 92.146%, 8.114%, and
94.276%, respectively.

Keywords: deep learning; Recurrent Neural Networks; Distributed Denial of Service; Software-
Defined Networking

1. Introduction

SDN is an innovative network architecture that enhances network performance by
decoupling the two major planes: the control plane and the data plane [1]. The SDN
controller manages, controls, and enables OpenFlow forwarding rules, serving as a logical
node [1]. As described by [2], an SDN comprises two primary tiers: the management plane
(housing the SDN controller) and the information plane (consisting of OpenFlow switches).

Modern cloud computing and hyper-scale cloud architecture have significantly in-
creased the popularity of SDN. This is attributed to its ability to enhance network efficiency
and streamline administration processes. By separating the data and control planes, SDN
enables logical management within a physical network architecture. However, despite its
technological advancements, SDN introduces new security concerns, especially in light
of existing and emerging threats [3–5]. One particular area of concern is the vulnerability
of SDN controllers to DDoS attacks. In an SDN network, DDoS attacks pose a significant
threat to the controller. Figure 1 illustrates the impact of DDoS attacks targeting the SDN
network controller.

Additionally, DDoS attacks are typically executed by leveraging numerous compro-
mised machines to generate a massive influx of traffic toward the target machine or SDN
controller. Consequently, the targeted machine faces an overwhelming resource burden as
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it attempts to process the influx of network traffic, rendering it unable to fulfill its intended
functions. Over time, DDoS attacks have become increasingly prevalent and destructive,
capable of disrupting a wide range of network services. Furthermore, they are notori-
ously challenging to detect and mitigate effectively. Therefore, the timely detection and
prevention of DDoS attacks represent critical concerns for network service providers. Re-
grettably, the SDN controller lacks an integrated security defense system that can efficiently
distinguish between normal and abnormal network traffic [6,7].

Figure 1. DDoS Attack in SDN Controller.

Furthermore, numerous researchers have proposed different approaches to detect
DDoS attacks on SDN controllers [8–12]. However, despite the efficiency of these ap-
proaches, detecting DDoS attacks on SDN controllers remains a challenging problem.
The majority of these approaches suffer from high false positives, resulting in low detection
accuracy. This low accuracy can be attributed to two main factors: reliance on non-qualified
features and evaluation using non-realistic datasets.

For example, Wan et al. [9] demonstrated that relying on non-qualified features re-
sulted in the classifier’s inability to differentiate between attack traffic and normal traffic for
detecting DDoS attacks. Similarly, Iasc et al. [10] showed that using non-realistic datasets
does not accurately reflect the essential features of real SDN traffic and may lead to unfair
performance comparisons with other state-of-the-art approaches.

Therefore, it is crucial to address these limitations by considering qualified features and
realistic datasets when developing DDoS attack detection approaches for SDN controllers.

Hence, this research makes three main contributions:

• Proposing an Information Gain Ratio (IGR) and Chi-square-based cross-feature se-
lection mechanism. This mechanism aims to identify the most informative features
of network traffic. Additionally, a feature intersection technique is introduced to fur-
ther enhance the selection process, improving the detection of DDoS attacks on SDN
network controllers.

• Developing a robust DL RNN model trained using the selected features. This model
enables the accurate detection of UDP, TCP, and ICMP attacks by effectively capturing
the intricate behaviors associated with these attacks.
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• Evaluating the proposed model and demonstrating its promising findings through
various evaluation metrics, including false positive rate, F1 score, detection accuracy,
and precision. The results highlight the effectiveness and reliability of the proposed
approach.

The remaining sections of this research paper are structured as follows: Section 2
underlines the background. Sections 3–5 underline the associated works, discussion on
preliminaries of the proposed approach, and the DLADSC approach, respectively. Section 6
discusses the results of the experiments. Section 7 discusses the findings of the research
and provides further analysis and interpretation of the results. Finally, Section 8 concludes
the research paper, summarizing the main contributions and discussing potential future
research directions.

2. Background

This section provides an overview of the SDN architecture, discusses the role of
SDN controllers and the OpenFlow protocol, and highlights the significance of DL-based
approaches in the context of SDN networks.

2.1. SDN

SDN is a network architecture that fundamentally revolutionizes the design and man-
agement of modern network architectures, especially in today’s hyper-scale data centers
where extremely large networks are prevalent [13]. It involves the centralized control,
management, and configuration of all networking devices from a single controller [13].
The SDN architecture is typically represented in layers or planes, as illustrated in Figure 2,
which depicts the three layers: forwarding or infrastructure, control, and applications.

Figure 2. SDN Architecture.
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2.2. SDN Controllers and OpenFlow Protocol

The logically centralized SDN controller performs tasks such as analyzing, managing,
and collecting statistics on incoming network traffic packets as well as sending new instruc-
tions to the switches’ tables. Being centrally located, the controller has the responsibility
of directing all packets within the network and making decisions based on the gathered
information. In most cases, the SDN controller serves as a reflection and model of the SDN
framework. Communication with switches is facilitated through southbound application
APIs, such as OpenFlow, while SDN applications such as load balancers and firewalls rely
on northbound APIs [14].

There are various SDN controllers available in the market, ranging from open-source
OpenFlow-based controllers to commercial products such as vCloud and vSphere (VMware),
Trema (NEC), NVP (Nicira), Floodlight, and BNC (Big Switch Networks) [15]. The com-
munication protocol between the control and forwarding planes in SDN networks is
established by OpenFlow, which utilizes three message types: symmetric, asynchronous,
and controller-to-switch messages [16]. Figure 3 illustrates the OpenFlow communication
protocol in SDN networks.

Figure 3. Communication via OpenFlow Protocol.

Forwarding devices, such as OpenFlow switches, are equipped with an abstraction
layer and one or more flow tables. The OpenFlow protocol enables the establishment of
a secure communication link between the SDN controller and the switches in the infras-
tructure layer. Based on the flow entries stored in the flow table, packets are routed and
processed. Each flow entry consists of counts, match fields, and a sequence of operations.
Counters can be used to monitor flow statistics, while match fields utilize data from the
packet header to identify arriving packets. The OpenFlow switch parses the header fields of
a packet and compares them to the match field entries in the flow table. When a matching
flow entry is found, the switch executes the corresponding set of instructions. If no match
is found, the switch will either discard the packet or forward it to the controller, depending
on its instructions [15].
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2.3. DL Approaches

Artificial intelligence (AI) is a rapidly evolving field with numerous practical appli-
cations and ongoing research interests. It enables the development of intelligent software
capable of automating tasks, analyzing images, understanding conversations, making
medical diagnoses, creating smart infrastructure, empowering individuals with physical
disabilities, and supporting scientific research. Machine learning (ML) serves as the foun-
dation for most AI solutions. With the vast amount of data available today, we can utilize it
to train ML models that can make predictions and draw inferences based on the patterns
and associations present in the data. AI, ML, and deep learning (DL) share a relationship
where DL is a type of representation learning, and ML is utilized in many, though not all,
AI systems. Each section of the Venn diagram in Figure 4 also provides an example of AI
technology [17].

Figure 4. Venn Diagram Representing the Relationships Between AI, ML and DL.

DL enhances the capabilities of classical ML by introducing increased complexity
to the model and modifying data operations to enable hierarchical data representation
through multiple layers of abstraction [18,19]. One of the key advantages of DL is feature
learning, where raw data features are automatically extracted, and higher-level features
are formed through the combination of lower-level features [20]. DL excels in handling
complex problems and models, allowing for efficient parallelization. The components
of DL vary depending on the network architecture employed and may include pooling
layers, convolutions, gates, fully connected layers, activation functions, memory cells,
and encode/decode methods [21].

In addition to the existing neural network types, ongoing research is leading to the
exploration of new ones. Neural networks can be categorized based on their structure, data
flow, processing nodes (neurons), density, layers, and depth activation filters [22]. Some
commonly used neural network types include Recurrent Neural Networks (RNNs), Convo-
lutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks [23].
Each type of neural network has its own strengths and weaknesses, depending on the
specific input/output data requirements, usage scenarios, and use cases. Table 1 provides
a comparison of the inputs or outputs, architecture, practical cases, and suitable usage
scenarios for CNNs, RNNs, and LSTMs.
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Table 1. Comparison between CNN, RNN, and LTSM.

CNN RNN LSTM

Inputs or Outputs
Both the inputs and the
outputs sizes are fixed.

The size of the input and the
output that results might differ.

The size of the input and the
output that results might differ.

Model Architecture
Using filters and pooling,
feed-forward neural networks.

A Recurrent Network that re-feeds the
network with the findings.

LSTM and RNN are groups of gates
that can keep data in memory for a
protracted amount of time.

Practical Cases
Face identification, medical
analysis, image analysis, image
recognition and classification.

Text translation, sentiment analysis
natural language processing,
and speech analysis

Speech recognition, handwriting
recognition, and image processing.

Suitable Usage Scenarios Spatial data, such as a picture.
Data that are temporal or sequential,
such as text or video.

Data that are temporal or sequential,
such as text or video.

In summary, CNN, RNN, and LSTM are all popular DL approaches that have been
widely used in various domains, and every one of these approaches has its strengths and
limitations, making them suitable for different types of takes. The choice of DL models is
based on the specific problem domain and the characteristics of the data being processed.

3. Related Works

This section reviews the existing ML and DL-based approaches for detecting DDoS
against an SDN controller. This section consists of two subsections: ML-based approaches
and DL-based approaches.

3.1. ML-Based Approach

ML-based approaches are developed and improved using ML algorithms. These
approaches train IDSs to recognize malicious DDoS attacks by analyzing network traffic
properties. For instance, a method to detect and reduce the severity of DDoS attacks in SDN
was suggested by Khashab et al. [24]. They utilized six ML algorithms, including Random
Forest (RF), Logistic Regression, Naïve Bayes, K-Nearest Neighbors (K-NN), Support Vector
Machine (SVM), and Decision Trees. The results of the proposed approach indicated that
RF outperformed the other algorithms and was the most suitable classifier for their method.
However, the authors did not provide sufficient details about the dataset used or the specific
types of DDoS attacks considered. Additionally, implementing the proposed approach on
the SDN controller increases overhead during DDoS attack scenarios.

Sudar et al. [8] conducted research on using Support Vector Machine (SVM) and
Decision Trees (DTs) for detecting DDoS attacks in SDN networks. They evaluated their
proposed approach using the KDD CUP dataset. However, their method achieved inade-
quate performance, with Decision Trees achieving only a 78.

Santos et al. [12] utilized Multiple Layer Perceptron (MLP), Random Forest Algorithm,
SVM, and DTs to detect various types of DDoS attacks, including point attacks, flow
table switch attacks, SDN controller attacks, and bandwidth attacks. They evaluated
their approach using a realistic dataset. However, the results indicated poor classification
performance for MLP and SVM in detecting attacks on the controller, with an accuracy rate
of only 90%.

Celesova et al. [25] suggested a method that utilizes a Deep Neural Network (DNN) to
protect the data planes and control DDoS attacks in SDN networks. However, they used the
UNSW-NB15 dataset, which is not specifically designed for the SDN network environment,
to train, test, and evaluate their proposed system. Consequently, the method achieved low
performance in terms of calculation metrics.

In contrast, Deepa et al. [11] proposed a hybrid ML algorithm that combines Support
Vector Machine (SVM) and Self-Organizing Map (SOM) for detecting DDoS attacks in SDN
networks. The hybrid model achieved a detection rate of 90.45%, an accurate detection
rate of 96.77%, and a false alarm rate of 0.032%. However, the proposed hybrid approach
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showed low accuracy and detection rate performance. Additionally, the authors provided
limited information about the dataset and the types of DDoS attacks considered.

The ML-based approaches are listed in Table 2 along with their drawbacks.

3.2. DL-Based Approaches

In recent years, DL algorithms have played a significant role in IDSs for detecting
DDoS attacks in SDN networks. This is because DL algorithms have proven to be highly
efficient and effective, surpassing the traditional ML-based approaches. Moreover, DL
algorithms possess robust capabilities in mimicking the human brain, allowing them to
acquire features and automatically learn deep structures from raw data. There are several
DL-based approaches that have been proposed. For example, Alanazi et al. [10] proposed an
ensemble approach based on a combination of Gated Recurrent Unit (GRU), Convolutional
Neural Network (CNN), and Long Short-Term Memory (LSTM) to detect DDoS attacks in
SDN networks. The ensemble was evaluated using the CICIDS2020 dataset and achieved
high detection accuracy by selecting only four features.

Hsieh et al. [26] proposed a DL technique based on CNN and DNN to detect link
flooding attacks. They tested their approach using a generated dataset and obtained poor
results, with a detection accuracy rate of 95.03%. Additionally, the approach increased the
overhead at the controller level.

Wan et al. [9] utilized a bidirectional Long Short-Term Memory (LSTM) network to
detect such attacks in SDN networks. The proposed approach achieved successful detection
with high accuracy and low false positive rates. However, the approach was tested using a
non-SDN dataset.

Lee et al. [27] designed an Intrusion Detection System (IDS) based on four DL algo-
rithms: Multilayer Perceptron (MLP), LSTM, Stacked Autoencoder (SAE), and Convolu-
tional Neural Network (CNN), to detect DDoS attacks and secure shell (SSH) brute force
attempts in an SDN network. MLP achieved a high detection accuracy of 98.3% and 99%
for SSH attacks and DDoS attacks, respectively. However, the performance of other DL
algorithms in detecting such attacks was poor due to a lack of information regarding the
dataset and features.

Boukria et al. [28] used standard DL algorithms to detect attempts at attacks in the
communication channel (southbound API) that links the SDN controller with the SDN
infrastructure plane. The authors claimed that the proposed system achieved a detection
accuracy of 99.6%. However, the approach was tested and evaluated using a non-SDN dataset
that does not represent an SDN network. Additionally, it is limited to protecting the commu-
nication channels only. Table 2 outlines the DL-based techniques and their shortcomings.

Table 2. Summary of the Related Works of ML and DL Approaches.

Author and Ref.
Method SDN

Dataset
SDN

Domain

Detection
Accuracy Limitations

ML DL High Low

Sudar et al. [8] 3 7 7 3 7 3
Achieves low performance.
Using non-SDN dataset.

Wan et al. [9] 7 3 7 3 3 7
The approach is evaluated using a non-SDN
dataset.

Alanazi et al. [10] 7 3 7 3 3 7
The approach is evaluated using a
dataset not suitable for the SDN network.

Deepa et al. [11] 3 7 3 3 7 3

Achieves low performance.
Inadequate information about the dataset
and the types of attacks involving DDoS.

Santos et al. [12] 3 7 3 3 7 3
Achieves low detection accuracy for SDN
controller DDoS attacks.
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Table 2. Cont.

Author and Ref.
Method SDN

Dataset
SDN

Domain

Detection
Accuracy Limitations

ML DL High Low

Khashab et al. [24] 3 7 3 3 3 7

The approach performs at Controller,
increasing the workload during attacks.
It is recommended to select relevant features that
increase other ML algorithms’ system performance
and detection accuracy.

Celesova et al. [25] 3 7 7 3 7 3
Achieves low performance.
Uses a non-SDN dataset.

Hsieh et al. [26] 7 3 3 3 7 3

Achieves low performance.
The proposed approach operated at the controller,
which increases the overhead during DDoS attacks.

Lee et al. [27] 7 3 - 3 3 7
A lack of information about the
dataset and the used traffic features.

Boukria et al. [28] 7 3 7 3 3 7

The approach is evaluated using
a non-SDN dataset.
It is limited to protecting the communication
channels only.

As shown in Table 2, several approaches in the literature have achieved low detec-
tion accuracies, such as those of Santos et al. [12], Sudar et al. [8], Celesova et al. [25],
Hsieh et al. [26], and Deepa et al. [11]. Additionally, some of these approaches have
been evaluated using non-SDN datasets, including Celesova et al. [25], Sudar et al. [8],
Boukria et al. [28], and Alanazi et al. [10]. Moreover, most of the existing approaches are
implemented on SDN controllers, which can increase overhead during DDoS attacks. Over-
all, the proposed system addresses these limitations by offering an RNN-based approach
to detect DDoS attacks in the context of SDN with low FPR and high detection accuracy.

4. Preliminaries

This preliminary section aims to address the security concerns that arise within the
layers of SDN. SDN architectures encompass multiple layers, including the forwarding
or infrastructure layer, the controlling layer, and the applications layer. However, each of
these layers is susceptible to various security vulnerabilities and threats.

4.1. Security Issues in SDN

Despite the numerous capabilities and functionalities of Software-Defined Network-
ing (SDN), security remains a critical concern. The SDN controller, being the central
component responsible for managing data flow, poses the highest risk of a single-point
failure. Compromising the SDN controller can have severe consequences on the entire net-
work. Misconfigurations in SDN controllers can lead to significant repercussions, as their
programmability exposes them to potential attacks, compromising network authentica-
tion, security, and integrity. Implementing security monitoring, analysis, and response
mechanisms within SDN can help enhance network security. It is important to note that
cyberattacks targeting SDN can result in more devastating consequences compared to
traditional networks [29].

Table 3 provides an overview of the various types of potential attacks that can occur
in SDN deployments, which are categorized based on threat levels across different SDN
layers [30]. Each layer of SDN has its own specific security requirements, such as preventing
configuration errors. Failure to meet these requirements exposes the network to various
security threats and attacks. If the communication link between switches and controllers
is compromised, all system levels become vulnerable to flooding attacks. Attacks on
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enforcement security can impact the upper layers, while attacks on the authorization
process may deny users access to the controller.

Table 3. Security threats on SDN different layers.

Security Threats in SDN Layers Data Layer Controller Layer Application Layer

Illegitimate Access Unauthorized application. 7 3 3

Hijacking SDN controller. 3 3 7

Configuration Issues Lack of TLS implementation. 3 3 3

Enforcement of policy. 3 3 3

DoS Attack Flooding controller. 3 3 7

Flooding switch. 3 7 7

Modification Data Data flow tampering. 3 3 7

Data Leakage Credential management. 7 3 7

Forwarding policy discovery. 7 3 7

Various forms of malicious attacks can compromise the security of SDN networks,
including DDoS attacks, ARP spoofing attacks, packet sniffing, API exploitation, and guess-
ing the passwords or brute force attacks [30]. This research takes into account a mechanism
for aggregating feature selection that contributes to detecting DDoS attacks. We recommend
a DL RNN-based approach, which will be discussed as follows.

4.2. RNN-Based Approach

Alongside the increasing reliance on SDN technology, ensuring the security of these
networks has become paramount. One of the major threats faced by the SDN is DDoS
attacks, which can disrupt normal network functioning and compromise the availability of
services. IDS play a crucial role in detecting such attacks. However, traditionally, signature-
based IDS struggle to keep up with the evolving nature of DDoS attacks, as attackers
continuously employ new strategies. To address this challenge, DL has gained prominence
in the field of IDS [14].

In this research, we are using RNN as the preferred DL algorithm due to the follow-
ing reasons. Firstly, RNNs have internal memories that allow them to retain important
information from the input they receive. This characteristic enables them to make accurate
predictions about future data points, making them well-suited for capturing the temporal
dependencies present in the dataset. Secondly, the dataset used in this research consists of
a time series of sequential data, where the order of the data points is significant. RNNs are
particularly effective in handling such sequential data, as they can process information in a
sequential manner and learn patterns and dependencies over time. Lastly, RNNs are consid-
ered one of the most promising neural network algorithms due to their ability to incorporate
internal memory. This internal memory allows RNNs to capture long-term dependencies
in the data, making them robust and powerful in modeling complex relationships [31].

5. DLADSC Approach

This section presents the proposed approach, a Deep Learning-Based Approach for
Detecting DDoS Attacks on a Software-Defined Networking Controller (DLADSC), which
aims to detect DDoS attacks by identifying distinctive features that differentiate DDoS
network traffic from regular traffic. DLADSC consists of three stages: data preprocessing,
cross-feature selection, and an RNN-based model for detecting DDoS attacks. Each stage
plays a crucial role in the overall detection process.

The first stage involves data preprocessing, where the input data are prepared for
further analysis. This includes applying necessary transformations and normalization
techniques to ensure the data are suitable for feature extraction and selection. By cleaning
and organizing the data, they become more suitable for accurate detection.
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The second stage focuses on cross-feature selection, which is essential for identifying
the most important features in detecting DDoS attacks on the SDN controller. This is
achieved through the use of feature selection techniques such as Chi-square and IGR.
By selecting the most relevant features, the detection accuracy can be improved significantly,
leading to a more effective identification of DDoS attacks.

Once the features are selected, they are utilized in training the RNN-based detection
model. The RNN model is designed to capture the temporal patterns and dependencies
present in network traffic, making it well-suited for detecting DDoS attacks. By utilizing
the selected features, the model can learn and classify incoming traffic as either normal
or malicious.

Figure 5 provides a visual representation of these three stages, illustrating the flow of
the proposed approach. In the following sections, each stage will be described in detail,
highlighting their significance in achieving accurate and robust DDoS attack detection on
SDN controllers.

Figure 5. The architecture of the proposed approach.

5.1. Dataset Preprocessing

The proposed approach has been evaluated using the benchmark dataset “DDOS
attack SDN Dataset” [32]. This dataset was specifically generated on a testbed comprising
10 Mininet topologies, where switches are connected to a single Ryu controller. The dataset
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was created through network simulations that included both benign traffic (TCP, UDP, ICMP)
and various types of malicious traffic, such as TCP Syn, ICMP, and UDP Flood attacks.

Table 4 provides a detailed description of the benchmark dataset, highlighting its
characteristics that closely mimic a real-world SDN network environment. To ensure the
quality and effectiveness of the dataset, thorough preprocessing is essential before feeding
it into the DL model.

Table 4. Benchmark Dataset Description.

Specification Details

Total Number of Records 175,305

Number of Attack Records 43,446

Number of Normal Records 131,859

Type of Category Attack and Normal.

Normal Classes TCP, UDP, and ICMP

Abnormal Classes ICMP, TCP Syn, and UDP Flooding Attacks

Total Number of Features in the Dataset 22 features

The Calculated Features

- Packet rate is the number of packets sent per second and is calculated by
dividing the packet per flow by monitoring interval.

- Packet per flow, which is the packet count during a single flow.
- Total flow entries in the switch.
- A number of Packet_ins messages.
- Port Bandwidth is the sum of tx_kbps and rx_kbps.
- Byte per flow is the byte count during a single flow.
- tx_kbps, rx_kbps represent the data transfer and receiving rate.

The Features From the Switches

- Switch-id, Packet_count, byte_count, duration_sec, duration_nsec, which
is the duration in nanoseconds.

- rx_bytes is the number of bytes received on the switch port.
- dt field shows the date and time, which has been converted into a number.
- tx_bytes is the number of bytes transferred from the switch port.
- Total duration is the sum of duration_sec and duration_nsec.
- Source IP, Destination IP, Port number.

1. Data scrubbing or data cleaning refers to the process of correcting or eliminating data
that is duplicated, corrupted, improperly formatted, or incomplete within a dataset.

2. The data transformation process involves converting data from one format or struc-
ture into another, for example, transforming string data into numerical data so that it
applies to DL algorithms.

3. Data normalization is to minimize or even exclude duplicated data. The Mix–Max
scaler is one of the common methods to normalize the input features or variables.
It transforms all features into the range between 0 and 1. To avoid bias caused by
features that have been measured at different scales and that do not equally contribute
to model fitting, we implement a normalization approach. Specifically, we adopt
feature-wise normalization, such as Min–Max scaling, to standardize feature vectors,
as depicted in Equation (1).

xScale =
x − xmin

xmin − xmin
(1)

4. The data-balancing approach is used to ensure that the two classes in the dataset
(normal and attack) are distributed evenly. Table 4, for example, displays an im-
balanced class distribution with 131,859 normal records and 43,446 attack records.
We utilized the SMOTE oversampling method [33] to boost the number of normal
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classes to 131,859 data points in order to address this issue. The accuracy of data
categorization is greatly helped by this balancing process.

5.2. Cross-Feature Selection

The main purpose of performing cross-feature selection before utilizing the RNN
model is to enhance feature representation, reduce redundancy and noise, capture complex
feature interactions, and decrease dimensionality. By selecting the most relevant and
informative features, we aim to improve the overall performance of the model in detecting
DDoS attacks. Cross-feature selection helps to identify the features that have the highest
predictive power and are most relevant to the task at hand. This process eliminates
irrelevant or redundant features, which can introduce noise and negatively impact the
model’s performance. By focusing on the most informative features, the model can better
capture the underlying patterns and relationships in the data.

The core component of the proposed approach is the mechanism for cross-feature
selection, which identifies a set of important features from the dataset. This selection process
plays a crucial role in DDoS attack detection on the SDN controller. Extracting, ranking,
and selecting relevant and significant features from network traffic is essential for modeling
network behaviors, particularly those exhibited by botnet-triggered DDoS attacks.

The cross-feature selection phase consists of three steps: (i) ranking features based
on IGR, (ii) ranking features using the Chi-square method, and (iii) cross-features of the
top-ranking features. By employing multiple feature selection algorithms, it is possible
to achieve a consensus on the most important features that significantly contribute to the
identification of DDoS attacks on the SDN controller. This approach effectively reduces the
number of relevant features while preserving the detection accuracy. Let ( f i) denote all
features present in the dataset as follows:

( f i) = {switch, dt, src, dst, bytecount, dur, pktcount dur_nsec, tot_dur, f lows,
packetins, pktper f low, yteper f low, Pair f low, pktrate Protocol, port_no, tx_bytes,
rx_bytes, _kbpsrx_kbps, tx_kbpstot}.

(2)

Thereby, applying IGR and Chi-square on ( f i) resulted on IGR( f ′) and CHI( f ′):
IGR( f ′) = f i = {byteper f low, bytecount, pktcount, pktper f low, pktrate, dt, tot_dur,
packetins, tx_bytes, dur} and CHI( f ′) = f i = {bytecount, pktcount, Protocol, f lows, dt,
dst, Pair f low, dur, tot_dur, rx_bytes}.

Then, the features intersection chooses the features that appear in both the feature
ranking steps’ outputs, IGR( f ′) and CHI( f ′), and the remaining features are not included.
The intersection methods output between CHI( f ′) and IGR( f ′) is presented as follows
using Equation (2):

CHI(f′)
⋂

IGR(f′) = ffinal = {bytecount, pktcount, dt, tot_dur, dur} (3)

In a nutshell, the f final is used as input for the next phase. Figure 6 depicts the
cross-feature selection mechanism process.

5.3. RNN-Based DDoS Attack Detection Model

In this phase, RNN is trained to build a detection model that can effectively identify
DDoS attacks on the SDN controller using the selected cross-features ffinal. The RNN-based
DDoS attack detection process employs the target function f (x) = yi, where yi takes values
from the set 0, 1. In this set, 0 represents the normal class, while 1 represents the attack
class. The main process of the RNN is illustrated in Figure 7.
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Figure 6. Cross-feature selection mechanism process.

Figure 7. Process of RNN-based detection model.

6. Results of Experiment

Here, we explain the experimental outcomes and provide the metrics used to assess
the proposed approach.

6.1. Evaluation Metrics

We evaluated the effectiveness of the proposed approach by measuring its detection
accuracy, false positive rate (FPR), precision, and F1 measure. These metrics were calculated
based on the confusion matrix as presented in Table 5.

Table 5. Matrix of Confusion.

Class Prediction

Actual Class
Normal Attack

False Negative (FN) True Positive (TP)
True Negative (TN) False Positive (FP)

Where True Positive (TP) means that the classifier identified the attack accurately,
False Negative (FN) represents occasions when an attack was mistakenly labeled to be
normal by the classifier, False Positive (FP) means that the classifier has mistakenly labeled
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a benign instance as malicious, and True Negative (TN) represents instances in which the
classifier appropriately classified normal instances. Additionally, other evaluation metrics,
such as precision, false alarm rate (FAR), detection accuracy (DA), and F-measure, are also
used by researchers in their studies as described below:

• FAR (False Alarm Rate): This metric is used to determine how many attack samples
were mistakenly predicted relative to the total number of normal samples. The follow-
ing Equation (4) is used to calculate FAR:

FAR =
FP

TN + FP
(4)

• Precision: This metric represents the percentage of attacks successfully predicted from
a set of test samples. Equation (5) can be used to calculate precision:

Precision =
TP

TP + FP
(5)

• F1-Measure: This metric is the harmonic mean of precision and recall and is used to
evaluate the accuracy of a system. The below Equation (6) is used to calculate the F1
measure:

F1 Measure = 2× (
Precision× Recall
Precision + Recall

) (6)

• DA (Detection Accuracy): The proportion of correctly labeled cases relative to the
total number of instances is what this indicator measures. However, it is only useful
when a balanced dataset is used. The accuracy can be calculated using Equation (7):

DA =
TP + TN

TP + TN + FP + FN
(7)

The performance evaluation metrics utilized in this study are widely accepted in the
field to assess IDS performance [34]. Hence, the proposed approach is evaluated using all
these metrics.

6.2. Result of Cross-Feature Selection Mechanism

Using relevant features for training the detection model can have a significant impact
on the effectiveness of the approach. Consequently, 22 features are selected for input into
the IGR and Chi-square algorithms. The ranking of features based on IGR and Chi-square
scores is presented in Table 6.

Table 6 shows that all 22 features are assigned two score values. The first score value
is assigned by the IGR algorithm, while the Chi-square algorithm assigns the second score
value. Then, 10 out of 22 features were selected based on the highest scores. Figure 8
presents the top 10 features selected by IGR, while Figure 9 presents the top 10 features
ranked by Chi-square.

We can observe that the top 10 features selected by IGR are bytecount, pktcount,
byteperflow, pktperflow, pkrate, dt, tot_dur, packetins, tx_bytes, and dur. The highest
feature selected by IGR is bytecount with a feature score of 0.62447508. Regarding the
features selected by Chi-square, the top 10 features are bytecount, pktcount, protocol, flows,
dt, dst, pairflow, dur, tot_dur, and rx_bytes. The highest feature selected by Chi-square is
bytecount with a feature score of 32.6835706.
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Table 6. Ranking of features based on IGR and Chi-square scores.

Number Features Name IGR Chi-Square

1 bytecount 0.0.62447508 32.6835706
2 byteperflow 0.56322282 30.8833236
3 dst 0.03520766 29.1430015
4 dt 0.29919501 6.82629011
5 dur 0.20949447 3.30824831
6 dur_nsec 0.12252036 2.13023575
7 flows 0.03502166 1.88301362
8 packetins 0.23519617 1.40931663
9 pairflow 0.01022723 1.40733114

10 pktcount 0.60924854 0.945133119
11 pktperflow 0.53567551 0.895645311
12 pktrate 0.382044 0.712864682
13 portno 0.00218732 0.3840113
14 protocol 0.05085547 0.148766223
15 rx_bytes 0.20313028 0.053182109
16 rx_kbps 0.112327 0.033016546
16 src 0.09571495 0.026685311
18 switch 0.00341777 0.021747427
19 tot_dur 0.28037053 0.02169964
20 tot_kbps 0.14311258 0.016125104
21 tx_bytes 0.21996767 0.006544647
22 tx_kbps 0.09093322 0.000388616

Figure 8. Top 10 Features Selected by IGR.

Based on Figures 8 and 9, CHI( f ′) = {bytecount, pktcount, byteper f low, pktper f low,
pktrate, dt, tot_dur, packetins, tx_bytes, dur} and CHI( f ′) = {bytecount, pktcount,
Protocol, f lows dt, dst, Pair f low, durtot_durrx_bytes}. As a result, IGR( f ′)

⋂
CHI( f ′) =

f final . Therefore, f final = {bytecount, pktcount, dt, tot_dur, dur}, as shown in Table 7.

Table 7. Feature Selection Results.

No. Feature Name IGR Chi-Square

1 bytecount 0.624475 32.68357
2 dt 0.299195 3.308248
3 dur 0.209494 1.409317
4 pktcount 0.609249 30.88332
5 tot_dur 0.280371 1.407331
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Figure 9. Top 10 Features Selected By Chi-Square.

As shown in Table 7, the proposed cross-feature selection selected the significant
feature ffinal that contributes to detecting DDoS attacks on SDN. Additionally, it reduces
the number of features from 22 to 5, implying a reduction in the processing time required to
train the DL model. The features ffinal are then utilized as inputs for the RNN to generate
the detection model.

6.3. RNN Model Setup

In this subsection, we provide detailed information about the learning model configu-
ration and its architecture. RNN has been trained using the selected features ffinal, and its
architecture is displayed in Table 8 and Figure 10. To obtain optimal weight values, we
utilized the Adam optimizer in conjunction with a sparse categorical cross-entropy loss
function. The learning rate plays a crucial role in deep learning algorithms, as it determines
the magnitude of the model’s steps during each iteration. We conducted a series of exper-
iments using learning rates of 0.01, 0.001, 0.0001, and 0.00001 to determine the optimal
value for the Adam optimizer. Among these options, the learning rate of 0.01 yielded the
highest detection rate, making it the preferred choice. To mitigate the risk of overfitting,
we implemented an early stopping method. If the validation loss does not decrease after a
certain number of iterations, the training process is stopped. To achieve the best results
during testing, it is crucial to set the number of epochs in such a way that the network’s
accuracy no longer improves. Since the RNN model converged in under 100 iterations, we
consider it to be the optimal value. The hyperparameter values are determined through
experimentation. Furthermore, these hyperparameters are commonly used in existing
research, as demonstrated in [35].

Table 8. The performance metrics of the DLADSC.

Run No. Detection Accuracy %. False Positive Rate %. Precision %. F1-Measure %.

1 94.66 8.76 91.70 94.8
2 94.36 7.79 92.44 94.44
3 94.05 8.40 91.89 94.15
4 93.56 8.18 91.99 93.63
5 94.30 7.44 92.71 94.36
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Figure 10. Architecture of RNN Algorithm.

7. Results and Discussion

In this stage, an RNN-based training model is generated using the architectures
listed in Table 9, with the ffinal features. Due to the long training and inference times
required by RNN, the model is trained offline to address this issue. Once generated,
the detection model is operated online to detect DDoS attacks on the SDN controller.
To ensure consistency across all run times, the experiments were repeated five times, as they
were based on simulated datasets. Additionally, a cross-validation testing technique is
employed. Eighty percent of the data is used for training, while twenty percent is reserved
for testing. The 80/20 rule, often referred to as the Pareto principle, is a widely adopted
methodology for focusing on the most crucial aspects of a given topic. This approach
ensures an efficient and improved research method [36]. In ML classification, a confusion
matrix is a valuable tool for performance measurement. It presents a table that defines
the performance of a classification algorithm. The confusion matrix provides a visual
representation and summary of the classification algorithm’s performance, as illustrated in
Table 10.

Based on Table 10, the detection accuracy, false positive rate, precision, and F1-measure
are calculated for five-run times using Equations (3)–(6), respectively. The results of
precision, false positive rate, detection accuracy, and F1-measure after being calculated five
times are presented in Table 8.
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Table 9. The Architecture of the RNN Algorithm.

Type of Layer Output Parameter #

simple_RNN (SimpleRNN) (None, 32) 1088
dropout (Dropout) (None, 32) 0

batch_normalization (Batch
Normalization) (None, 32) 128

dropout1(Dropout) (None, 32) 0
flatten (Flatten) (None, 32) 0
dense (Dense) (None, 2) 66

Total params: 1282
Trainable params: 1218
Non-trainable params: 64.0

Table 10. RNN Confusion Matrix.

Run No. Classes Attack Normal

Run 1 Actual class
12,384 237

1121 11,683

Run 2 Actual class
12,184 437

997 11,807

Run 3 Actual class
12,184 437

1076 11,728

Run 4 Actual class
12,031 590

1047 11,757

Run 5 Actual class
12,125 496

953 11,851

Furthermore, Figure 11 demonstrates the efficient detection of DDoS attacks on SDN
controllers by the RNN using the ffinal features, achieving an average detection accuracy
of 94.186%, average precision of 92.146%, average false positive rate (FPR) of 8.114%,
and average F1-measure of 94.276%.

Figure 11. Average Result of Performance Metrics.
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Comparison Analysis of DLADSC with Existing Approaches

This subsection aims to present a fair comparison between the proposed approach
and existing approaches by evaluating them using the same dataset and testing environ-
ment. Table 11 provides a comprehensive comparison of the proposed approach and other
approaches based on various metrics, including: (i) the proposed approach, (ii) the type of
dataset used, (iii) average detection accuracy, (iv) precision, (v) false positive rate (FPR),
(vi) F-measure, and (vii) detection time.

Table 11. Comparison of DLADSC with existing DL approaches in SDN networks.

Metrics Proposed Approach Hsieh et al. [26] Boukria et al. [28]

Approach DLADSC (RNN) SPIFFY (CNN) DL logarithm
Type of Dataset DDoS attack SDN Dataset Synthetic LFA Non-SDN Dataset
Detection Accuracy 94.186% 91.976% 93.203%
Precision 92.146% 91.772% 88.472%
FPR 8.114% 8.138% 12.746%
F-Measure 94.276% 91.932% 93.546%
Detection Time (s) 1.627 1.618 1.681

Based on the comparison tabulated in Table 11, the proposed DLADSC approach
achieved remarkable performance with a detection accuracy of 94.186%, precision of
92.146%, FPR of 8.114%, F-measure of 94.276%, and a detection time of 1.627 s. In contrast,
Hsieh et al.’s SPIFFY approach achieved slightly lower results with a detection accuracy of
91.976%, precision of 91.772%, FPR of 8.138%, F-measure of 91.932%, and a detection time
of 1.618 s. Furthermore, Boukria et al.’s DL logarithm function approach showed compara-
tively lower performance with a detection accuracy of 93.203%, precision of 88.472%, FPR
of 12.746%, F-measure of 93.546%, and a detection time of 1.681 s.

The superior performance of the proposed DLADSC approach can be attributed to
the effective cross-feature selection mechanism, which aims to identify the most relevant
features (f) for detecting DDoS flooding attacks on the SDN controller. This approach
outperformed both the SPIFFY approach and the DL logarithm function approach in terms
of detection accuracy, precision, FPR, and F-measure. Additionally, the proposed approach
demonstrated a relatively lower detection time, indicating its efficiency and effectiveness
in detecting DDoS attacks.

8. Conclusions, Limitations and Future Works

Security vulnerabilities pose significant concerns in SDN networks, as attackers can
exploit weaknesses and launch DDoS attacks on SDN controllers. To address this issue,
this research paper proposes a new DL-based approach called DLADSC for detecting
DDoS attacks on SDN controllers. The proposed approach consists of three stages and
effectively detects DDoS attempts. In the first stage, a cross-feature selection method is
employed to rank the features based on scores obtained from the Chi-square and IGR
algorithms. The top-scoring features are then selected to train the RNN model using the
feature intersection mechanism.

The effectiveness of the proposed DLADSC approach is evaluated using four standard
metrics: average F1-measure, average detection accuracy, average FPR, and average detec-
tion time. The experimental results show that the proposed approach achieves 94.186% for
average detection accuracy, 92.146% for precision, 8.114% for average FPR, and 94.276%
for average F1-measure. These findings demonstrate that DLADSC can accurately identify
DDoS attacks targeting SDN controllers. Furthermore, when compared to other DL-based
approaches, DLADSC exhibits significant improvements in performance.

Although the proposed DLADSC approach opens up an exciting avenue for future
research in DDoS detection, there are a few limitations and areas for future work. Firstly,
it would be beneficial to explore different DL classifiers such as LSTM, GRU, and autoen-
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coders to assess their performance in detecting DDoS attacks on SDN controllers. Secondly,
employing various feature selection algorithms could help identify features that enhance
the SDN controller’s ability to detect DDoS attacks. Lastly, optimizing the hyperparameter
values of the RNN model using bio-inspired algorithms such as gray wolf and whale could
lead to further improvements in performance.
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