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Abstract: The evaluation of agricultural green ecological efficiency can reflect the capacity of agri-
culture for sustainable development and reduce the endogenous pollution caused by agricultural
waste in order to alleviate the weakening of agricultural ecosystems. Taking the agricultural green
economy as the research object, an evaluation index system based on the theories of green economic
efficiency and economic growth for agricultural green ecological efficiency was constructed, and the
impact mechanisms of specific indicators on agricultural green ecological efficiency were empirically
explored. In addition, based on the data envelopment analysis (DEA) model, the overall agricultural
green ecological efficiency of China from 2002 to 2021 was evaluated and the efficiency characteristics
were analyzed from multiple perspectives. Then, the indicators of policy, finance, communication,
society and other aspects were added in order to construct a comprehensive evaluation model of
agricultural green ecological efficiency using a combination of DEA and a BP neural network, and
the feasibility of the model was verified. The results indicate that the agricultural green ecological
efficiency increased from 0.7340 in 2002 to 0.8205 in 2021, an increase of 11.78%. Additionally, the tech-
nological efficiency of China’s agricultural green ecological system did not show a very obvious
trend of divergence. The results of the BP neural network were consistent with those obtained using
DEA, and the overall evolution trend of the calculated BP neural network and DEA were mutually
verified and integrated. The effectiveness and accuracy of the BP neural network was verified via a
comparison with DEA.

Keywords: agriculture green ecological efficiency; DEA; BP neural network; efficiency evaluation;
indicator system

1. Introduction

The great economic development and rapid industrialization of the past thirty years
in China have brought about a series of economic and social challenges. Industry is an
important force driving rapid economic growth and plays a critical role in the agricultural
economy. The correct handling of the relationship between the environment and develop-
ment, and guiding the transformation of traditional development methods towards green
development approaches, is a prerequisite for the development of regional innovation
ecosystems. Therefore, it is feasible to incorporate environmental factors, such as the envi-
ronmental output, into the technological innovation framework in order to measure and
analyze the efficiency of green technology innovation in rural industries, achieve resource
allocation and technological innovation, and better coordinate sustainable economic and
environmental development. However, the prerequisites for green technology innovation
in enterprises include developing methods to scientifically and objectively evaluate the
effectiveness of green technology innovation in rural industrial enterprises in China, and
analyze the distribution characteristics and changing trends observed in the green tech-
nology innovation performance of industrial enterprises in rural areas in order to more
effectively improve the efficiency and technological level of green innovation in enterprises.
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To this end, Liu [1] used panel-corrected standard error regression to study the impact
of renewable energy use on GDP and local agricultural income. The study found that the
use of renewable energy in rural areas had a significant positive impact on the income growth
of rural households. It was not only an important measure to solve the energy crisis and
global warming, but also an important force to promote industrial restructuring and rural
development. Due to the increasingly serious resource and environmental issues worldwide,
the rational use of agricultural inputs to promote green development in rural areas has become
increasingly important. Wang et al. [2] found that the intensity of agricultural investment
was positively correlated with the planting convenience and urbanization rate, but negatively
correlated with planting structure. Therefore, the planting structure should be optimized and
circular agriculture should be developed according to local conditions.

In terms of research methods, an indicator system is usually used to construct an
ecological efficiency evaluation system to measure the coordination between society, the
economy and the environment. For example, Orea and Wall [3] used the input/output
ratio and economic efficiency/pollution ratio to evaluate the ecological efficiency of the
UK’s aluminum and steel industries. Zhang et al. [4] used the ecological footprint method
to measure the ecological environment of the belt and road region. In addition, natural
factors such as land, water, raw materials, energy and carbon emissions can also be selected
as evaluation indicators for ecological efficiency [5].

The current methods used to calculate ecological efficiency are mainly the ecological
footprint method, energy analysis method and data envelopment analysis (DEA), of which
the most common method is data envelopment analysis. However, DEA cannot effectively
rank the data of decision-making units, which will ultimately have a negative impact on
the accuracy and comprehensiveness of the estimation results. Therefore, a BP neural
network–DEA model, designed to comprehensively evaluate the ecological efficiency of
the agricultural green industry, was constructed in this study. In addition, the evaluation
indicators of industrial ecological efficiency were also based on a macro-level regional
ecological efficiency measurement. In fact, when evaluating the ecological efficiency of
industry comprehensively, not only macro aspects should be fully considered, but also
the reality of industrial ecological efficiency and the industrial production situation in
order to more intuitively reflect the trend of industrial change. Thus, this article selected
indicators that are in line with the actual situation in rural areas and improves the ecological
evaluation index system of the agricultural green industry. The innovations of this paper
are as follows: (1) an agricultural green ecological system, including agricultural carbon
emissions and green GDP as part of the ecological environment factors, was proposed.
(2) A BP neural network model, combined with a DEA model, was used to further evaluate
the agricultural green ecological efficiency.

This article mainly explored the application of optimization methods that can be used
to evaluate the agricultural green ecological efficiency. First, based on the construction of an
evaluation index system for agricultural green ecological efficiency, the impacts of specific
indicators on agricultural green ecological efficiency were explored. Additionally, the green
ecological efficiency of China’s agricultural industry from 2002 to 2021 was calculated and
analyzed using a DEA model. Then, the evaluation results of the DEA efficiency were used
as the expected output of the evaluation results when establishing the BP neural network
model. After selecting a more comprehensive indicator system, a BP neural network model
was used to further evaluate the agricultural green ecological efficiency, and the differences
between the two evaluation methods were analyzed. Finally, policy recommendations
are provided based on the research conclusions. The article’s structure is as follows:
Section 2 contains the materials and methods. Section 3 introduces the construction of the
agricultural green ecological efficiency model. Section 4 describes the construction of the
evaluation index system for agricultural green ecological efficiency and the source of the
research data. Section 5 is an empirical study of the indicator system used for agricultural
green ecological efficiency. Section 6 is the measurement of agricultural green ecological
efficiency based on the DEA model. Section 7 discusses the evaluation results of agricultural
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green ecological efficiency based on the BP neural network model compared with DEA
in order to verify the feasibility of the BP neural network model. Section 8 contains the
conclusion and recommendations, as well as directions for future research.

2. Materials and Methods
2.1. Theoretical Analysis of Green Economic Efficiency

Efficiency has different definitions in different fields. It is precisely because of the
diversification and difference between fields that there are large differences and disputes re-
garding the final definition of efficiency [6]. Efficiency from an economic perspective refers
to the allocation efficiency of production factor resources in the market and economy [7,8].

Economics is a discipline that studies how to more effectively allocate scarce resources
in society in order to achieve maximum utility [9]. To a certain extent, “efficiency”, under
the existing scientific, technological and production conditions, means maximizing the use
of scarce resources as much as possible to obtain more output and profits [10].

In the modern economic growth theory, the study of economic efficiency mainly uses
the aggregate production function. Some measures of economic efficiency are directly
derived from relevant economic growth theories such as the production function method.
Among them, one of the more classic and commonly used economic growth models is the
Solow model [11]. Based on the Solow model, Solow pioneered the analysis and research
of economic growth accounting, measuring the contribution of different production factors
in the process of economic growth.

Since the middle of the last century, with the rapid economic growth, more and
more problems have become increasingly prominent. Among them, environmental issues
have always plagued the government’s economic decision making and the normal life of
citizens [12]. However, traditional economic efficiency analysis does not take environmental
pollution into account, resulting in a significantly higher efficiency value. At the same time,
ignoring environmental pollution and conducting research on regional economic efficiency
may lead to conclusions that deviate from reality and may even be completely different.
Moreover, some regions may have a lower economic efficiency than other regions, but their
environmental control is better [13]. This kind of regional economic efficiency evaluation
index system that does not consider ecological costs will cause some local governments
to overemphasize an increase in GDP, while ignoring the protection of the ecological
environment. At the same time, they cannot scientifically and reasonably evaluate the
actual economic development level of the region. For this reason, many scholars have
begun to consider environmental pollution when calculating economic efficiency, and have
proposed the concept of green economic efficiency [14,15]. Some researchers believe that
green economy efficiency is an indicator that can determine the total inflow of resources
and the cost of environmental pollution, and can measure and evaluate the economic
performance of a country or region. To a certain extent, it mainly includes two aspects:
(1) green economy efficiency is used as an indicator to evaluate the measured regional
economic performance; it is the measurement and calculation of the utilization efficiency of
factor inputs in economic development, and it also refers to the region’s gains through unit
factor inputs in relation to the expected outputs. (2) Green economic efficiency scientifically
and logically considers factor inputs and the undesired outputs, and incorporates the
use of production factors and environmental pollution costs into the process of economic
development activities. The calculated efficiency refers to the original economic efficiency
and the “green” economic efficiency after the addition of factor inputs and environmental
pollution costs to the model. Therefore, the green economic efficiency is a comprehensive
economic efficiency that not only considers the input of factors, but also accommodates
the cost of environmental pollution; the larger the value of green economic efficiency, the
higher the overall quality of economic development in the region.
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2.2. Economic Growth Theory

This theory mainly discusses the role of various production factors in the process of
economic growth and how the combination of production factors can better promote eco-
nomic growth [16]. The earliest research on the issue of economic growth was Adam Smith’s
“Theory of the Rich”, which is also the origin of the classical economic growth theory. It mainly
elaborates on the two core issues of the source and accumulation of wealth [17,18].

Based on the questioning of the Harold–Domar model “the capitalist market cannot
achieve sustained economic growth”, the neoclassical economic theory represented by
Solow and Swan was established. The expression of the production function is as follows:

∆Y
Y

=
∆T
T

+ α
∆M
M

+ β
∆N
N

(1)

where ∆Y
Y , ∆M

M and ∆N
N are the output growth rates, capital growth rates, and labor

growth rates, respectively; α and β are the capital and labor shares in output, respectively;
and ∆T

T is the technological progress growth rate.

2.3. Dynamic BP Neural Network
2.3.1. The Structure of Biological Neurons

Nerve cells are the basic unit of the nervous system, called biological neurons,
or neurons for short [19,20]. Neurons are mainly composed of three parts, a cell body,
axon and dendrites, as shown in Figure 1.
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Figure 1. The structure diagram of a biological neuron.

2.3.2. The Structure of Artificial Neural Networks

An artificial neural network is composed of many processors, which are called artificial
neurons [21]. Through an interface widely used to simulate the structure and function of
the brain nervous system, neural networks can be regarded as using artificial neurons as
nodes. They use a directed graph connected by a directed weighted arc. In this directed
graph, the artificial neuron simulates a biological neuron, and the directed arc simulates
the “axon–synapse–dendrite” connection [22,23]. The weight of the directed arc indicates
the strength of the interaction between the two artificial neurons connected to each other.
The model of each artificial neuron is shown in Figure 2. Using circles to represent the
cell body of a neuron, Xi(i = 1, 2, · · · , n) represents the external input of the neuron,
Wi represents the branch strength of the neuron and each cell input, θ represents the
neuron boundary and Y represents the neuron output.
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In a typical artificial neural network, there are different ways to connect a single
neuron, and different connection methods form different network connection modes.
Common connection modes includinge the forward network are different from the feedback
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network throug the input stage to the output stage, and some output data of the output
stage are sent to the input layer neuron as network input data [24]. In addition to images,
the first two networks also receive the same information from neurons in the previous layer,
and neurons in the same layer in the network can also interact with each other and report
to the connected network [25].

2.3.3. BP Neural Network and Its Network Structure

The BP (Back Propagation) neural network algorithm, proposed in 1985, realizes
Minsky’s multi-level network vision [26,27]. The artificial neurons that make up the multi-
layer network can be continuously pushed so that the artificial neural network converts
the input into the desired output. If the BP neural network algorithm can be regarded as
changes and weights, then the connections between neural networks in the network can be
regarded as parameter changes. In addition, when the BP neural network algorithm adjusts
the weights, the connection of a single fake neuron is based on the difference between
the actual network output and the expected output, and this difference will be reversed
individually. From the perspective of the combined weight of each type of neuron, the BP
neural network algorithm has become the most widely used and most important learning
algorithm in neural network training.

The BP neural network topology is a multi-level forwarding network, composed
of input-level nodes and output-level nodes, with at least one hidden layer node [28].
In the BP neural network, neurons in the same layer are not connected, and neurons
in adjacent layers are connected by weight. When inputting information into the BP
neural network, the data are transmitted from the input-level node to the hidden first-level
node (artificial neuron), and then the information is transmitted to the next hidden part.
The information is transferred one layer at a time, and this continues until it is finally
transferred to the output level for output. At the same time, the activation function of each
level must be different, and the sigmoid function is usually used. The most basic neural
network BP is a power network with three nodes: input layer, hidden layer and output
layer. The structure is shown in Figure 3.
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2.4. DEA Model

The development of our DEA model for agricultural green ecological efficiency started
with the traditional DEA model. DEA can be divided into a fixed performance CCR model and
a BBC model with a degraded BCC (TE) technical performance. This model has been reduced
to pure technology (PTE) and scale performance (SE) in the performance CCR model:

TE = PTE× SE (2)

It is helpful to judge the degree to which the efficiency of each DMU agricultural
green ecological system is affected by pure technical factors and scale factors. BCC is now
relatively mature. According to different opinions, there are two types of DEA: input-
oriented and conventional. The former has the problem of minimizing the input below a
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given output, and the latter has the problem of maximizing the output below the input.
Given that the input volume is easier to control than the output volume and conforms to
the concept of intensive economy, this article chose a BBC model that focuses on input:

I

∑
i=1

λiPa,i ≤ ϕiPa,i, a = 1, 2, · · · , A (3)

I

∑
i=1

λiQb,i ≤ ϕiQb,i, b = 1, 2, · · · , B (4)

I

∑
i=1

λi = 1, λi ≥ 0, i = 1, 2, · · · , I (5)

In these formulas, a and b represent the input and output variables, respectively; Pa,i is
the a-th input of the i-th DMU; Qb,i is the b-th output of the i-th DMU; and λi is the a-th
input and the b-th output. The weighting coefficient ϕi is the relative efficiency of the i-th
DMU, which is between 0 and 1. Then, the principal components are substituted into the
first-stage DEA model, and the first-stage DEA is realized using special software.

The principal component mathematical model is as follows:

F1 = u11ZX1 + u12ZX2 + · · ·+ u1jZXj (6)

F2 = u21ZX1 + u22ZX2 + · · ·+ u2jZXj (7)

Fi = ui1ZX1 + ui2ZX2 + · · ·+ uijZXj (8)

Among them, Fi is the i-th principal component, ZXj is the original index after
the normalization of the j-th term, uij is the principal component expression coefficient,
uij =

aij√
λj

, A =
(
aij

)
pxp is the factor loading matrix, and λ is the eigenvector.

The accounting method and process used for agricultural green GDP are given below.
The calculation formula for agricultural green GDP is as follows:

Agricultural green GDP = Agricultural conventional GDP + Agricultural ecological GDP (9)

The expression is as follows:

GDPg = GDPt + GDPe (10)

The conventional agricultural GDP is the output value minus the production cost
(i.e., the intermediate consumption), and the agricultural ecological environmental cost
mainly refers to the loss of environmental resource value and the loss of ecological value
caused by the reduction in the agricultural resource area. It is expressed as follows:

GDPg = GDPt + GDPe = Vp − Cp + Ves − Ce (11)

In the formula, Vp is the agricultural output value, Cp is the agricultural production
cost (intermediate consumption), Ves is the agricultural ecosystem service value and Ce
is the agricultural ecological environmental cost. Among them, the agricultural output
value and agricultural intermediate consumption refer to the relevant yearbook statistics.
The specific steps for calculating the value of the agro-ecological service Ves are as follows:

Ea =
1
7

n

∑
i=1

miqi pi
M

(i = 1, 2, · · · , n) (12)
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where Ea represents the value of the food production function per unit area of farmland, i is
the type of food crop, mi is the sown area of the i-th food crop in that year, pi is the national
average price of the i-th food crop in that year, qi is the i-th food crop yield per unit area in
that year and M is the sum of the sown area of n grain crops.

Eij = eijEa(i = 1, 2, · · · , 9; j = 1, 2, 3, 4) (13)

where Eij represents the unit price of the i-th ecological service provided by the j-th agricul-
tural resource per unit area and eij is the i-th ecological service value equivalent factor of
the j-th agricultural resource.

V =
9

∑
i=1

4

∑
j=1

AjEij(i = 1, 2, · · · , 9; j = 1, 2, 3, 4) (14)

In the formula, V represents the total value of ecological services of the regional
agricultural system and Aj represents the area of type j agricultural resources.

3. Model Construction
3.1. Literature Review of Agricultural Ecological Efficiency Evaluation Method

Agricultural ecological efficiency can be evaluated by the ratio of economic value gen-
erated by related goods and services to the effects of the environmental impact generated
during the production processes [29,30]. The measurement methods used for agricultural
ecological efficiency mainly include the ratio method, life cycle method, ecological foot-
print method, energy method and data envelopment analysis method [31,32]. The ratio
method reflects the impact of economic development on the environment to some extent,
but it only considers the output aspect without the input aspect, making it difficult to
distinguish between different environmental impacts. The life cycle assessment method
has drawbacks such as difficulties in boundary determination, complex data selection and
strong subjectivity, which greatly affect its credibility. It also has the problem of weak
regional comparability. The ecological footprint analysis method has strong applicability
and comparability, but has shortcomings such as single evaluation indicators, and it cannot
fully reflect ecological functions [33]. The energy analysis method incorporates resources,
economic value and the ecosystem into the accounting system at the same time, but it
has several shortcomings, such as inaccurate calculations due to time constraints, regional
differences in energy conversion rates and relatively simple indicators.

3.2. Advantages and Disadvantages of DEA

Data envelopment analysis is a systematic analysis method based on linear program-
ming theory that was proposed by Charnes et al. [34] in order to evaluate the relative
efficiency of decision-making units (DMUs) using multiple input and output indicators
and similar attributes. They proposed the first DEA model and CCR model assuming that
returns to scale are constant [35]. Agriculture has a huge and complex system organization,
and its internal resources can only be fully utilized after organic integration and transformation.
There is a reasonable input and output indicator system for research in the field of agriculture.
To evaluate such a system, data envelopment analysis is a very suitable method.

Data envelopment analysis has become a research hotspot since it was first proposed,
and various improved models have emerged. In 1984, Banker et al. [36] broke the constant
limit of returns to scale of the CCR model and established a BCC model with variable
returns to scale. Subsequently, Charnes et al. [37]) proposed the CCGSS model to address
the unreasonable assumption that the production possibility set is convex under certain
conditions. Then, Charnes et al. [38] proposed a preference-based CCWH model.

The vast majority of problems in real life exhibit significant nonlinearity [39] and as a
complex system organization, the input–output efficiency of agriculture is not a simple lin-
ear relationship. The DEA model can quantitatively and objectively evaluate the effectiveness
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of decision units, and can also provide improved methods based on relaxed variable results for
non-DEA effective decision units [40]. However, the DEA model is generated based on linear
programming theory, which may not be suitable for studying problems in real life. At the same
time, the DEA model also has certain limitations on the number of indicators because more
indicators can affect the feasible solutions and evaluation results.

The BP neural network method can effectively help overcome the aforementioned
problems of DEA models [41]. First, BP neural networks have no limit on the number
of indicators. Second, BP neural networks simulate the non-linear thinking mode of the
human brain to process the received information, which can better fit real-world problems.
However, BP neural networks require a certain number of original sample datasets for
processing and learning, and process new samples based on the learned knowledge. For the
evaluation of agricultural ecological efficiency, specifying a learning sample will lose its
quantification and objectivity, so the DEA method is needed to provide objective learning
samples for the BP neural network.

3.3. Model Establishment

Firstly, a DEA model was used to conduct the first efficiency evaluation on all decision-
making units, and then the results of the first efficiency evaluation were used as the expected
output of the second BP neural network evaluation. At the same time, more comprehensive
evaluation indicators were introduced to train and teach the BP neural network, and then a
second efficiency evaluation was conducted. A comprehensive evaluation of agricultural
ecological efficiency was conducted using the evaluation results of the DEA model and
BP neural network, which not only retained the advantages of the two methods, but also
compensated for their respective shortcomings.

4. Evaluation Index System of Agricultural Green Ecological System
4.1. Establishment of Evaluation Index System

The prerequisite for the accurate evaluation of agricultural ecological efficiency is the
construction of reasonable input and output indicators in order to obtain relatively accurate
and objective evaluation results. The calculation of agricultural ecological efficiency refers
to the ecological economic efficiency of agriculture, which includes both economic and
ecological environmental factors, comprehensively reflecting the situation of economic
development and environmental protection [42,43]. Therefore, this article mainly selected
indicators based on economic development and environmental protection factors. The input
and expected output indicators mainly reflected the dimension of agricultural economic
growth, while the non-expected output mainly reflected the dimension of agricultural
ecological environment protection [44,45]. The resource conservation dimension can be
reflected in the input, expected output, and non-expected output indicators [46]. In the
process of constructing an evaluation index system for the agricultural ecological efficiency,
the input–output indicators and their characteristic variables of agricultural ecological
efficiency in China were finally determined.

Since the evaluation of the agricultural green economy in the context of smart cities
is based on the idea of sustainable development, it is well known that sustainable devel-
opment comprises three elements: ecology, economy, and society. Based on the theory
of regional ecological systems, the Analytic Hierarchy Process was used to build a green
agriculture index in China. The index system of the ecological system is shown in Table 1.

In the agricultural economic and social subsystem, labor, land and technology are the
most important input elements in the agricultural production process. The output variables
included economic and social aspects. Then, the urbanization rate was selected as the
proxy indicator of agricultural social development to represent the development process of
society in rural areas.

In the agricultural scientific and technological innovation subsystem, the input vari-
ables were reflected in the capital and manpower of the sector, in view of the large dif-
ferences in the statistical caliber of some funds and employees in agricultural science
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and technology. In terms of agricultural scientific and technological innovation output,
the number of agricultural patents and agricultural scientific and technological achieve-
ments were selected to characterize the scientific and technological production capacity.
This article believes that the inaccessibility of data is one of the reasons why the current
research on the performance evaluation of the agricultural ecological system is restricted.

Table 1. DEA evaluation index system of agricultural green ecological system.

Target Layer Criterion Layer
Index Layer

Input Output

Agricultural Green
Ecological System

Agricultural economic
and social subsystem

F1

Total sown area of crops
Number of employed persons

in rural areas
Total power of agricultural

machinery

Per capita net income of
agricultural households

Urbanization rate

Agricultural scientific
and technological

innovation subsystem
F2

Financial expenditure
for agriculture

Forestry and water affairs

Number of agricultural patents
Agricultural scientific and

technological achievements

Agricultural green
development subsystem

F3

Amount of agricultural fertilizer
Agricultural electricity

consumption
Agricultural energy input

Energy promotion manager

Forest coverage
Green GDP

Agricultural carbon emissions

In the agricultural green development subsystem, four indicators (agricultural fertil-
izer application, agricultural electricity consumption, agricultural energy input and energy
extension management personnel) were selected as green ecological input indicators, which
more comprehensively characterize the resource consumption in the agricultural produc-
tion process and management investment. Three indicators of forest coverage (total gas
production from agricultural biogas digesters and green GDP) were selected as the ex-
pected outputs in order to measure the protection capacity and economic benefits to the
ecological environment. In contrast to previous studies, this article introduced agricultural
green GDP as a green output indicator because plantations, animal husbandry, forestry and
fishery benefit from ecosystem services and provide ecosystem services, and the impact
of these areas on ecosystem services may be beneficial or unfavorable. To a certain ex-
tent, agricultural green GDP can measure the ecological functions of agricultural activities.
However, previous studies only used black-box input–output methods without consid-
ering this process. Agricultural carbon emissions was selected as the undesired output.
At this stage, agricultural carbon emissions are the inevitable pollution produced by the
agricultural production process, and it is very necessary to include them in the evaluation
system. As China currently does not pay enough attention to agricultural pollution and
has not adopted specific policies, systems and regulatory measures to control the pollution
of the ecological environment caused by agricultural production activities, this article did
not consider the inclusion of industrial-based “pollution control completed investment”
and other indicators related to the strength of environmental regulations.

The agricultural green ecological process is not only affected by the internal composi-
tion and relationships, but also by external environmental factors. According to whether it
directly participates in the agricultural green ecological process, these environment factors
can be divided into internal and external factors. Internal influencing factors are related
to infrastructure and local labor quality. Infrastructure construction provides the neces-
sary material and information support for green innovation, and represents a systematic
hardware support function. Drawing on the research of relevant scholars, infrastructure
construction was expressed as the proportion of total post and telecommunications as a
proportion of GDP. The quality of regional agricultural laborers is another important factor
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for transforming green innovation into productivity. The quality of agricultural laborers
was expressed by the average number of years of education of farmers.

External factors include natural disasters, the economic development level, the fi-
nancial environment, and government intervention, because agriculture is different from
other industries. The production site itself, as a component of the ecosystem, is greatly
affected by natural disasters. The disaster rate was used to express the extent of regional
disasters and the per capita GDP indicates the level of economic development. A loose
financial environment helps farmers, the government and scientific research institutions to
raise funds and capital flow; the regional financial environment was expressed in terms
of the loan-to-deposit ratio. The government has a strong leading role in the process
of agricultural green ecological development, and science and technology innovation.
The proportion of expenditure in agriculture out of the total government expenditure
indicates the government’s support and intervention in science and technology. The second
stage was realized using Frontier 4.0 software. The environmental factor variables of the
agricultural green ecological system are shown in Table 2.

Table 2. Environmental variables of agricultural green ecological systems.

Environment Variable Proxy Index

infrastructure post and telecommunications business volume/GDP (PT)
qualities of workers average years of education (AE)

natural disaster disaster rate (DR)
financial environment loan-to-deposit ratio (LR)

economic level GDP per capita (GDPC)
government technology support technology expenditure/total expenditure (TE)

4.2. Data Sources

Considering the rationality, scientific basis and operability of indicator selection, as
well as the availability of indicator data in the China Statistical Yearbook, the research scope
was determined as the measurement of China’s agricultural ecological efficiency from
2001 to 2021. The sample data were all from the 2002 to 2021 China Statistical Yearbook,
China Agricultural Yearbook, China Rural Statistical Yearbook, and local statistical year-
books of various provinces, municipalities and autonomous regions.

5. Analysis of Influencing Factors on Agricultural Green Ecological Efficiency
5.1. Efficiency Analysis of Agricultural Green Ecological System

In order to eliminate the influence of environmental factors and random errors in
measuring the effectiveness of the agricultural green ecological system, the loose input
of each variable obtained by DEA was traditionally regarded as the dependent variable.
The environmental factors were selected as independent variables, and frontier production
function regression analysis was performed. The regression results are shown in Table 3.

Table 3. Value of δ2 and λ in agricultural green ecological system.

Independent Variable F1 F2 F3

δ2 68.957 305.258 451.854
λ 1 1 1

Table 3 shows that the one-sided error likelihood ratio statistics were all greater than
the chi-squared distribution test’s standard value, and were significant at the 1% test level,
indicating that the setting was reasonable. The γ value was approximately 1 and reached
the 1% significance level, indicating the main source of error was the technical inefficiency
item; therefore, it was appropriate to use the SFA regression model. Input slack refers to the
part of the input that can be corrected by improving management methods or adjusting the
production scale. From the discussion of the three-stage DEA model, it can be seen that if the
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SFA regression coefficient is positive, it means that the increase in the environmental variable
is conducive to the input slack. On the contrary, when the regression coefficient is negative, it
is conducive to the improvement of the efficiency of the agricultural green ecological system.

The input variables here are the three input principal components that have been trans-
formed, and the principal component analysis results are shown in Figure 4. In Figure 4,
F1, F2, and F3 are the three principal component variables that replaced the ten original
input variables. In F1, the total sown area of crops, the number of agricultural employees,
the total power of agricultural machinery, and the application amount of agricultural fertil-
izers were the four index load coefficients, which can be summarized as basic agricultural
inputs. In F2, the agricultural electricity consumption load factor was relatively large,
which was called investment in environmental protection research. In F3, the load factor of
fiscal expenditure for agriculture, forestry and water affairs was large, which was called
government financial support.
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Figure 5 shows the constant items, the post and telecommunications business as a
proportion of GDP, the average years of education, and the disaster rate in the second stage
of the SFA estimate of the agricultural green ecological system. It can be seen from Figure 5
that the post and telecommunications business as a proportion of GDP had a negative im-
pact on the input slack of basic agricultural investment, environmental protection research
investment and government financial support, all reaching a significance level of 5%, which
is in line with the expectations of this article. The proportion of post and telecommuni-
cations business characterized the regional infrastructure construction. The optimization
of infrastructure will lead to a decline in basic agricultural investment, scientific research
investment in agricultural environmental protection and government financial support
investment slack, which is conducive to resource and energy conservation, and is conducive
to green agriculture. The average number of years farmers were in education had a positive
impact on the input slack in basic agricultural input and government financial support,
reaching significance levels of 1% and 5%, respectively. This result indicates that the higher
the average number of years farmers were in education, the lower the efficiency of basic
agricultural inputs and government financial support, and the more serious the waste.
The impact of the disaster rate on the slack of agricultural basic input was positive, and
the impact of the slack of the government’s financial support was negative, reaching a
significance level of 10%, which is consistent with the expected situation. Natural disasters
caused the loss and waste of agricultural basic input elements; we found that natural
disasters have occurred frequently, subsidies for arable land and farmers have increased,
and the efficiency of the use of government funds has been improved.
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Figure 6 shows the proportions of the loan-to-deposit ratio, GDP per capita and
technology expenditure. It can be seen from Figure 6 that the loan-to-deposit ratio had
a positive influence on the slack of basic agricultural input. For agricultural production,
an increase in the loan-to-deposit ratio indicates that it was easier to obtain funds under
a loose financial environment. A smaller capital limit will lead to the increased waste
of various basic agricultural inputs and inhibit the efficiency of the agricultural green
ecological system. The impact of the per capita GDP on the slack of government financial
support was negative, and it passed the 1% statistical significance level. The GDP per capita
can represent the level of economic development of a region, indicating that the higher the
level of economic development, the higher the level of utilization of government funds in
the agricultural production process. These developed regions have taken the lead in the
transformation of agricultural development models, with more advanced management
concepts and management levels, and the proper use and allocation of funds can promote
the efficiency of the agricultural green ecological system. The proportion of science and
technology expenditure had a positive impact on the slack of government financial support,
reaching a significance level of 1%. This shows that an increase in the proportion of science and
technology expenditure will lead to an increase in the waste of government capital investment.
A possible reason for this is that there is a longer period between the input and output of
science and technology, and the benefits have not been shown. The proportion of science and
technology expenditure had a positive impact on environmental protection research investment,
but it did not pass the significance test, and a good allocation and operation mechanism has
not been established between science and technology expenditure and R&D investment.
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5.2. Efficiency Analysis of Agricultural Economic and Social Subsystems

If the technical efficiency level of regional agricultural production is obviously not
related to the degree of economic development, it indicates that the research and improve-
ment of technical efficiency have no economic significance, are contrary to economic theory,
and are not in line with our actual economic development. China has a vast territory,
with large differences in regional natural geographic conditions, economic levels and in-
stitutional policies. In order to understand the true agricultural production technology
efficiency in each region, we need to conduct the second stage of SFA regression analysis
to strip away the infrastructure, labor quality, and natural disaster factors. The financial
environment, economic level and government technology supported six environmental
factors. The regression results are shown in Tables 4–6. The constant items in the SFA
estimate of the second stage of the agricultural green ecological system, the proportion
of post and telecommunications services in GDP, the average years of education, and
the disaster rate are shown in Table 4; the loan-to-deposit ratio, GDP per capita, and the
proportion of science and technology expenditures are shown in Table 5. The values of δ2

and λ are shown in Table 6.

Table 4. Constant variables PT, AE, and DR.

Independent
Variable

Total Sown
Area of Crops

Number of Employed
Persons in Rural Areas

Total Power of
Agricultural Machinery

Constant term 332.524 721.872 −4321.588
PT −273.411 −36.543 −46.875
AE 536.187 120.739 487.653
DR −74.584 −114.996 −6.412

Table 5. LR, GDPC and TE.

Independent
Variable

Total Sown Area
of Crops

Number of Employed
Persons in Rural Areas

Total Power of
Agricultural Machinery

LR 71.511 35.784 199.524
GDPC −1158.025 −402.971 −411.845

PT 160.428 115.579 53.847

Table 6. Values of δ2 and λ in agricultural economic and social subsystems.

Independent Variable δ2 λ

Total sown area of crops 35.784 199.524
Number of employed persons in rural areas −402.971 −411.845

Total power of agricultural machinery 115.579 53.847

5.3. Efficiency Analysis of Agricultural Green Ecological Subsystem

Compared to the agricultural economic and social subsystem and the agricultural
technology ecological subsystem, the agricultural green ecological subsystem is more
constrained by scale efficiency. The same can be seen in the comparison of the four major
regions. The technical efficiency of the agricultural green ecological subsystems from
high to low were as follows: central, western, eastern and northeastern. Therefore, it was
necessary to remove the influence of environmental factors to find its true efficiency level.
The constant items, the proportion of post and telecommunications services, and the average
years of education in the second stage of the SFA estimate of the agricultural green ecological
subsystem are shown in Figure 7. The disaster rate, loan-to-deposit ratio, GDP per capita, and
the proportion of science and technology expenditures are shown in Figure 8.
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6. Agricultural Green Ecological Efficiency Calculation

Using the data envelopment analysis software Maxdea 6.6 and the unexpected output
EBM model combined with the Malmquist–Luenberger index, the changes in the agricul-
tural ecological efficiency in China from 2001 to 2021 were calculated and the results are
shown in Table 7.

Table 7. Results of agricultural ecological efficiency from 2002 to 2021 in China.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

0.7340 0.7275 0.7484 0.7442 0.7145 0.7199 0.7849 0.8073 0.7670 0.7694

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0.7879 0.8061 0.8191 0.7698 0.8007 0.8170 0.8543 0.8229 0.8963 0.8205

From Figure 9, it can be seen that the agricultural green ecological efficiency in-
creased from 0.7340 in 2002 to 0.8205 in 2021, an increase of 11.78%, showing an overall
upward trend. The overall agricultural green ecological efficiency showed an “M” trend of
increasing–decreasing–increasing–decreasing–increasing, and a two-stage development
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pattern in terms of time variation. From 2002 to 2006, the efficiency value decreased from
0.7340 in 2002 to 0.7145 in 2006, a decrease of 2.66%. At this stage, in order to expand agri-
cultural production, investment in agricultural electricity, infrastructure and other factors
was increased, which resulted in a significant increase in agricultural carbon emissions.
At the same time, there was no timely awareness of the impact of environmental pollution
on the agricultural green ecological efficiency and this caused an environmental crisis.
From 2007 to 2021, China’s agricultural green ecological efficiency was on a rapid upward
trend, with the efficiency value increasing from 0.7199 in 2007 to 0.8205 in 2021, an increase
of 13.94%. At this stage, on the one hand, the modern agricultural economic production
mode and coordinated development of resources and environment was implemented.
On the other hand, there was a growing awareness of the impact of agricultural environ-
ment pollution on agricultural green ecological efficiency. Agricultural workers gradually
began to pay attention to environmental governance in the process of agricultural planting,
which greatly improved the level of agricultural ecological efficiency in China.
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Figure 9. Agricultural green ecological efficiency calculation using DEA.

7. Discussion

According to the selection requirements for the evaluation index system of agricultural
green ecological efficiency mentioned above and based on the DEA model index system,
more comprehensive indicators for measuring agricultural green ecological efficiency were
selected to be included in the BP neural network model index system. Based on the relevant
literature [47], 4 new indicators were added and a total of 13 indicators were selected as
input variables for the BP neural network in order to conduct the final evaluation of China’s
agricultural green ecology, as shown in Table 8. The indicator system of the BP neural
network model was enriched in aspects such as communication factors, social factors,
policy environment factors and openness, in order to evaluate China’s agricultural green
ecological efficiency from a more comprehensive perspective.

In this section, agricultural green ecological efficiency data from 2001 to 2019 in China
were selected as samples for BP neural network training, and the trained network was tested
using the 2020 data. After the network test results met the set standard requirements, the
final evaluation of the agricultural green ecological efficiency level in 2021 was conducted.
This study used the neural network toolbox in MATLAB 2017a software to develop a BP
neural network. The parameters were as follows: a three-layer BP network structure, the
transfer function between the input layer and the hidden layer used the Logsig function,
the transfer function of the output layer used the Purelin function, the learning rate was
0.01, the training function was set to the Trainlm function of the Levenberg–Marquardt
algorithm and the number of nodes in the input layer of the BP neural network model



Systems 2023, 11, 291 16 of 20

was 12. The number of nodes in the hidden layer of the BP neural network model was six
and the number of nodes in the output layer was one, i.e., the output efficiency value.

Table 8. BP neural network model indicator system.

Variable Indicators Variable Code

Input variables

Total sown area of crops X1
Number of employed persons in rural areas X2

Total power of agricultural machinery X3
Financial expenditure for agriculture X4

Forestry and water affairs X5
Amount of agricultural fertilizer X6

Agriculture electricity consumption X7
Agriculture energy input X8

Energy promotion manager X9
Social development level X10

Policy environment X11
Economic openness X12

Rural communication level X13

The tested data from 2020 were input into the trained BP neural network model and
the effectiveness of the BP neural network model was verified. The results comparing the
output of the BP neural network model and the DEA model of the test samples used to fit
the true and predicted values are shown in Table 9.

Table 9. Comprehensive evaluation results of DEA and BP neural network models.

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

BP 0.7336 0.7584 0.7317 0.7433 0.7262 0.7403 0.7743 0.7873 0.752 0.8072

DEA 0.7340 0.7275 0.7484 0.7442 0.7145 0.7199 0.7849 0.8073 0.7670 0.7694

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

BP 0.7909 0.8071 0.8232 0.7881 0.8043 0.8344 0.8664 0.8514 0.925 0.8648

DEA 0.7879 0.8061 0.8191 0.7698 0.8007 0.8170 0.8543 0.8229 0.8963 0.8205

It can be seen from Figure 10 that the results of the BP neural network model were
consistent with those obtained by the DEA method, and the overall evolution trend of
agricultural green ecological efficiency calculated by the BP neural network also fluctuated
and increased. The agricultural green ecological efficiency increased from 0.7336 in 2002 to
0.8648 in 2021, an increase of 17.88%, and showing an overall upward trend. From 2002
to 2006, the efficiency value decreased from 0.7336 in 2002 to 0.7262 in 2006, a decrease of
1.01%. From 2007 to 2021, China’s agricultural green ecological efficiency was on a rapid
upward trend, with the efficiency value increasing from 0.7403 in 2007 to 0.8648 in 2021, an
increase of 16.82%. Therefore, combining DEA with a BP neural network can correct the
evaluation results of agricultural green ecological efficiency. The results obtained via the
instance data operations were used as the training dataset for the BP neural network; the
effectiveness and accuracy of the BP neural network in evaluating the agricultural green
ecological efficiency was verified via comparison with the DEA results. Meanwhile, the
comparison between the DEA method and BP neural network calculation showed that the
results obtained using the two methods were basically consistent, and these two methods
were mutually verified and integrated, which made the evaluation of the agricultural green
ecological efficiency more scientific and rigorous.
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8. Conclusions

This article started with an overview of the related research and theories of green
ecology, defined the concept of agricultural green ecological systems and constructed
an efficiency evaluation index system for China’s agricultural green ecological system.
The BP neural network and the three-stage DEA model measured the efficiency of the
agricultural green ecological system and analyzed its temporal and spatial evolution
characteristics. The main conclusions were as follows: (1) the overall technical efficiency of
China’s agriculture economic and social subsystems, agricultural science and technology
ecological subsystems, and agricultural green ecological subsystems all showed an upward
trend. (2) In the agricultural green ecological system, the post and telecommunications
business as a proportion of GDP, disaster rate, and per capita GDP had a significant
negative impact on the slack of government financial support. The proportion of post and
telecommunications business had a significant impact on basic agricultural investment and
environmental protection research investment. The impact was also negative, indicating
that the optimization of infrastructure, the frequent occurrence of natural disasters and
the increase in the level of economic development were conducive to the investment and
rational allocation of government funds, and was conducive to the improvement in the
efficiency of the agricultural green ecological system. Farmers’ average years of education,
the disaster rate, and loan-to-deposit ratio had a positive impact on the slack of basic
agricultural inputs. The average number of years farmers were in education and the
proportion of science and technology expenditures had a positive impact on the slack of
government financial support. The increase in the deposit ratio brought about a loose
financial environment and more accessible agricultural funds, which, to a certain extent,
led to an increase in the waste of various basic inputs in agriculture.

According to the research results, many managerial insights can be put forward as
follows. First, we should accelerate the transformation and upgrading of agricultural
technology. The concept of green development should be integrated into agricultural
production, and the introduction of advanced agricultural production technologies should
be imported. Additionally, the awareness of technological innovation among agricultural
workers should be continuously strengthened in order to achieve a significant improvement
in agricultural production efficiency. Second, we should improve the financial support
for agriculture. By increasing the government’s financial support for the entire agricul-
tural production process, the agricultural sector can update agricultural machinery and
improve the construction of agricultural production facilities to effectively enhance the
green ecological efficiency of agriculture. Third, we should elevate farmers’ environmental
awareness. The concepts of environmental protection and green agriculture development
should be strengthened in multiple ways to the public, so that farmers will pay more
attention to the relationship between humans and nature to bring about ecological benefits.
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Fourth, we need to implement ecological subsidy policies. The agricultural ecological
subsidy mechanism should be established and improved, and an ecologically oriented
subsidy policy system should be built. Moreover, efficient and accurate agricultural subsidy
policies should be implemented to realize the transformation of traditional agricultural
subsidy policies into ecologically oriented green agriculture subsidy policies.

On the other hand, a BP neural network model was used to evaluate the agricultural
green ecology efficiency, and the accuracy of the model results were improved. However, as
a composite system, there were many factors that affected agricultural green ecological
efficiency, and the further optimization of the evaluation index system is needed in order
to better improve the accuracy of the evaluation results in the future.
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