
Citation: Henge, S.K.; Maheswari,

G.U.; Ramalingam, R.; Alshamrani,

S.S.; Rashid, M.; Murugan, J.

Dependable and Non-Dependable

Multi-Authentication Access

Constraints to Regulate Third-Party

Libraries and Plug-Ins across

Platforms. Systems 2023, 11, 262.

https://doi.org/10.3390/

systems11050262

Academic Editor: Fernando De la

Prieta Pintado

Received: 20 April 2023

Revised: 19 May 2023

Accepted: 19 May 2023

Published: 21 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Dependable and Non-Dependable Multi-Authentication Access
Constraints to Regulate Third-Party Libraries and Plug-Ins
across Platforms
Santosh Kumar Henge 1 , Gnaniyan Uma Maheswari 2 , Rajakumar Ramalingam 3 , Sultan S. Alshamrani 4 ,
Mamoon Rashid 5,* and Jayalakshmi Murugan 6

1 Department of Computer Applications, Directorate of Online Education, Manipal University Jaipur,
Jaipur 303007, India; hingesanthosh@gmail.com or santosh.henge@jaipur.manipal.edu

2 Department of Computer Science and Engineering, RMK College of Engineering and Technology,
Chennai 601206, India; umamaheswaricse@rmkcet.ac.in

3 School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India;
ramukshare@gmail.com

4 Department of Information Technology, College of Computers and Information Technology, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia; susamash@tu.edu.sa

5 Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University,
Pune 411048, India

6 Department of Computer Science and Engineering, School of Computing, Kalasalingam Academy of Research
and Education, Krishnankoil 626128, India; jayalacsmi@gmail.com

* Correspondence: mamoon.rashid@vupune.ac.in

Abstract: This article discusses the importance of cross-platform UX/UI designs and frameworks and
their effectiveness in building web applications and websites. Third-party libraries (TPL) and plug-ins
are also emphasized, as they can help developers quickly build and compose applications. However,
using these libraries can also pose security risks, as a vulnerability in any library can compromise
an entire server and customer data. The paper proposes using multi-authentication with specific
parameters to analyze third-party applications and libraries used in cross-platform development.
Based on multi-authentication, the proposed model will make setting up web desensitization methods
and access control parameters easier. The study also uses various end-user and client-based decision-
making indicators, supporting factors, and data metrics to help make accurate decisions about
avoiding and blocking unwanted libraries and plug-ins. The research is based on experimentation
with five web environments using specific parameters, affecting factors, and supporting data matrices.

Keywords: cloud computing; UX/UI; cross-platform; third-party libraries; decision making;
rule-based security

1. Introduction

Cloud computing (CC) has become increasingly popular among enterprises and
technical communities because it provides on-demand access to configurable distributed
resources and CC services (CC-S). CC aims to provide quick data access, security, rapid data
control, efficient data-loading storage, and network-based computational CC-Ss as mea-
surable on-demand services over the Internet [1]. CC improves scalability, interoperability,
facility, alertness, availability, and flexibility, and can adapt to changes in user–company–
user needs and speed up the framework for growth [2,3]. It provides cost-efficient and opti-
mized computing resources by utilizing distributed network servers, networking devices,
data-loading clusters, enterprise-level applications (apps), and supporting facilities [4–7].

However, one of the most significant barriers to its acceptance is uncertainties about
security and privacy (SecPri) [8]. There needs to be more clarity about how security can be
achieved at all levels of data transmission and how application-based security has moved

Systems 2023, 11, 262. https://doi.org/10.3390/systems11050262 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11050262
https://doi.org/10.3390/systems11050262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-1884-9945
https://orcid.org/0000-0003-0342-9788
https://orcid.org/0000-0002-0734-3423
https://orcid.org/0000-0001-8194-9354
https://orcid.org/0000-0002-8302-4571
https://orcid.org/0000-0002-7297-9161
https://doi.org/10.3390/systems11050262
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11050262?type=check_update&version=2

Systems 2023, 11, 262 2 of 25

to the CC [9]. The lack of transparency has made it hard for data administration to prioritize
data SecPri in CC [10]. The data security problem is related to the internal–external level
of data storage, the dependence on shared-domain-based cyberspace, the lack of data
access control, enterprise-level multi-tenancy, and the integration of external-to-internal
and internal-to-external levels of security. In healthcare, CC-based specialist structures use
disease-based medical data to analyze and find diseases [11]. In the design discipline, UX
(user experience) and UI (user interface) are two related but separate phrases, especially
in the context of digital products such as websites, apps, and software interfaces. UX/UI
can also improve CC-Ss’ quality in medicine, science, and engineering, integrating the
multi-domain CC-Ss among various levels of customers, enterprises, end-users, and CC-S
providers (CC-SP) [12].

The CC offers distinct advantages compared to traditional IT models, such as a highly
distributed infrastructure and virtualized resources. However, security measures such as
authorization and authentication must still be employed in CC environments [13]. CC secu-
rity controls are similar to those in other IT environments, but the technology that facilitates
on-demand services presents different risks to organizations. Unfortunately, implement-
ing data security in CC solutions often makes them more complex [14]. Companies face
significant concerns when moving critical applications and sensitive data to public cloud
environments, where they may not have direct control over the underlying infrastructure.

To address concerns regarding security and privacy in cloud computing, a resolution
supplier must make specific promises to their clients about maintaining data security and
confidentiality controls for their enterprise-level software applications and supportive
services. Additionally, they must confirm to clients that their association is protected
and that an assessor can verify their CC-S-level conformity. Encryption and decryption
techniques have been introduced, proposed, and implemented in CC to secure and manage
data access between CC servers, end-users, and clients. It ensures that data are transferred
reliably between the client, CC, and end-user storage providers. However, privacy concerns
arise when CC providers decrypt cypher-text-based data to handle it for further stages.
The data control mechanism is between organizations, data owners, CC-SPs, and Internet
service providers, and the type of CC-Ss used [15], as illustrated in Figure 1.

1.1. Motivation

In software development, it is common to use external third-party libraries (TPLs)
and plug-ins (PIs) to save time and effort. However, these TPLs and PIs can pose serious
security threats to local systems and networks if they contain vulnerabilities, malware, or
harmful injectors. TPLs and PIs can come from two sources: unintentional bugs or harmful
injectors introduced by code developers or intentional bugs or harmful injectors created by
malicious third-party individuals. Unwanted TPLs and PIs can cause significant damage
to network resources and services, resulting in data loss and access control issues. One
example of a TPL vulnerability is the Heartbleed-OpenSSL vulnerability, discovered in
2014. OpenSSL is an open-source library widely used to implement TLS-SSL functionality
in web servers, local servers, hardware appliances, and operating systems. Even famous
and well-secured websites such as Yahoo.com were vulnerable to this bug, which required
an additional patch to fix.

In 2018, the Event Stream JavaScript (JS) library was subjected to a hack where a
third-party dependency was added, which led to maliciously encrypted code injection.
This vulnerability can compromise the security of data and systems. In specific scenarios,
the injected code can attempt to steal bitcoins from users’ wallets if combined with a
particular crypto-currency-related library [16]. The resolution of these vulnerabilities can
significantly impact the technical performance of designs. To prevent such issues, libraries
and patches can be evaluated by incorporating measurements to ensure their security
and trustworthiness.

Systems 2023, 11, 262 3 of 25Systems 2023, 11, x FOR PEER REVIEW 3 of 28

Figure 1. CC-SP and Internet service providers with the type of CC-Ss.

1.1. Motivation

In software development, it is common to use external third-party libraries (TPLs)

and plug-ins (PIs) to save time and effort. However, these TPLs and PIs can pose serious

security threats to local systems and networks if they contain vulnerabilities, malware, or

harmful injectors. TPLs and PIs can come from two sources: unintentional bugs or harmful

injectors introduced by code developers or intentional bugs or harmful injectors created

by malicious third-party individuals. Unwanted TPLs and PIs can cause significant dam-

age to network resources and services, resulting in data loss and access control issues. One

example of a TPL vulnerability is the Heartbleed-OpenSSL vulnerability, discovered in

2014. OpenSSL is an open-source library widely used to implement TLS-SSL functionality

in web servers, local servers, hardware appliances, and operating systems. Even famous

and well-secured websites such as Yahoo.com were vulnerable to this bug, which required

an additional patch to fix.

In 2018, the Event Stream JavaScript (JS) library was subjected to a hack where a

third-party dependency was added, which led to maliciously encrypted code injection.

This vulnerability can compromise the security of data and systems. In specific scenarios,

the injected code can attempt to steal bitcoins from users’ wallets if combined with a par-

ticular crypto-currency-related library [16]. The resolution of these vulnerabilities can sig-

nificantly impact the technical performance of designs. To prevent such issues, libraries

and patches can be evaluated by incorporating measurements to ensure their security and

trustworthiness.

Figure 1. CC-SP and Internet service providers with the type of CC-Ss.

In Figure 1, the red colored arrow lines represent the various fundamental property to
frame the access control among service providers and enterprises through the services such
as shared data in the form of security as service, application platform, and supporting ser-
vices in the form of privacy as service; and feasibility network, stored data, and distributed
server in the form of hosting as service. The blue colored arrow lines represent the various
fundamental properties that frame the enterprise access control through the services such
as shared data in the form of privacy as service; virtual machine, application platform,
and shared data in the form of hosting as service; application platform and shared data
in the form of hosting as service; and application platform, shared data, virtual machine,
stored data, and feasible network in the form of IT resource as service. The violet colored
arrow lines represent the various fundamental properties that frame the access control
among cloud and Internet-based service providers through the services such as stored
data, feasible network, and distributed servers in the form of the information as service,
application platform, virtual machine, stored data, viable network, and distributed server
in the form of the security as service; and stored data, feasible network and distributed
server in the form of the privacy as service. Library updates can be challenging since other
projects and applications rely on them. Even minor modifications to the library can cause
issues with other projects’ codes.

Additionally, vulnerable libraries can depend on codes from other sources and libraries,
which can be more complex and impossible to fix due to inheritance limitations. Indirect
dependencies are not approved licensing models; they function as third-party dependencies’

Systems 2023, 11, 262 4 of 25

licensing models. These technical and operational codes impact and restrict the supported
licensing models.

1.2. Research Contributions

The significant contribution of this research work is listed below.

• To enhance the security of web applications by integrating dependable and non-
dependable (D-ND) multi-authentication access constraints (MAAC) and specific
parameters for analyzing third-party applications and libraries in CPF’s development.

• Adding D-ND-MAAC-specific parameters enables web desensitization methods to
be chained together for easy deployment, ensuring that libraries and local–global
environments can work safely by including several dependent libraries.

• The research also looked at different end-user and client-based decision-making in-
dicators with supporting factors and data metrics, enabling accurate decisions about
how to avoid or block unwanted libraries and plug-ins.

• This proposed approach enhances the security of web applications by providing a
more comprehensive and practical approach to analyzing third-party applications
and libraries, ensuring that web applications remain secure in the face of evolving
security threats.

This research article is organized as Section 2, which presents the related work, in-
cluding the context and methodology flow of existing approaches, their advantages, and
limitations in associated fields. In Section 3, the proposed methodology of the Rules-based
Secure Injection Access Constraints Approach (D-ND-MAAC) is introduced, including
the representation of the state level of injection of suspicious third-party libraries (TPLs),
decision-making indicators (PIs), and implicated cross-platform (CPFs) development types
in D-ND-MAAC through different CPFs such as Web-based apps (WbA), Hybrid-based
apps (HbA), Interpreted-based apps (IbA), and Generated-based apps (GbA). The section
also includes D-ND-MAAC-based cross-platform mobile development (CPMD) security
analysis systems (SAS) and third-party libraries the and secure integration of third-party
libraries. Section 4 provides the experimental results and discussion, while Section 5
concludes the study and presents future directions.

2. Related Work

This section articulates the various existing methodologies and models with their
methodology flow, statistical aspects, theoretical–technical feasibilities, advantages, and
lagging issues.

Homomorphic encryption (HE) is a cryptographic technique that enables the process-
ing, storing, and transferring of data in CC environments. Fully homomorphic encryption
(FHE), as described in [17], allows subjective computation on ciphertext-based data without
decryption. Current HE methods have limited homomorphic functions such as addition
and multiplication, which restrict their use in various real-world CC applications requiring
basic homomorphic procedures for data security and privacy [18]. However, the processing
speed and power necessary for these methods can adversely affect the end-user response
time (EU-RT) and level of power consumption (PC). FHE addresses these issues by provid-
ing efficient data security and privacy among end-users and CC servers. With the increasing
number of mobile platforms (PFs), mobile applications (MAs) are being developed rapidly
to meet the growing demand for new content. The use of emerging mobile native app
(NA) technologies, such as artificial intelligence, IoT, and geofencing, enables people to be
assisted in times of need. NAs help organize mobile apps (MApps), but the main drawback
is that the source code (SC) cannot be reprocessed for alternative supportive platforms. Re-
building remarkably similar apps is necessary for the base code [19]. NAs provide essential
software tools for developing and implementing business logic in real-time environments
but require more technological tools, experience, expertise, and workforce than other apps.

An NA can provide a superior user experience compared to other types of applications.
It is designed to run directly on the device’s hardware and data storage, resulting in rapid

Systems 2023, 11, 262 5 of 25

performance, a reliable appearance, a clear view, and complete data logging. UX measures
the end-users knowledge of how to utilize gadget functionalities. The end-user must be able
to control apps instantly following the installation process and anticipate from the app to
the utility using a traditional technique. In addition, the user choice-based unique settings,
such as the selection of regional language and language translation, are essential features
considered in the version through the application-level execution process. Christoph Rieger
et al. [20] proposed an analysis that evaluates various frameworks and assesses them for
web apps and NA progression. The study concluded that cross-platform improvement had
witnessed much development, but the challenges are ever-increasing, and further support
for app designers is necessary.

Lennon C. et al. [21] presented novel authentication methods for digital systems
vulnerable to insecurities. They employed standard software testing and satisfiability
modulo assumptions of DSVerifier v2.0. The presented approach was used to verify the
robustness of closed-loop management systems concerning finite word-length effects. On
the other hand, Henning Heitkötter et al. [22] proposed expanding the model-driven
cross-platform approach MD2, designed explicitly for outlining specific control structures
and offline computation. This approach is focused on the business applications field and
aims to maintain a precise appearance and texture while incorporating a high level of
abstraction. It is integrated with an MVC-based DSL and regularly updated to support iOS
and Android platforms.

Pustišek M et al. [23] conducted a study to propose and evaluate three application
designs that differ in interaction, computation, storage space, and protection constraints.
They also analyzed the data traffic necessary to run blockchain clients and their applica-
tions. Meanwhile, Akasiadis C et al. [24] proposed a Multi-Protocol Internet of Things (IoT)
Platform Framework based on open-source frameworks. The IoT platform framework inte-
grates multiple application layer message protocols, such as Representational State Transfer
(REST) or HTTP, Message Queuing Telemetry Transport (MQTT), Advanced Message
Queuing Protocol (AMQP), Constrained Application Protocol (CoAP), and WebSockets. It
utilizes open-source frameworks such as RabbitMQ, Ponte, OM2M, and RDF4J.

Palviainen et al. [25] suggested a reference performance for the driver component
and end-user programming, which were evaluated in cross-smart space applications.
Biørn-Hansen et al. [26] developed eight mobile apps that analyzed the influence of ma-
chine hardware and the impact of modifications and activities, focusing on apps created
using cross-platform expansion structures and performance measurement of animation.
Hang et al. [27] integrated blockchain technology into an IoT platform to ensure data relia-
bility detection. The platform’s objective was to provide device vendors with a functional
application that requires an immutable log and easy access to devices used in various fields.

Saket Acharya et al. [28] provided a comprehensive review of recent Android security
concerns, improvements in security implementation, notable malware detected from 2017
to 2021, and the privacy techniques employed by malware developers, along with the
current methods of detecting Android malware. On the other hand, Tahir Alyas et al. [29]
proposed using Docker Security Engine (DSE) for container protection, employing container
execution and vulnerability management. DSE implements four mechanisms: innovative
gathering and supplementary rules to enhance container runtime and enforce container ca-
pacity, signifying claims in preparation, procedures, file system scanning, network isolation,
and Docker image capabilities. Various vulnerabilities were examined, and their difficulty
levels were assigned according to the Common Vulnerabilities and Exposures (CVE) classi-
fication system. The results showed that the approach is more secure for inter-container
interaction, with zero vulnerabilities and an overhead of 3.45% for containers.

Elham et al. [30] proposed an attribute-based access control (AbAC) approach that
utilizes the Hyperledger Fabric blockchain (HLFBC) for access control. Instead of assigning
roles to all system users or establishing access control lists, AbAC grants access based
on the attributes offered by the objective environment. Andreas Biørn-Hansen et al. [31]
proposed an analysis of business perceptions and beliefs on cross-platform mobile envi-

Systems 2023, 11, 262 6 of 25

ronmental growth. This analysis highlights the attractiveness, acceptance, and evolving
issues of using technological expansion contexts and tools. Neline van Ginkel et al. [32]
proposed NODESENTRY, a security design for server-side JS that enables an effortless
implementation of web-strengthening methods and access control strategies on exchanges
among their environments and supportive libraries along with dependable plug-ins. The
strategy administration structure of NODESENTRY encourages secure and reliable access
control on interactions between environments and supporting libraries.

P. Dhiman et al. [33] proposed two approaches for enhancing security and privacy
using blockchain technology in a multi-tenant cloud environment (EMTCE). The first
approach involves implementing a Blockchain Merkle-tree Ethereum approach in EMTCE,
which utilizes a cypher-text policy attribute encryption algorithmic sequence through
various levels of Merkle trees (MT) such as inner, outer, inner–outer, inner–outer–external,
outer–inner, and external–outer–inner. The authors reported a validity and data access
control (DAC) rate of 92% for this approach. In the second approach, the authors [34]
proposed using a Brakerski–Gentry–Vaikuntanathan (BGV) hybrid HE with multi-factor
authentication–authorization modes and a Secure Token Key in EMTCE. This approach
was tested with 152 end-users by integrating six multi-tenants, five head tenants, and two
enterprise levels.

Furthermore, P. Dhiman [35] proposed a study on the complications associated with
cloud security and non-homomorphic and HE practices. The study provides a compre-
hensive overview of past methods and approaches proposed to enhance cloud security
and discusses their pros and cons. Finally, the authors proposed a survey of blockchain-
based secure models and advances based on different Cloud Management Tool (CMT)
services by integrating HE methods to build a robust security system in a multi-tenant
environment [36].

The main objective of developing cross-platform mobile applications is to achieve
high performance on various operating systems (OSs), including iOS, Android, Symbian,
Bada, BlackBerry, Windows Phone, Linux Maemo MeeGo, webOS, etc. The goal is to ensure
compatibility with as many platforms as possible. A comparative analysis of existing CPF
development approaches is presented in Table 1. It includes the key constraints, functional
environment, and supportive metrics considered in the proposed process for developing
cross-platform mobile applications. The goal is to optimize the performance of mobile
applications while ensuring compatibility across multiple operating systems.

Table 1. Comparative analysis of existing CPF developments with their supportive environment.

Author and
Citation Proposed Approach Key Constraints Functional

Environment
Integrated

Environment Proposed Solution

Tebaa M et al., 2012
[17]

HE method applied
to CC

Data processing, storing,
and transferring stages

data security and
privacy

Mobile platforms
(PFs) with

processing–
storing–transit

modes

Security and privacy
of data at storage,
transit, CC server,

and user mode

Spyros
Xanthopoulos et al.,

2013 [19]

Relative Analysis of
CPFs Development

Approaches for
Mobile Applications

End-users’ data in CC
servers’ mode

end-user EU-RT and
PC for data security
and privacy among

the end-users and CC
servers

Mobile platforms
(PFs)

Security and privacy
of data at CC server,
storage, transit, and

end-user mode

Christoph
Rieger et al., 2019

[20]

Evaluation of
framework for CPF
app development

approaches

User choice-based special
settings such as the
selection of regional

language and language
translation

Assesses web apps
and NA

Web apps’ and
NA progression

Secure
auto-integration of

end-user level as well
as app-level certain

settings

Lennon C. et al.,
2019 [21]

Verifying fragility in
digital systems with
uncertainties using

DSVerifier v2.0

Software standard testing
and satisfiability modulo
assumptions of DSVerifier

v2.0

Closed-loop
management systems

regarding finite
word-length effects

Authentication
procedures for
digital systems

Vulnerability
auto-filter and

alerting mechanism

Systems 2023, 11, 262 7 of 25

Table 1. Cont.

Author and
Citation Proposed Approach Key Constraints Functional

Environment
Integrated

Environment Proposed Solution

Henning
Heitkötter et al.,

2015 [22]

Extending a
model-driven CPF

development
approach to business
apps, the science of

computer
programming

Model-driven
cross-platform approach

MD2.
It is integrated on an

MVC-based DSL and is
routinely renovated into

NAs for iOS and Android.

Specifically,
design-certain
outline with

expanded control
structures, and

offline computation

MVC-based DSL.
Business apps for
iOS and Android

Multi-authentication
cross-platform

process for personal
and commercial

applications

Pustišek, M et al.,
2019 [23]

Communication
Constraints of

Ethereum-Based
Decentralized
Applications

It evaluated three
application designs varying
in interaction, computation,

storage space, and
protection constraints

Blockchain clients
and their applications

Integrated
IoT-based

devices

Secure
auto-integration of

end-user level as well
as app-level secure

settings

Akasiadis, C et al.,
2019 [24]

Multi-Protocol IoT
CPFs based on

open-source
frameworks

Chains multiple application
layer message protocols
such as Representational
State Transfer or HTTP,

Message Queuing
Telemetry Transport,
Advanced Message
Queuing Protocol,

Constrained Application
Protocol, and WebSockets

It was self-possessed
with open-source

frameworks such as
RabbitMQ, Ponte,

OM2M, and RDF4J.

Integrated
IoT-based
devices.

Integrated the web
applications and
mobile apps to

analyze vulnerability
through the various
supporting plug-in

filters and
auto-alerting
mechanism

Palviainen, M et al.,
2012 [25]

Framework for
End-User

Programming of
Cross-Smart Space

Applications

Performance of the
structure, tools and

methods for the driver
component enhancement

and end-user programming

Cross-smart space
applications

Smart space
applications and

devices

Full, partial, and
on-demand

integration of web
and mobile apps

based on
multi-authentication

and access control

Biørn-Hansen et al.,
2019 [26]

Animations in
Cross-CPFs Mobile
Applications: An

Evaluation of Tools,
Metrics and
Performance

Analysis and evaluation to
inform on the machine
hardware influence and

consequences triggered by
modifications and activities

Prominence on Apps
created using

cross-PF expansion
structures, along

with the involvement
of performance
measuring of

animation

Eight mobile
apps

Multi-authentication
cross-platform

process for personal
and commercial

applications.

Hang, L et al., 2019
[27]

Design and
Implementation of an

Integrated IoT
Blockchain CPFs for

Sensing Data
Integrity

Unchangeable log and
permits easy access to their
devices utilized in various

fields.

PF is to offer the
device vendor that
requires thorough a

functional
application

Integrated IoT PF
using blockchain

technology

Secure
auto-integration of
data services based

on the user’s
behavioral factors

Saket
Acharya et al., 2022

[28]

A Comprehensive
Review of Android
Security: Threats,

Vulnerabilities,
Malware Detection,

and Analysis

Assessment of recent
Android security interests,

security execution
improvements, substantial
malware identified from

2017 to 2021

Secrecy processes
utilized by the

malware designers

Android-based
Apps

Vulnerability
auto-filter and

alerting mechanism

Tahir Alyas et al.,
2022 [29]

Container
Performance and

Vulnerability
Management for

Container Security
Using Docker Engine

Docker Security Engine
(DSE) practices four
mechanisms such as
innovative gathering

Container runtime by
supplementary rules

Preparation,
procedures, file

system, scanning
of vulnerabilities,
network isolation

Vulnerability
auto-filter and

alerting mechanism

Elham A et al.,
2022 [30]

Attribute-based
access control

(AbAC) approach
using Hyperledger
Fabric blockchain

(HLFBC)

Attribute-based access and
HLFBC

Implications of
various access

controls

Role-based user
systems

Multi-authentication
cross-platform

process approach

Systems 2023, 11, 262 8 of 25

Table 1. Cont.

Author and
Citation Proposed Approach Key Constraints Functional

Environment
Integrated

Environment Proposed Solution

Biørn-Hansen et al.,
2019 [31]

An Empirical Study
of cross-platform

mobile development
in Industry

Highlighted attractiveness,
acceptance, and evolving

issues associated.

Acceptance of
various access

controls

The use of
technological

expansion
contexts and tool

Security and privacy
of data at CC server,
storage, transit, and
as well as end-user

mode

Neline
van Ginkel et al.,

2019 [32]

A Server-Side
JavaScript Security

Architecture for
Secure Integration of
third-party libraries

Web-strengthening
methods and access control

strategies on exchanges
among their environments

Supportive libraries
along with

dependable plug-ins.

Data exchange
among various
multi-tenants

Vulnerability
auto-filter and

alerting mechanism

Dhiman et al., 2023
[33]

Blockchain
Merkle-tree

Ethereum approach
in enterprise

multi-tenant CC
environment

It has implicated
cypher-text policy attribute

encryption algorithmic
sequences through various
levels of MT such as inner,

outer, inner–outer,
inner–outer–external,

outer–inner, and
external–outer–inner

Validity and data
access control (DAC)

CE-based
multi-tenants

Integrated the web
applications and
mobile apps to

analyze vulnerability
through the various
supporting plug-in

filters and
auto-alerting
mechanism

Dhiman et al., 2022
[34]

Secure Token Key in
an EMT CMT using
Brakerski–Gentry–

Vaikuntanathan
(BGV) hybrid HE

Multi-factor authentication–
authorization

modes.

Integration of Secure
Token and Key

Security and
privacy data

exchange among
various

multi-tenants

Vulnerability filter
and auto-alerting

mechanism

Dhiman et al., 2022
[35]

Qualified scrutiny
complications in

cloud security along
with non-HE and HE

Practices

Comparative analysis
Integration of Secure

Token, Key, and
Salting techniques

security and
privacy data

exchange among
various

multi-tenants

security and privacy
of data at CC server,
storage, transit, and

end-user mode

Dhiman et al., 2022
[36]

Analysis of BC
Secure Models and

Approaches Based on
Various Services in

Multi-tenant
Environment

Multi-tenant environment
Analysis of various

existing models with
secure parameters

Security and
privacy data

exchange among
various

multi-tenants

Integrated the web
applications and
mobile apps to

analyze vulnerability
through the different
supporting plug-in

filters and
auto-alerting
mechanism

Developers can utilize third-party libraries that provide reusable, pre-analyzed, and
pretested software apps, saving them valuable resources such as time, money, human
resources, and infrastructure investments. It enables developers to concentrate on the core
components and features of the applications essential to clients and end-users. However,
most third-party libraries (TPLs) or non-TPLs pose security risks, as a vulnerability in
any library can compromise an entire server, resulting in customers’ sensitive data being
compromised. This research paper proposes that third-party applications and libraries
used in cross-platform development be analyzed using multi-authentication with specific
parameters. Integrating multi-authentication for certain parameters makes it easier to set up
web desensitization methods and access control parameters based on multi-authentication.
Including multiple dependent libraries allows libraries and local–global environments to
work together securely and efficiently.

This study focuses on the stages and environments involved in developing CPFs
(Context-aware Policy Frameworks) and the layers of compatible devices. It explores
various third-party libraries that support the building, running, deployment, and data
access control in CPF-based environments. The study also evaluates existing CPF mobile
app improvement models and methodologies. It considers the integration of on-demand
third-party libraries, plug-ins, and patches to improve app performance while accounting
for external CPFs.

Systems 2023, 11, 262 9 of 25

The enchantment of TPL-based JavaScript source code in web environments and
applications necessitates considering five risks such as:

• Execution of random malicious code on client systems;
• Loss of control over system resources on client and end-user systems;
• Loss of control over changes to the client application;
• Disclosure or leakage of sensitive information to unauthorized people;
• Compromise the local network systems, appliances, and applications.

3. Methodology: Dependable and Non-Dependable (D-ND) Multi-Authentication
Access Constraints (MAAC) Approach

A vast number of TPLs are available for selection, with varying levels of risk. TPLs may
contain severe vulnerabilities or unintentional PIs. Additionally, TPLs can serve specific
purposes, have frequent or automatic updates, or remain in static mode. Malicious TPL code
has caused security incidents in the past, infiltrating benign projects and web applications.

In Figure 2, the brown arrow lines represent the step-wise process of software applica-
tion development, implementation, testing and deployment stages. The indigo arrow lines
represent various vulnerabilities’ entry levels at cloud-based software application installa-
tion and upgrade stages. The bi-directional arrow lines represent the correlation among mul-
tiple libraries and plug-ins required during software application testing and deployment
stages. The red arrow lines represent the execution flow among the third-party libraries
with their additional dependable factors and software application development stage.

Systems 2023, 11, x FOR PEER REVIEW 11 of 28

Figure 2. Involvement of vulnerabilities in various stages of application development.

3.1. Analysis of Suspicious TPLs’ and PIs’ Injection Levels and Their Impact on Cross‐Platform

(CPF) Development Types in D‐ND‐MAAC

There is significant growth in innovative software development (SD) environments,

applications, and tools designed specifically for intelligent mobile platforms and devices.

The rapid expansion of the mobile market has driven the development of CPF SD envi-

ronments (SDE) that enable faster, more straightforward, more cost-effective, and re-

sourceful software development [16]. These SDEs are primarily responsible for creating

four major categories of applications: WbA, HbA, IbA, and GbA.

3.1.1. Cross-Platform (CPFs)—Web-Based Apps (WbA)

The WbA or Web-Browser-Integrated apps are software programs that are trans-

ferred and integrated into web environments. These apps are created using a combination

of HTML, CSS, and JS, which are extensive cyberspace tools. However, these environ-

ments have partial data access to the primary levels of devices, hardware, and networks,

and thus require additional time to render web pages and incur additional costs to down-

load internet applications. WbA does not require other installations, and succeeding im-

provements can be implemented without requiring other facilities. Nowadays, software

libraries such as Sencha Touch, JQuery Mobile, and JQTouch ensure the building of web

apps that replicate the functionality of native applications.

3.1.2. Cross-Platform (CPFs)—Hybrid-Based Apps (HbA)

HbA is a technology that combines the benefits of WbA and native applications

(NAs). It is mainly created by integrating HTML5, CSS, and JS or TypeScript without

Figure 2. Involvement of vulnerabilities in various stages of application development.

Systems 2023, 11, 262 10 of 25

3.1. Analysis of Suspicious TPLs’ and PIs’ Injection Levels and Their Impact on Cross-Platform
(CPF) Development Types in D-ND-MAAC

There is significant growth in innovative software development (SD) environments,
applications, and tools designed specifically for intelligent mobile platforms and devices.
The rapid expansion of the mobile market has driven the development of CPF SD environ-
ments (SDE) that enable faster, more straightforward, more cost-effective, and resourceful
software development [16]. These SDEs are primarily responsible for creating four major
categories of applications: WbA, HbA, IbA, and GbA.

3.1.1. Cross-Platform (CPFs)—Web-Based Apps (WbA)

The WbA or Web-Browser-Integrated apps are software programs that are transferred
and integrated into web environments. These apps are created using a combination of
HTML, CSS, and JS, which are extensive cyberspace tools. However, these environments
have partial data access to the primary levels of devices, hardware, and networks, and thus
require additional time to render web pages and incur additional costs to download internet
applications. WbA does not require other installations, and succeeding improvements can
be implemented without requiring other facilities. Nowadays, software libraries such as
Sencha Touch, JQuery Mobile, and JQTouch ensure the building of web apps that replicate
the functionality of native applications.

3.1.2. Cross-Platform (CPFs)—Hybrid-Based Apps (HbA)

HbA is a technology that combines the benefits of WbA and native applications (NAs).
It is mainly created by integrating HTML5, CSS, and JS or TypeScript without considering
the specific features of the target platforms. HbA employs a thin native container with a
WebView in Android and a UIWebView in iOS to embed HTML5-based code apps. The
browser is still involved in HbA, which is a part of the ultimate application and can be
combined with the application, unlike WbA, where security controls (SC) are taken from
websites that are installed on local devices and have access to primary levels of machines,
hardware, and networks through specialized dedicated APIs. HbA implements SC by
integrating various technologies to develop platform frameworks (PFs). However, to
achieve a native look and feel, specific progress libraries such as JQuery and other external
services must be used.

3.1.3. Cross-Platform (CPFs)—Interpreted-Based Apps (IbA)

IbA automatically generates native system code to facilitate the execution of UI func-
tionality. End-users and clients can interact with various components of platform-specific
native UI. At the same time, the application’s integrated logic is independently imple-
mented using different supporting languages and technologies such as Ruby, Java, and
XML. This environment is more efficient due to the self-integration of native user interfaces,
but its effectiveness relies mainly on the SD environment. Depending on the supportive
development environment, the HbA must incorporate new UI features and services of a
new Android or other supportive versions while developing new platform-specific features
and services.

3.1.4. Cross-Platform (CPFs)—Generated-Based Apps (GbA)

The GbA platform aggregates various services, such as NAs and PFs. Specific appli-
cations, such as Applause app development, are generated for each target PF. The GbAs
achieve superior performance due to the efficient native code (NC) produced. Furthermore,
GbAs can utilize methods to make NC integrate other external services. However, in
practical experiments and real-life scenarios, the consumption of the produced NC is not
straightforward due to the automated structure of the platform.

Systems 2023, 11, 262 11 of 25

3.2. D-ND-MAAC-Based Cross-Platform Mobile Development (CPMD)-Based Security Analysis
Systems (SAS) and Third-Party Libraries

The software developers employ the CPF’s mobile development (CPMD) resolutions
to build up mobile-based applications once, and it is expected to run or deploy on many
platforms and devices. The numerous CPF solutions (CPS) are unmoving under con-
sideration of the research process and development process. These CPS build based on
different methods and approaches, such as the WbA, Cross-Compilation-based approach,
and Virtual-Machine-based approach (VMbA), as shown in Figure 3.

Systems 2023, 11, x FOR PEER REVIEW 13 of 28

Figure 3. Implications of CPFs’ Executional Stages.

In Figure 3, the brown arrow lines represent the CC-SP-based cloud platform devel-

opment categories such as MAs development (MAD), CPFs MAs development (C-

PMAD), C-PMAD methods and internal extensions modules. The black colour arrow lines

represent further executions.

3.2.1. Cross-Platform Mobile Development (CPMD)

In literature, several proposed methods, approaches, and models for CPMD solutions

have limitations due to traditional methodologies and lack the latest processes, such as

the Cross-Compilation-based approach, Component-based approach (CbA), and merged-

based approach (MbA). The increasing usage of smartphones is attributed to the availa-

bility of diverse mobile applications (MApps) in various app stores, which are essential

for advanced requirements in fields such as healthcare, education, telecommunication,

engineering, tourism, medicine, etc. Due to the massive number of smartphone users,

there is a growing demand for additional apps. These apps need to cater to the specific

requirements of various smartphone platforms such as iOS, Windows Phone, BlackBerry

OS, Android, Symbian, etc., which are used by different manufacturers and dealers in the

market [37].

Figure 3. Implications of CPFs’ Executional Stages.

In Figure 3, the brown arrow lines represent the CC-SP-based cloud platform develop-
ment categories such as MAs development (MAD), CPFs MAs development (C-PMAD),
C-PMAD methods and internal extensions modules. The black colour arrow lines represent
further executions.

3.2.1. Cross-Platform Mobile Development (CPMD)

In literature, several proposed methods, approaches, and models for CPMD solutions
have limitations due to traditional methodologies and lack the latest processes, such as the
Cross-Compilation-based approach, Component-based approach (CbA), and merged-based

Systems 2023, 11, 262 12 of 25

approach (MbA). The increasing usage of smartphones is attributed to the availability of
diverse mobile applications (MApps) in various app stores, which are essential for advanced
requirements in fields such as healthcare, education, telecommunication, engineering,
tourism, medicine, etc. Due to the massive number of smartphone users, there is a growing
demand for additional apps. These apps need to cater to the specific requirements of
various smartphone platforms such as iOS, Windows Phone, BlackBerry OS, Android,
Symbian, etc., which are used by different manufacturers and dealers in the market [37].

Mobile applications are classified based on four distinct forms, which include native,
hybrid, devoted web-based apps, and generic mobile-based apps (GMbA). These applica-
tions are customized to explicit platforms (PFs) and can be executed on any platform, as
shown in Figure 3. Mobile web development (MWD) frameworks provide common charac-
teristics and functionalities to distributed applications by incorporating CPF models that
support different platforms. These frameworks use lightweight models with smaller file
sizes to accommodate bandwidth restrictions. Additionally, they include custom standards
of HTML5 and CSS3 to support touch-screen strategies.

In Figure 4, the brown arrow lines represent pro-step-wise stages. The thin brown
arrow lines represent the correlation among the third-party libraries, plug-ins, and the
software development stages of implementation, updating, and maintenance. The red
colour arrow represents the entry points of third-party vulnerabilities.

Systems 2023, 11, x FOR PEER REVIEW 14 of 28

Mobile applications are classified based on four distinct forms, which include native,

hybrid, devoted web-based apps, and generic mobile-based apps (GMbA). These applica-

tions are customized to explicit platforms (PFs) and can be executed on any platform, as

shown in Figure 3. Mobile web development (MWD) frameworks provide common char-

acteristics and functionalities to distributed applications by incorporating CPF models

that support different platforms. These frameworks use lightweight models with smaller

file sizes to accommodate bandwidth restrictions. Additionally, they include custom

standards of HTML5 and CSS3 to support touch-screen strategies.

In Figure 4, the brown arrow lines represent pro-step-wise stages. The thin brown

arrow lines represent the correlation among the third-party libraries, plug-ins, and the

software development stages of implementation, updating, and maintenance. The red col-

our arrow represents the entry points of third-party vulnerabilities.

Figure 4. TPLs’ and PIs’ state-level injection in security analysis systems (SAS).

3.2.2. CPMD-Based Security Analysis Systems (SAS) and Third-Party Libraries

CPMD-SAS is a defensive shield that protects against internal and external attacks to

break down data security and privacy. Its main objective is to auto-sense malware and

authenticate application behaviour using supporting libraries [38]. CPMD-SAS is de-

ployed at different levels and in various types across supporting devices and distributed

servers. There are two main types of CPMD-SAS methods proposed by researchers,

namely static and dynamic analytical approaches [39–43]. Static analytical techniques,

presented by various researchers, help in program analysis without executing the code,

but they lose some data during the analysis stage. In addition, dynamic analytical ap-

proaches, also proposed by researchers, analyze the program code when it is executed,

thus overcoming the limitations of the static analytical CPMD-SAS processes [44].

Figure 4. TPLs’ and PIs’ state-level injection in security analysis systems (SAS).

3.2.2. CPMD-Based Security Analysis Systems (SAS) and Third-Party Libraries

CPMD-SAS is a defensive shield that protects against internal and external attacks
to break down data security and privacy. Its main objective is to auto-sense malware and
authenticate application behaviour using supporting libraries [38]. CPMD-SAS is deployed
at different levels and in various types across supporting devices and distributed servers.

Systems 2023, 11, 262 13 of 25

There are two main types of CPMD-SAS methods proposed by researchers, namely static
and dynamic analytical approaches [39–43]. Static analytical techniques, presented by
various researchers, help in program analysis without executing the code, but they lose
some data during the analysis stage. In addition, dynamic analytical approaches, also
proposed by researchers, analyze the program code when it is executed, thus overcoming
the limitations of the static analytical CPMD-SAS processes [44]. However, they cannot
reach statically analyzable control flow. Therefore, hybrid approaches are necessary to
analyze data with a defensive shield that works against internal and external attacks [45].
The mixed CPMD-SAS-based analysis presents the best effects by evading the shortcomings
of static and dynamic-based CPMD-SAS usage, thus sensing all malware.

3.2.3. Secure Integration of Third-Party Libraries

The TPLs are widely used in MApps and are crucial in the Android and Windows
ecosystems. However, TPLs pose both benefits and risks. On the one hand, they provide
flexibility in app development, but on the other hand, they bring about security and
privacy risks such as data leaks and increased attacking surfaces [46]. To address these
issues, researchers have proposed various approaches to characterize TPLs, including auto-
detection mechanisms, security integration, privacy filtering analysis of TPLs, and TPL
analysis-based attributes supported by factors. However, existing research has not fully
addressed all the issues and techniques related to TPLs. Advanced filters are necessary to
ensure data security with measurable privacy parameters. These filters will help filter and
classify TPLs into dependable and non-dependable libraries, required and non-required
functionalities, and demand and non-demand feasibilities.

The use of TPLs has become a standard practice in the development of mobile applica-
tions. Software developers employ these libraries to monitor and analyze their apps using
third-party plug-ins and advertisements. Additionally, TPLs help to integrate mobile apps
with social media sites through various logins on different systems, thereby improving
the services provided. JavaScript is one of the most used programming languages in web
technologies and has been the primary scripting language for client-side and server-side
web scripts for a long time [47]. Integrating server-side JavaScript can give enterprises and
companies a wider talent pool, leading to better development outcomes [48]. JavaScript
offers many benefits for clients and server systems, including building faster browsers
incorporating substances and libraries from different third parties. However, this flexibility
comes at a significant cost in terms of security threats (STs) and malware, which can pose a
severe risk to the integrity and safety of the system [49,50].

This research integrated a cross-platform mobile development (CPMD) and security
analysis systems (SAS)-based hybrid approach to analyze and regulate the data with a
defensive shield that works against any internal and external attacks by deploying the
weaknesses of TPLs and malware. The hybrid CPMD-SAS-based analysis presents the best
effects by evading the shortcomings of static and dynamic-based CPMD-SAS usage, thus
sensing all malware.

In the experimental scenario, the apps are synchronized with the rule-based API, which
oversees their behavior and regulates the data, authentication, authorization, roles, and ac-
cess control. New PIs and updates are upgraded based on the regulated rules and threshold
values. The experimental scenario is framed through ten regulated execution stages:

Stage 1: Classified the apps into five groups based on their software and hardware
functionality parameters, as shown in the Table 2.

Stage 2: All TPLs and PIs are classified based on the behavior of the five clustered app
groups, technical and functional regional factors.

Stage 3: Identified the entry and exit points of TPLs and PIs. In this research, the
software application deployment, upgrade, and maintenance stages were considered
experimental entry points for TPLs and PIs.

Stage 4: Proposed 72 rules, including 10 cluster rules (CR1 to CR10), to manage
and control all restricted TPLs and PIs based on the app’s functional, technical, regional,

Systems 2023, 11, 262 14 of 25

dependency range, and behavioral factors. These rules were developed according to the
end-users and customers’ requirements, active applications, and regions, as presented in
Tables 4 and 5.

Stage 5: In this stage, all cluster rules are synchronized with internal regulations based
on correlation sets designed to align with end-user and customer requirements, as well as
active applications and regions.

Stage 6: Mapping of five different modes of apps with their range of access control,
involvement, and behavior based on TPLs and PIs, which helps to filter the unauthorized
TPLs and PIs. The mapping range is classified into two variations, auto-enable mode (AEM)
and auto-disable mode (ADM), ranging from 1 to 100 percentage points. AEM represents
50 to 100% points, while ADM represents 0 to 49%. The ADM mode is activated when the
mapping percentage is between 1 and 49, described as a cross (X) in Table 5.

Stage 7: All correlation-synchronized set rules are initiated at the installation, updating,
and maintenance stages of software applications and mobile apps.

Stage 8: The new and existing TPLs and PIs entries are tuned through the correlation
sets of cluster rules.

Stage 9: Newly initiated and existing TPLs and PIs are pipelined through the cor-
relation sets of cluster rules and generate the mapped value to decide whether to allow
or disallow.

Stage 10: It is an automated process; the CPMD-SAS correlation sets of cluster rules
analyze the new and existing TPLs and PIs based on their functional behaviour, and the
mapping value will change accordingly, helping to make operational decisions.

Table 2. A reasonable analysis of CPFs’ improvement models, approaches, and methodologies.

Type of App
versus Software
and Hardware

Parameters

User-
Perceived

Performance

Hardware
and Data

Access

User
Interface and

Look and
Feel

Marketplace
Deployment

Widespread
Technologies

APIs through
Software and

Hardware

Auto-
Integration Software Libraries

Web-based Apps
(WbA) Low Limited Simulated No Yes Standard Interface Partial

JQuery Mobile,
Sencha Touch,

JQTouch,
WebApp.net, Xui,
and many others.

Hybrid-based
Apps (HbA) Medium Limited Simulated Yes, but not

guaranteed Yes Hybrid High-level
Interface Full

Native thin
containers such as
UIWeb view in Ios
and WebView in

Android.
Containers such as
Cordova, Capacitor,

PhoneGap

Interpreted-
based Apps

(IbA)
Medium Limited Native Yes Yes

High-level
Interface

Special APIs such
as SQLite API

applied to store
App status and

data

Full

Appcelerator
Titanium Mobile

SDEs for designing
inferred Apps.

Generated-based
Apps (GbA) High Full Access Native Yes No High-level

Interface Full

Foremost PFs such
as Android, iOS,

and Windows
Phone, which

produces SC of Java,
Objective-C, C#,

Python, etc.

Model-driven
software

development
(MDSD)

High
On-

demand
Access

Native Yes Yes

Problem
domain-based
development.

App functionality
and specifications

Full

iPhonical and
applause utilize a

domain-exact
language (based on

the XText
framework) as input

Systems 2023, 11, 262 15 of 25

4. Results and Discussion

The experimental scenarios were developed using Node JS along with integrations of
MongoDB. The system architecture utilizes a rule-based environment integrating various
third-party libraries and plug-ins. The Node JS architecture is designed to facilitate event-
driven programming (EDP) for the development of web servers, making it easy for web
developers to create highly scalable and performance-oriented server-based applications.
The use of simplified methods of EDP enables the initiation of callbacks and prevents the
need for working with concurrency with additional server-side programming languages.
The experimental scenarios include integrating various software and hardware parameters
to analyze third-party plug-ins using multiple types of apps, as depicted in Table 3.

Table 3. Integrated software- and hardware-based parameters in the proposed methodology.

User-
Perceived

Performance

Hardware
and Data

Access

User
Interface and

Look and
Feel

Marketplace
Deployment

Widespread
Technologies

APIs through
Software and

Hardware

Auto-
Integration Software Libraries

Web-based
apps (WbA) Low Limited Simulated No Yes Standard Interface Partial

JQuery Mobile, Sencha
Touch, JQTouch,

WebApp.net, Xui, and
many others

Hybrid-based
apps (HbA) Medium Limited Simulated Yes, but not

guaranteed* Yes Hybrid High-level
Interface Full

Native thin containers
such as UIWeb view in

Ios and WebView in
Android. The

container’s such as
Cordova, Capacitor,

PhoneGap

Interpreted-
based apps

(IbA)
Medium Limited Native Yes Yes

High-level
Interfaces Special

APIs such as
SQLite API applied
to store app status

and data

Full

Appcelerator Titanium
Mobile SDEs for

designing-inferred
apps.

Generated-
based apps

(GbA)
High Full Access Native Yes No High-level

Interface Full

foremost PFs like
Android, iOS, and
Windows Phone.

Which produces SC of
Java, Objective-C, C#,

Python, etc.

Model-driven
software

development
(MDSD)

High
On-

demand
Access

Native Yes Yes

Problem
domain-based

development. App
functionality and

specifications

Full

iPhonical and
applause utilizes a

domain-exact
language (based on the

XText framework) as
input

4.1. Secure Injection Access Constraints for Third-Party Libraries in Node JS Cross-Platform
Development: A Rules-Based Approach to Prevent TPLs’ and PIs’ State-Level Injection in Security
Analysis Systems (SAS)

Node JS is a comprehensive library that supports many functionalities, including System-
I/O, networking environment support such as TLS, data bit-streams, and cryptography-based
security. Its capabilities make it an ideal tool for handling binary-implicated data. However, the
library is susceptible to two typical attack phases involving TPL- and PI-based vulnerabilities.
These vulnerabilities can occur during the initial code design or implementation or later
during the code updates and maintenance, as shown in Figure 4.

• The best option is to mitigate this risk using a local repository environment (LRE)
that will not allow blindly updating dependencies remotely. For this, the LRE uses
well-known secure releases that are not corrupted by receiving the code from the
source code.

• The rule-based filters and checksums are used to validate the entry point of TPLs and
PIs. If there is potential, verify the code reliability along with policy-based checksums
if they are accessible with specific library versions, which help to keep the risk at
lower levels.

Systems 2023, 11, 262 16 of 25

• Do not be worried about minimal use of the newest version of the software libraries
and patches out of practicality.

• Update the versions consciously and effectively on time and interpret the release notes
carefully before advancing any TPL.

• Pining dependency versions in the source code ensure they are not in an auto-updating
mode, which prevents malicious updates and backdoors from sneaking in unnoticed.

• Maintenance of a catalogue of the source code used in creation is the initial step in the
defence of it—observance of the source code record on-demandable updating.

This study involved the integration of five distinct modes of mobile applications,
including WbA, HbA, IbA, GbA, and MDSD. The proposed methodology was tested
using different test cases through various WbA, HbA, IbA, GbA, and MDSD apps. The
proposed method integrated over 95 different kinds of TPLs and PIs of multiple apps
such as performance booster apps, redundant active and passive apps, alternate apps of
Google, cluster workspace apps, similar deviation apps, social media apps, unauthorized
entertainment apps and VPN apps, local device-supportive service apps, etc., as shown
in Table 4.

Table 4. Integrated application environments, app types, TPL and PI behaviour factors.

Environment
Type Apps Type

Third-Party
Libraries

(TPLs)
Trigger Level Behaviour Level

Auto-
Integration

of TPL
Requirement

Harm-
Level

Alternatives
apps to Google Bloatware apps Auto-

addable
Reduce the device’s

usability
It controls other device

services Not Required High

Inactive
applications Redundant apps Not

Required
Reduce the device’s

performance
Auto-transfer mode of

behaviour Not Required High

Cluster
workspace apps

Google Workspace
apps such as

Gmail, Google
Keep, Docs,

Sheets, Slides,
Meet, Calendar,

and more.

Not
Required

It will compromise
the device
credentials

Auto-upgradation
mode of behaviour Not Required High

Performance
booster apps

Performance
booster apps such
as RAM cleaners,

battery savers, and
game optimizers

Not
Required

Reduce the device’s
hardware and

software
performance

Not Required High

Duplicate apps
holding the

same
functionalities.

Data backup apps,
web browsers,
note carrying

apps, and
messaging apps

Not
Required

Includes critical
vulnerabilities that

potentially steal
personal info,

including credit
card details, photos,
and private chats

Similar nature grants
different features Not Required High

Social media Instagram, TikTok,
or Snapchat

On-
demand

TPLs

Auto-popups and
holding the wrong

options
Not Required

Unauthorized
Personal

healthcare apps

Fitness, dating,
and meditation

Not
Required

Bypass the access
control

Auto-popups and
holding the wrong

options
Not Required High

Systems 2023, 11, 262 17 of 25

Table 4. Cont.

Environment
Type Apps Type

Third-
Party

Libraries
(TPLs)

Trigger Level Behaviour Level

Auto-
Integration

of TPL
Requirement

Harm-
Level

Unauthorized
VPN apps

SuperVPN Free
VPN Client apps

Not
Required

includes critical
vulnerabilities

Man-in-middle attacks.
Exploit the

vulnerabilities to take
over an end-user’s

trusted connections to
malicious websites that
could further endanger

user privacy and
security.

Not Required High

Local device-
supportive

service apps

Super Clean and
Master of

Cleaner apps
It will

automatically add
unnecessary

plug-ins at the
time of installation

and updates.

Not
Required

Super Clean by
Magical Dev has

registered over 26
million installs on

the Play Store.

Auto-spreading apps
among the devices.

It promises to optimize
battery usage, clean
junk files, and boost

memory, none of which
requires a third-party

app.

Not Required High

Entertainment
apps Fildo music app Not

Required

It will
automatically add

unnecessary
plug-ins at the time
of installation and

updates.

Auto-downloading
functionality Not Required High

These scenarios were designed to evaluate the performance of the applications in terms
of various security and privacy parameters, such as user-perceived performance, hardware
and data access, user interface and look and feel, marketplace deployment, widespread
technologies, APIs through software and hardware, auto-integration, and the number of
software libraries and level of integration. Each mode of the app considered six levels of
variations, and the study developed 72 rules to manage and control all restricted TPLs
and PIs based on these rules. These rules were designed according to the end-users’ and
customers’ requirements, active applications, and regions. The results of the study are
presented in Tables 4 and 5.

• Web-based apps (WbA) :{WbA1, WbA2, WbA3, WbA4, WbA5}
• Hybrid-based apps (HbA) :{HbA 1, HbA2, HbA3, HbA4, HbA5}
• Interpreted-based apps (IbA) :{IbA1, IbA2, IbA3, IbA4, IbA5}
• Generated-based apps (GbA) :{GbA1, GbA2, GbA3, GbA4, GbA5}
• Model-driven software development (MDSD) :{MDSD1, MDSD2, MDSD3, MDSD4,

MDSD5}

In the above statement, the arrow representing the inference relation among the set of de-
pendable parameters such as web-based apps (WbA) correlates with the collection of influenced
parameters WbA1, WbA2, WbA3, and WbA4. In the same way, other dependable parameters,
HbA, IbA, and GbA, MDSD, correlate with the set of influenced parameters HbA 1, HbA2, HbA3,
HbA4; IbA1, IbA2, IbA3, IbA4; GbA1, GbA2, GbA3, GbA4; and MDSD1, MDSD2, MDSD3,
MDSD 4, respectively. The modes and levels of WbA, HbA, IbA, GbA, and MDSD are correlated
with various supporting mapping parameters such as UPP-P, HDA-P, UI-LF-P, MP-D-P, WST-P,
APIs-SWHW-P, AI-P and SL-LI-P. Every supporting mapping parameter has been derived into
various matrices with their feasible range of percentage values from 0 to 100%, which have been
integrated based on the requirement of customers and end-users, as shown in Table 5.

Systems 2023, 11, 262 18 of 25

Table 5. Integration of five different modes of apps with their execution supporting access control
factors with their dependable and non-dependable parameters and matrices.

U
se

r-
Pe

rc
ei

ve
d

Pe
rf

or
m

an
ce

in
Pe

rc
en

ta
ge

(U
PP

-P
)

H
ar

dw
ar

e
an

d
D

at
a

A
cc

es
s

in
Pe

rc
en

ta
ge

(H
D

A
-P

)

U
se

r
In

te
rf

ac
e

an
d

Lo
ok

an
d

Fe
el

in
Pe

rc
en

ta
ge

(U
I-

LF
-P

)

M
ar

ke
tp

la
ce

D
ep

lo
ym

en
t

in
Pe

rc
en

ta
ge

(M
P-

D
-P

)

W
id

es
pr

ea
d

Te
ch

no
lo

gi
es

in
Pe

rc
en

ta
ge

(W
ST

-P
)

A
PI

s
T

hr
ou

gh
So

ft
w

ar
e

an
d

H
ar

dw
ar

e
in

Pe
rc

en
ta

ge
(A

PI
s-

SW
H

W
-P

)

A
ut

o-
In

te
gr

at
io

n
in

Pe
rc

en
ta

ge
(A

I-
P)

N
o.

of
So

ft
w

ar
e

Li
br

ar
ie

s
an

d
Le

ve
lo

f
In

te
gr

at
io

n
(S

L-
LI

-P
)

Lo
w

M
ed

iu
m

H
ig

h

Li
m

it
ed

Fu
ll

O
n-

D
em

an
d

Si
m

ul
at

ed

N
at

iv
e

N
o

Ye
s

Ye
s,

bu
tN

ot
G

ua
ra

nt
ee

d

Ye
s

St
an

da
rd

In
te

rf
ac

e

H
ig

h-
Le

ve
lI

nt
er

fa
ce

H
yb

ri
d

H
ig

h-
Le

ve
lI

nt
er

fa
ce

H
ig

h-
le

ve
lI

nt
er

fa
ce

Sp
ec

ia
lA

PI
s

Pr
ob

le
m

D
om

ai
n-

B
as

ed
D

ev
el

op
m

en
tA

pp
Fu

nc
ti

on
al

it
y

an
d

Sp
ec

ifi
ca

ti
on

s

Pa
rt

ia
l

Fu
ll

SL
-L

I-
P

WbA1 50 50 60 0 80 80 85 70 80

WbA2 60 70 70 0 100 100 100 70 80

WbA3 60 50 80 0 100 80 100 60 80

WbA4 75 50 100 60 100 100 100 100 90

WbA5 80 100 90 100 100 90 100 60 80

WbA6 90 100 100 100 100 100 100 100 80

HbA1 50 50 60 0 90 100 70 100

HbA2 50 50 60 0 100 100 70 100

HbA3 60 50 80 60 95 100 100 100

HbA4 75 40 60 100 100 100 100 100

HbA5 90 100 80 100 97 100 100 100

HbA6 100 100 100 100 100 90 100 100

IbA1 50 50 60 0 70 100 70 70

IbA2 50 50 60 0 100 100 100 70

IbA3 60 50 60 60 82 100 70 70

IbA4 75 40 60 100 100 100 100 70

IbA5 90 100 80 100 94 100 70 70

IbA6 100 100 100 100 100 90 100 70

GbA1 50 50 60 0 70 100 70 100

GbA2 50 50 60 0 100 100 100 100

GbA3 60 50 80 60 82 100 100 100

GbA4 75 40 60 100 100 100 100 100

GbA5 90 100 80 100 94 100 100 100

GbA6 100 100 100 100 100 90 100 100

MDSD1 50 50 60 0 76 100 70 85

MDSD2 50 50 60 0 100 100 100 85

MDSD3 60 50 80 60 89 100 100 85

MDSD4 75 40 60 100 100 100 100 85

MDSD5 90 100 80 100 98 100 100 85

MDSD6 100 90 100 100 100 100 100 85

Systems 2023, 11, 262 19 of 25

4.2. Mapping of TPLs’ and PIs’ State-Level Injections in Security Analysis Systems (SAS)

In SAS, mapping between Threat Protection Levels and PIs has been identified as
a critical step for accurate decision making. The practical meaning of the rules is the
process of mapping and coordination among the rules, which enables effective filtering
and management of all TPLs and PIs, allowing for the control and operation of restrictions
based on predefined rules. Our research integrated 72 rules, including 10 cluster rules (CR1
to CR10), designed to align with end-user and customer requirements, as well as active
applications and regions. A detailed overview of these rules can be found in Tables 6 and 7.
The framed cluster rules are as follows:

• Cluster Rule1 (CR1) = {WbA: HbA:IbA:GbA} :({WbA1, WbA2, WbA3, WbA4}) && (UPP-
P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1, IbA2, IbA3, IbA4})
:(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2, MDSD3, DSD 4})

• Cluster Rule2 (CR2) = {WbA: HbA:IbA:GbA} :({HbA 1, HbA2, HbA3, HbA4}) && (UPP-
P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1, IbA2, IbA3, IbA4})
:(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2, MDSD3, DSD 4})

• Cluster Rule 3 (CR3) = {WbA: HbA:IbA:GbA} :({IbA1, IbA2, IbA3, IbA4}) && (UPP-
P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1, IbA2, IbA3, IbA4})
:(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2, MDSD3, DSD 4})

• Cluster Rule 4 (CR4) = {WbA: HbA:IbA:GbA} :({GbA1, GbA2, GbA3, GbA4}) &&
(UPP-P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1, IbA2,
IbA3, IbA4}) :(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2,
MDSD3, DSD 4})

• Cluster Rule 5 (CR5) = {WbA: HbA:IbA:GbA} :({MDSD1, MDSD2, MDSD3, DSD4})
&& (UPP-P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA: {IbA1,
IbA2, IbA3, IbA4}) :(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2,
MDSD3, DSD 4})

• Cluster Rule 6 (CR6) = {WbA: HbA:IbA:GbA} :({WbA1, WbA2, WbA3, WbA4})
|| (UPP-P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1,
IbA2, IbA3, IbA4}) :(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2,
MDSD3, DSD 4})

• Cluster Rule 7 (CR7) = {WbA: HbA:IbA:GbA} :({HbA 1, HbA2, HbA3, HbA4})
|| (UPP-P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1,
IbA2, IbA3, IbA4}) :(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2,
MDSD3, DSD 4})

• Cluster Rule 8 (CR8) = {WbA: HbA:IbA:GbA} :({IbA1, IbA2, IbA3, IbA4}) || (UPP-
P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1, IbA2, IbA3,
IbA4}) :(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2,
MDSD3, DSD 4})

• Cluster Rule 9 (CR9) = {WbA: HbA:IbA:GbA} :({GbA1, GbA2, GbA3, GbA4}) || (UPP-
P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1, IbA2, IbA3, IbA4})
:(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2, MDSD3, DSD 4})

• Cluster Rule 10 (CR10) = {WbA: HbA:IbA:GbA} :({MDSD1, MDSD2, MDSD3, DSD4}) ||
(UPP-P:{Low, Medium, High}) && (IbA:{IbA1, IbA2, IbA3, IbA4}) :(IbA:{IbA1, IbA2, IbA3,
IbA4}) :(GbA:{GbA1, GbA2, GbA3, GbA4}) :(MDSD):{MDSD1, MDSD2, MDSD3, DSD 4}).

The API incorporates rules for filtering the behavior of existing apps. During installa-
tion, pre-approved settings are established, and synchronized apps operate accordingly. A
plug-in is required for app-level activities and is synchronized with the apps.

The apps are synchronized with the rule-based API, which oversees their behavior.
New plug-ins and updates are upgraded based on rules and threshold values specified
in Tables 6 and 7. Figure 5 shows the mapping scenarios among third-party dependable
and non-dependable libraries and plug-ins. The x-axis represents the five modes of mobile
and web apps such as WbA, HbA, IbA, GbA, and MDSD. The y-axis represents the access
control involvement ranges of third-party libraries and plug-ins from 0 to 100%.

Systems 2023, 11, 262 20 of 25

Table 6. Integration of cluster rules and their filter levels.

Custer Rule1 Filter1—
Level1 Integration

Filter2—
Level2 Integration

Filter3—
Level3

Integration

Filter4—
Level4 Integration

Filter5—
Level5 Integration

Cluster Rule1
(CR1)

{WbA:HbA:IbA:
GbA}

({WbA1, WbA2,
WbA3, WbA4}) &&

(UPP-P:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule2
(CR2) {WbA:HbA:IbA:GbA}

({HbA 1, HbA2, HbA3,
HbA4}) &&

(UPP-P:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule 3
(CR3) {WbA:HbA:IbA:GbA}

({IbA1, IbA2, IbA3,
IbA4}) &&

(UPP-P:Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule 4
(CR4) {WbA:HbA:IbA:GbA}

({GbA1, GbA2, GbA3,
GbA4}) &&

(UPP-P:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule 5
(CR5) {WbA:HbA:IbA:GbA}

({MDSD1, MDSD2,
MDSD3, DSD4}) &&

(UPP-P:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule 6
(CR6) {WbA:HbA:IbA:GbA}

({WbA1, WbA2,
WbA3, WbA4}) ||

(UPP-:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule 7
(CR7) {WbA:HbA:IbA:GbA}

({HbA 1, HbA2, HbA3,
HbA4}) ||

(UPP-P:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule 8
(CR8) {WbA:HbA:IbA:GbA}

({IbA1, IbA2, IbA3,
IbA4}) ||

(UPP-P:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule 9
(CR9) {WbA:HbA:IbA:GbA}

({GbA1, GbA2, GbA3,
GbA4}) ||

(UPP-P:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Cluster Rule 10
(CR10) {WbA:HbA:IbA:GbA}

({MDSD1, MDSD2,
MDSD3, DSD4}) ||

(UPP-P:{Low, Medium,
High}) && (IbA:{IbA1,

IbA2, IbA3, IbA4})

(IbA:{IbA1, IbA2,
IbA3, IbA4})

(GbA:{GbA1,
GbA2, GbA3,

GbA4})

(MDSD):{MDSD1,
MDSD2, MDSD3,

DSD 4})

Systems 2023, 11, 262 21 of 25

Table 7. Mapping of five different modes of apps with their involvement of access control range of
mechanism to filter the TPLs and PIs.

U
PP

-P
-L

ow

U
PP

-P
-M

ed
iu

m

U
PP

-P
-H

ig
h

H
D

A
-P

-L
im

it
ed

H
D

A
-P

-F
ul

l

H
D

A
-P

-O
n-

D
em

an
d

U
I-

LF
-P

-S
im

ul
at

ed

U
I-

LF
-P

-N
at

iv
e

M
P-

D
-P

-N
o

M
P-

D
-P

-Y
es

M
P-

D
-P

-Y
es

,
bu

tN
ot

G
ua

ra
nt

ee
d

W
ST

-P
-Y

es

A
PI

s-
SW

H
W

-P
-S

ta
nd

ar
d

In
te

rf
ac

e

A
PI

s-
SW

H
W

-P
-H

ig
h

le
ve

lI
nt

er
fa

ce

A
PI

s-
SW

H
W

-P
-H

yb
ri

d
H

ig
h-

Le
ve

lI
nt

er
fa

ce

A
PI

s-
SW

H
W

-P
-H

ig
h-

le
ve

l
In

te
rf

ac
e

Sp
ec

ia
lA

PI
s

Pr
ob

le
m

D
om

ai
n-

B
as

ed
D

ev
el

op
m

en
tA

pp
Fu

nc
ti

on
al

it
y

an
d

Sp
ec

ifi
ca

ti
on

s

A
I-

P-
Pa

rt
ia

l

A
I-

P-
Fu

ll

SL
-L

I-
P

WbA1 50 X X 50 X X 60 X 0 X 80 80 85 X X X X 70 X 80

WbA2 60 X X 70 X X 70 X 0 X 100 100 100 X X X X 70 X 80

WbA3 X 60 X 50 X X 80 X 0 X 100 80 100 X X X X 60 X 80

WbA4 X 75 X 50 X X 100 X 60 X 100 100 X X 100 X X X 100 90

WbA5 X X 80 X 100 X 90 X 100 X 100 90 100 X X X X 60 X 80

WbA6 X X 90 X 100 X 100 X 100 X 100 100 X X 100 X X X 100 80

HbA1 50 X X 50 X X 60 X X 0 X 90 100 X X X X 70 X 100

HbA2 50 X X 50 X X 60 X X 0 X 100 X X 100 X X 70 X 100

HbA3 X 60 X 50 X X 80 X X X 60 95 100 X X X X X 100 100

HbA4 X 75 X 40 X X X 60 X 100 X 100 X X X 100 X X 100 100

HbA5 X X 90 X 100 X X 80 X 100 X 97 X 100 X X X X 100 100

HbA6 X X 100 X X 100 X 100 X 100 X 100 X X X X 90 X 100 100

IbA1 50 X X 50 X X 60 X 0 X X 70 100 X X X X 70 X 70

IbA2 50 X X 50 X X 60 X 0 X X 100 100 X X X X X 100 70

IbA3 X 60 X 50 X X 60 X X X 60 82 X X 100 X X 70 X 70

IbA4 X 75 X 40 X X X 60 X 100 X 100 X X X 100 X X 100 70

IbA5 X X 90 X 100 X X 80 X 100 X 94 X 100 X X X 70 X 70

IbA6 X X 100 X X 100 X 100 X 100 X 100 X X X X 90 X 100 70

GbA1 50 X X 50 X X 60 X 0 X X 70 100 X X X X 70 X 100

GbA2 50 X X 50 X X 60 X 0 X X 100 100 X X X X X 100 100

GbA3 X 60 X 50 X X 80 X X X 60 82 X X 100 X X X 100 100

GbA4 X 75 X 40 X X X 60 X 100 X 100 X X X 100 X X 100 100

GbA5 X X 90 X 100 X X 80 X 100 X 94 X 100 X X X X 100 100

GbA6 X X 100 X X 100 X 100 X 100 X 100 X X X X 90 X 100 100

MDSD1 50 X X 50 X X 60 X 0 X X 76 100 X X X X 70 X 85

MDSD2 50 X X 50 X X 60 X 0 X X 100 100 X X X X X 100 85

MDSD3 X 60 X 50 X X 80 X X X 60 89 X X 100 X X X 100 85

MDSD4 X 75 X 40 X X X 60 X 100 X 100 X X X 100 X X 100 85

MDSD5 X X 90 X 100 X X 80 X 100 X 98 X 100 X X X X 100 85

MDSD6 X X 100 X X 90 X 100 X 100 X 100 X X X X 100 X 100 85

Systems 2023, 11, 262 22 of 25

Systems 2023, 11, x FOR PEER REVIEW 25 of 28

GbA4 X 75 X 40 X X X 60 X 100 X 100 X X X 100 X X 100 100

GbA5 X X 90 X 100 X X 80 X 100 X 94 X 100 X X X X 100 100

GbA6 X X 100 X X 100 X 100 X 100 X 100 X X X X 90 X 100 100

MDSD1 50 X X 50 X X 60 X 0 X X 76 100 X X X X 70 X 85

MDSD2 50 X X 50 X X 60 X 0 X X 100 100 X X X X X 100 85

MDSD3 X 60 X 50 X X 80 X X X 60 89 X X 100 X X X 100 85

MDSD4 X 75 X 40 X X X 60 X 100 X 100 X X X 100 X X 100 85

MDSD5 X X 90 X 100 X X 80 X 100 X 98 X 100 X X X X 100 85

MDSD6 X X 100 X X 90 X 100 X 100 X 100 X X X X 100 X 100 85

Figure 5. Mapping scenarios among 3rd TPLs’ and PIs’ state-level injection in SAS.

Table 6 and Figure 5 provide a visual representation of the mapping of five different

modes of applications based on their access control range mechanisms for filtering TPLs

and PIs. These mechanisms are supported by various parameters and data metrics such

as UPP-P (low, medium, and high levels), HDA-P (limited and full versions), UI-LF-P

(simulated and native), MP-D-P-No, MP-D-P-Yes, and MP-D-P-Yes but not guaranteed

(binary status), WST-P-Yes, APIs-SWHW-P (standard, high level, hybrid high-level, high-

level interface special APIs interfaces), AI-P (partial and full modes), and SL-LI-P. The

mapping range is classified into two variations, auto-enable mode (AEM) and auto-disa-

ble mode (ADM), ranging from 1 to 100%. AEM ranges from 50% to 100%, while ADM

represents 0% to 49%. The plug-ins are activated based on 72 rules, including 10 cluster

rules from CR1 to CR10. The ADM mode is activated when the mapping percentage is 1%

to 49%, represented as a cross mark (X) in Table 5.

An application’s cluster and subcluster rules are integrated with key-log threshold

values ranging from 0 to 100%, depending on the dependable and non-dependable fea-

tures of the app’s back end. End-users can access the app’s data without needing access

control of TPLs and privacy invasive PI components. A graphical representation of the

mapping scenario between TPLs and PIs and state-level injections is shown in Figure 5,

with an accumulated threshold of 60%. This model enables the automatic integration of

Figure 5. Mapping scenarios among 3rd TPLs’ and PIs’ state-level injection in SAS.

Table 6 and Figure 5 provide a visual representation of the mapping of five different
modes of applications based on their access control range mechanisms for filtering TPLs and
PIs. These mechanisms are supported by various parameters and data metrics such as UPP-
P (low, medium, and high levels), HDA-P (limited and full versions), UI-LF-P (simulated
and native), MP-D-P-No, MP-D-P-Yes, and MP-D-P-Yes but not guaranteed (binary status),
WST-P-Yes, APIs-SWHW-P (standard, high level, hybrid high-level, high-level interface
special APIs interfaces), AI-P (partial and full modes), and SL-LI-P. The mapping range is
classified into two variations, auto-enable mode (AEM) and auto-disable mode (ADM),
ranging from 1 to 100%. AEM ranges from 50% to 100%, while ADM represents 0% to 49%.
The plug-ins are activated based on 72 rules, including 10 cluster rules from CR1 to CR10.
The ADM mode is activated when the mapping percentage is 1% to 49%, represented as a
cross mark (X) in Table 5.

An application’s cluster and subcluster rules are integrated with key-log threshold
values ranging from 0 to 100%, depending on the dependable and non-dependable features
of the app’s back end. End-users can access the app’s data without needing access control
of TPLs and privacy invasive PI components. A graphical representation of the mapping
scenario between TPLs and PIs and state-level injections is shown in Figure 5, with an
accumulated threshold of 60%. This model enables the automatic integration of feasible
TPLs and PIs and the mapping of all matrices. If the mapping percentage is less than 60%,
TPLs and PIs are blocked from accessing the end-user device credentials. The model was
tested with over 95 types of TPLs and PIs and achieved a mapping rate of 94%.

The research analyzed end-users and client-based decision-making indicators, sup-
porting factors, and data matrices. The goal was to facilitate accurate decisions regarding
blocking unwanted libraries and plug-ins. The study involved experimenting with more
than five web environments using specific rule-based parameters and supporting data
matrices. To achieve this, the research proposed mapping techniques. It evaluated the
accuracy of the proposed approach based on the number of different modes of apps, the

Systems 2023, 11, 262 23 of 25

integration time of execution, the decision-making time, and the restriction of unwanted
TPLs and PIs. The results showed that the proposed approach could accurately map all
parameters with feasible matrices and achieved a mapping rate of 94%.

5. Conclusions

Using patterns and structures for UX/UI that can work across platforms was proposed
to enhance the quality of cloud services, which can be utilized in domains such as medicine,
science, and engineering. This approach can assist customers, businesses, end-users, and
CC-S providers integrate multi-domain CC-Ss at different levels. A research study has
suggested a methodological framework based on certain injection access constraints (D-ND-
MAAC) representing state-level TPLs and PIs-based suspicious injections. This framework
involves various cross-platform (CPF) development types such as WbAs, HbAs, IbAs, and
GbAs in D-ND-MAAC, which are analyzed through CPMD-based security analysis systems.
Experimental scenarios were built using Node JS with MongoDB integrations, third-party
libraries, and plug-ins in a rule-based environment. The test cases comprised various
end-users, client-based decision-making indicators, supporting factors affecting decision
making, and data matrices to facilitate accurate decisions to avoid or block unwanted
libraries and plug-ins. The study proposes precise mapping techniques by combining 72
and 10 cluster rules from CR1 to CR2 based on the end-user’s active applications, regions,
and customer needs. The mapping rate was measured based on the different modes of
apps, integration execution time, decision-making time, restriction of unwanted TPLs and
PIs, and the range of allowed wanted TPLs and PIs. The study successfully mapped all
considered parameters with feasible matrices and achieved a 94% mapping rate.

Author Contributions: Conceptualization, S.K.H.; methodology, S.K.H. and R.R.; validation, M.R.
and S.S.A.; formal analysis, G.U.M. and J.M.; writing—original draft preparation, S.K.H.; writing—
review and editing, R.R. and M.R.; supervision, S.K.H., R.R. and M.R.; Funding acquisition, S.S.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Deanship of Scientific Research, Taif University Researchers
Supporting Project number (TURSP-2020/215), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data in this research paper will be shared upon request with the
corresponding author.

Acknowledgments: Authors would like to give thanks for the support of the Deanship of Scientific
Research, Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hashizume, K.; Rosado, D.G.; Fernández-Medina, E.; Fernandez, E.B. An analysis of security issues for cloud computing.

J. Internet Serv. Appl. 2013, 4, 5–13. [CrossRef]
2. Zhao, G.; Liu, J.; Tang, Y.; Sun, W.; Zhang, F.; Ye, X.; Tang, N. Cloud Computing: A Statistics Aspect of Users. In Cloud

Computing, Proceedings of the First International Conference on Cloud Computing (CloudCom), Beijing, China, 1–4 December 2009;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 347–358.

3. Zhang, S.; Zhang, S.; Chen, X.; Huo, X. Cloud Computing Research and Development Trend. In Proceedings of the Second
International Conference on Future Networks (ICFN’10), Sanya, China, 22–24 January 2010; IEEE Computer Society: Washington,
DC, USA, 2010; pp. 93–97.

4. Cloud Security Alliance. Security Guidance for Critical Areas of Focus in Cloud Computing V3.0. 2011. Available online:
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf (accessed on 1 February 2023).

5. Marinos, A.; Briscoe, G. Community cloud computing. In Cloud Computing, Proceedings of the First International Conference,
CloudCom 2009, Beijing, China, 1–4 December 2009; Proceedings 1; Springer: Berlin/Heidelberg, Germany, 2009; pp. 472–484.

6. Centre for the Protection of National Infrastructure. Information Security Briefing 01/2010 Cloud Computing. 2010. Avail-
able online: http://www.cpni.gov.uk/Documents/Publications/2010/2010007-ISB_cloud_computing.pdf (accessed on
1 February 2023).

https://doi.org/10.1186/1869-0238-4-5
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
http://www.cpni.gov.uk/Documents/Publications/2010/2010007-ISB_cloud_computing.pdf

Systems 2023, 11, 262 24 of 25

7. Khalid, A. Cloud Computing: Applying issues in Small Business. In Proceedings of the International Conference on Signal
Acquisition and Processing (ICSAP’10), Bangalore, India, 9–10 February 2010; pp. 278–281.

8. KPMG. From Hype to Future: KPMG’s 2010 Cloud Computing Survey. 2010. Available online: http://www.techrepublic.com/
whitepapers/from-hype-to-futurekpmgs-2010-cloud-computing-survey/2384291 (accessed on 1 February 2023).

9. Rosado, D.G.; Gómez, R.; Mellado, D.; Fernández-Medina, E. Security analysis in the migration to cloud environments. Future
Internet 2012, 4, 469–487. [CrossRef]

10. Mather, T.; Kumaraswamy, S.; Latif, S. Cloud Security and Privacy; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2009.
11. Kaur, G.; Vashisth, A.; Batth, R.S. X-Ortho: Fuzzy Rule Based Expert System for Diagnosing Infective Diseases of Hinge Joint Knee.

In Proceedings of the 2019 International Conference on Automation, Computational and Technology Management (ICACTM),
London, UK, 24–26 April 2019; IEEE: New York, NY, USA, 2019; pp. 518–524.

12. Dimple, S.; Agrawal, P.; Madaan, V. X-Tumour: Fuzzy Rule Based Medical Expert System to Detect Tumours in Gynaecology. Int.
J. Control Theory Appl. 2016, 9, 5073–5084.

13. Li, W.; Ping, L. Trust model to enhance security and interoperability of Cloud environment. In Cloud Computing, Proceedings of the
1st International conference on Cloud Computing, Beijing, China, 1–4 December 2009; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 69–79.

14. Rittinghouse, J.W.; Ransome, J.F. Ransome. Cloud Computing: Implementation, Management, and Security; CRC Press: Boca Raton, FL,
USA, 2017.

15. Kalpana, G.; Kumar, P.V.; Krishnaiah, R.V.; Homomorphic Encryption Environment-Service Provider based Encryption and
Decryption Endpoints for Third-party Cloud Provider. Int. J. Comput. Sci. Inf. Secur. 2017, 15, 7–15. Available online:
https://sites.google.com/site/ijcsis/ (accessed on 1 February 2023).

16. Claesson, A. Securing Third-Party Dependencies in Development. Available online: https://www.mnemonic.no/globalassets/
security-report/securing-third-party-dependencies-in-development.pdf (accessed on 2 February 2022).

17. Tebaa, M.; El Hajji, S.; El Ghazi, A. Homomorphic encryption method applied to Cloud Computing. In National Days of Network
Security and Systems (JNS2); IEEE Computer Society: Washington, DC, USA, 2012; pp. 86–89.

18. Naehrig, M.; Lauter, K.; Vaikuntanathan, V. Can homomorphic encryption be practical? In Proceedings of the 3rd ACM workshop
on Cloud Computing Security workshop, Chicago, IL, USA, 21 October 2011; ACM: New York, NY, USA, 2011; pp. 113–124.

19. Xanthopoulos, S.; Xinogalos, S. A Comparative Analysis of Cross-platform Development Approaches for Mobile Applications. In
Proceedings of the 6th Balkan Conference in Informatics, Thessaloniki, Greece, 19–21 September 2013; ACM 978-1-4503-1851-
8/13/09.

20. Rieger, C.; Majchrzak, T.A. Towards the definitive evaluation framework for cross-platform app development approaches. J. Syst.
Softw. 2019, 153, 175–199. [CrossRef]

21. Chaves, L.C.; Ismail, H.I.; Bessa, I.V.; Cordeiro, L.C.; de Lima Filho, E.B. Verifying fragility in digital systems with uncertainties
using DSVerifier v2.0. J. Syst. Softw. 2019, 153, 22–43. [CrossRef]

22. Heitkötter, H.; Kuchen, H.; Majchrzak, T.A. Extending a model-driven cross-platform development approach for business apps.
Sci. Comput. Program. 2015, 97, 31–36. [CrossRef]

23. Pustišek, M.; Umek, A.; Kos, A. Approaching the Communication Constraints of Ethereum-Based Decentralized Applications.
Sensors 2019, 19, 2647. [CrossRef]

24. Akasiadis, C.; Pitsilis, V.; Spyropoulos, C.D. A Multi-Protocol IoT Platform Based on Open-Source Frameworks. Sensors 2019,
19, 4217. [CrossRef]

25. Palviainen, M.; Kuusijärvi, J.; Ovaska, E. Framework for End-User Programming of Cross-Smart Space Applications. Sensors
2012, 12, 14442–14466. [CrossRef]

26. Biørn-Hansen, A.; Grønli, T.-M.; Ghinea, G. Animations in Cross-Platform Mobile Applications: An Evaluation of Tools, Metrics
and Performance. Sensors 2019, 19, 2081. [CrossRef]

27. Hang, L.; Kim, D.-H. Design and Implementation of an Integrated IoT Blockchain Platform for Sensing Data Integrity. Sensors
2019, 19, 2228. [CrossRef]

28. Acharya, S.; Rawat, U.; Bhatnagar, R. A Comprehensive Review of Android Security: Threats, Vulnerabilities, Malware Detection,
and Analysis. Secur. Commun. Netw. 2022, 2022, 7775917. [CrossRef]

29. Alyas, T.; Ali, S.; Khan, H.U.; Samad, A.; Alissa, K.; Saleem, M.A. Container Performance and Vulnerability Management for
Container Security Using Docker Engine. Secur. Commun. Netw. 2022, 2022, 6819002. [CrossRef]

30. Shammar, E.A.; Zahary, A.T.; Al-Shargabi, A.A. An Attribute-Based Access Control Model for Internet of Things Using Hyper-
ledger Fabric Blockchain. Wirel. Commun. Mob. Comput. 2022, 2022, 6926408. [CrossRef]

31. Biørn-Hansen, A.; Grønli, T.-M.; Ghinea, G.; Alouneh, S. An Empirical Study of Cross-Platform Mobile Development in Industry.
Wirel. Commun. Mob. Comput. 2019, 2019, 5743892. [CrossRef]

32. Van Ginkel, N.; De Groef, W.; Massacci, F.; Piessens, F. A Server-Side JavaScript Security Architecture for Secure Integration of
Third-Party Libraries. Secur. Commun. Netw. 2019, 2019, 9629034. [CrossRef]

33. Dhiman, P.; Henge, S.K.; Singh, S.; Kaur, A.; Singh, P.; Hadabou, M. Blockchain merkle-tree ethereum approach in enterprise
multi-tenant cloud environment. Comput. Mater. Contin. 2023, 74, 3297–3313.

http://www.techrepublic.com/whitepapers/from-hype-to-futurekpmgs-2010-cloud-computing-survey/2384291
http://www.techrepublic.com/whitepapers/from-hype-to-futurekpmgs-2010-cloud-computing-survey/2384291
https://doi.org/10.3390/fi4020469
https://sites.google.com/site/ijcsis/
https://www.mnemonic.no/globalassets/security-report/securing-third-party-dependencies-in-development.pdf
https://www.mnemonic.no/globalassets/security-report/securing-third-party-dependencies-in-development.pdf
https://doi.org/10.1016/j.jss.2019.04.001
https://doi.org/10.1016/j.jss.2019.03.015
https://doi.org/10.1016/j.scico.2013.11.013
https://doi.org/10.3390/s19112647
https://doi.org/10.3390/s19194217
https://doi.org/10.3390/s121114442
https://doi.org/10.3390/s19092081
https://doi.org/10.3390/s19102228
https://doi.org/10.1155/2022/7775917
https://doi.org/10.1155/2022/6819002
https://doi.org/10.1155/2022/6926408
https://doi.org/10.1155/2019/5743892
https://doi.org/10.1155/2019/9629034

Systems 2023, 11, 262 25 of 25

34. Dhiman, P.; Henge, S.K.; Ramalingam, R.; Dumka, A.; Singh, R.; Gehlot, A.; Rashid, M.; Alshamrani, S.S.; AlGhamdi, A.S.;
Alshehri, A. Secure Token–Key Implications in an Enterprise Multi-Tenancy Environment Using BGV–EHC Hybrid Homomorphic
Encryption. Electronics 2022, 11, 1942. [CrossRef]

35. Dhiman, P.; Henge, S.K. Comparative Analysis of Cloud Security Complexities and Past Proposed Non-Homomorphic and
Homomorphic Encryption Methodologies with Limitation. In Proceedings of the 4th International Conference on Information
and Communication Technology for Competitive Strategies (ICTCS-2019), Udaipur, India, 13–14 December 2019; CRC Press:
Boca Raton, FL, USA, 2019; pp. 787–799.

36. Dhiman, P.; Henge, S.K. Analysis of Blockchain Secure Models and Approaches Based on Various Services in Multi-tenant
Environment. In Recent Innovations in Computing. Lecture Notes in Electrical Engineering; Singh, P.K., Singh, Y., Chhabra, J.K., Illés,
Z., Verma, C., Eds.; Springer: Singapore, 2022; Volume 855. [CrossRef]

37. El-Kassas, W.S.; Abdullah, B.A.; Yousef, A.H.; Wahba, A.M. Taxonomy of Cross-Platform Mobile Applications Development
Approaches. Ain Shams Eng. J. 2017, 8, 163–190. [CrossRef]

38. Hamza, A.A.; Halim, I.T.A.; Sobh, M.A.; Bahaa-Eldin, A.M. HSAS-MD Analyzer: A Hybrid Security Analysis System Using
Model-Checking Technique and Deep Learning for Malware Detection in IoT Apps. Sensors 2022, 22, 1079. [CrossRef]

39. Nobakht, M.; Sui, Y.; Seneviratne, A.; Hu, W. PGFit: Static permission analysis of health and fitness apps in IoT programming
frameworks. J. Netw. Comput. Appl. 2019, 152, 102509. [CrossRef]

40. Celik, Z.B.; McDaniel, P.; Tan, G. Soteria: Automated Iot Safety and Security Analysis. In Proceedings of the 2018 {USENIX}
Annual Technical Conference, Boston, MA, USA, 11–13 July 2018; pp. 147–158.

41. Wang, Q.; Hassan, W.U.; Bates, A.; Gunter, C. Fear and Logging in the Internet of Things. In Proceedings of the Network and
Distributed Systems Symposium, San Diego, CA, USA, 18–21 February 2018.

42. Celik, Z.B.; Tan, G.; McDaniel, P.D. IoTGuard: Dynamic Enforcement of Security and Safety Policy in Commodity IoT. In
Proceedings of the NDSS, San Diego, CA, USA, 24–27 February 2019.

43. Tian, Y.; Zhang, N.; Lin, Y.H.; Wang, X.; Ur, B.; Guo, X.; Tague, P. Smartauth: User-Centered Authorization for the Internet of
Things. In Proceedings of the 26th {USENIX} Security Symposium, Vancouver, BC, Canada, 5 May 2017; pp. 361–378.

44. Chen, J.; Diao, W.; Zhao, Q.; Zuo, C.; Lin, Z.; Wang, X.; Lau, W.C.; Sun, M.; Yang, R.; Zhang, K. IoTFuzzer: Discovering Memory
Corruptions in IoT Through App-Based Fuzzing. In Proceedings of the NDSS, San Diego, CA, USA, 18–21 February 2018.

45. Roundy, K.A.; Miller, B.P. Hybrid analysis and control of malware. In International Workshop on Recent Advances in Intrusion
Detection; Springer: Berlin/Heidelberg, Germany, 2010; pp. 317–338.

46. Zhan, X.; Liu, T.; Fan, L.; Li, L.; Chen, S.; Luo, X.; Liu, Y. Research on Third-Party Libraries in Android Apps: A Taxonomy and
Systematic Literature Review. arXiv 2021, arXiv:2108.03787v1. [CrossRef]

47. Schneider, F.B. Enforceable Security Policies. ACM Trans. Inf. Syst. Secur. 2000, 3, 30–50. [CrossRef]
48. Flanagan, D. JavaScript: The Definitive Guide, 6th ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2011.
49. Lekies, S.; Stock, B.; Johns, M. 25 Million Flows Later Large-scale Detection of DOM-based XSS. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS), Berlin, Germany, 4–8 November 2013.
50. Nikiforakis, N.; Invernizzi, L.; Kapravelos, A.; Van Acker, S.; Joosen, W.; Kruegel, C.; Piessens, F.; Vigna, G. You are what you

include: Large-scale evaluation of remote Javascript inclusions. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS’12), Raleigh, CA, USA, 16–18 October 2012; pp. 736–747.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics11131942
https://doi.org/10.1007/978-981-16-8892-8_42
https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.3390/s22031079
https://doi.org/10.1016/j.jnca.2019.102509
https://doi.org/10.1109/TSE.2021.3114381
https://doi.org/10.1145/353323.353382

	Introduction
	Motivation
	Research Contributions

	Related Work
	Methodology: Dependable and Non-Dependable (D-ND) Multi-Authentication Access Constraints (MAAC) Approach
	Analysis of Suspicious TPLs’ and PIs’ Injection Levels and Their Impact on Cross-Platform (CPF) Development Types in D-ND-MAAC
	Cross-Platform (CPFs)—Web-Based Apps (WbA)
	Cross-Platform (CPFs)—Hybrid-Based Apps (HbA)
	Cross-Platform (CPFs)—Interpreted-Based Apps (IbA)
	Cross-Platform (CPFs)—Generated-Based Apps (GbA)

	D-ND-MAAC-Based Cross-Platform Mobile Development (CPMD)-Based Security Analysis Systems (SAS) and Third-Party Libraries
	Cross-Platform Mobile Development (CPMD)
	CPMD-Based Security Analysis Systems (SAS) and Third-Party Libraries
	Secure Integration of Third-Party Libraries

	Results and Discussion
	Secure Injection Access Constraints for Third-Party Libraries in Node JS Cross-Platform Development: A Rules-Based Approach to Prevent TPLs’ and PIs’ State-Level Injection in Security Analysis Systems (SAS)
	Mapping of TPLs’ and PIs’ State-Level Injections in Security Analysis Systems (SAS)

	Conclusions
	References

