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Abstract: Data-driven decision-making is the process of using data to inform your decision-making
process and validate a course of action before committing to it. The quality of unlabeled data in real-
world scenarios presents challenges for semi-supervised learning. Effectively leveraging unlabeled
data for learning is challenging due to the need for labeled information, while the scarcity of labeled
data requires efficient and flexible data augmentation methods. To address these challenges, this
paper proposes the AatMatch algorithm, which uses a momentum model, coarse learning, and
adversarial training to generate adversarial examples for different classes. The algorithm sets the
threshold for generating pseudo-labels and reinforces the results with adversarial perturbations based
on evaluation results. In addition, a more refined learning strategy for unlabeled data is adjusted by
setting adaptive weights based on the confidence of each unlabeled data point, thereby mitigating the
adverse effects of low-confidence unlabeled data on the model. Experimental evaluations on several
datasets, including CIFAR-10, CIFAR-100, and SVHN, demonstrate the effectiveness of the proposed
AatMatch algorithm in semi-supervised learning. Specifically, the algorithm achieves the lowest error
rates for multiple scenarios on these datasets.

Keywords: semi-supervised learning; adversarial training; adaptive weight; momentum model;
data-driven decision-making models

1. Introduction

In deep learning [1], the quantity and quality of training data are critical to the
performance of a model. However, obtaining large-scale yet fully annotated datasets in real-
life situations is impractical due to the enormous human and financial resources required
for their preparation [2]. Moreover, in specialized fields such as medical imaging [3],
accurate labelling requires experienced experts, making acquiring labeled datasets even
more challenging. Therefore, reducing the demand for models on data quality and quantity
while improving model performance has become an important research issue. In the era
of big data, data annotation costs are high, and obtaining labeled data takes a long time,
limiting the application of deep learning algorithms. Semi-supervised learning can use
fewer labeled data and improve model performance through the information in unlabeled
data. Such methods save costs and improve the model’s efficiency and accuracy [4]. Thus,
semi-supervised learning is widely significant in practical applications.

Deep semi-supervised learning methods are currently divided into pseudo-labelling [5]
and consistency regularization [6]. The critical element of the consistency regularization
methods is data augmentation, and most consistency regularization methods adapt Ran-
dAugment [7]. However, such random augmentation methods at the image level lack
specificity for the model. Therefore, this paper proposes a new data augmentation method
that combines curriculum learning [8] and adversarial training [9] together. This method
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can add targeted perturbations to the model’s gradient direction based on the learning
effect of the class. The generated adversarial samples can be as far away from the original
samples as possible without crossing the classification boundary, making the model’s
classification boundary in the low-density area more robust.

In the semi-supervised learning scenario, only a small amount of labeled data is
available, and it is not possible to use an additional validation set to determine the model’s
performance on different classes. However, there is a large amount of unlabeled data
available. Therefore, we analyze the characteristics of this data and use the obtained results
to assist in setting a more reasonable learning strategy for the model, which is referred
to as ‘Data-Driven Decision-Making’. In general, we can use the historical information
of unlabeled data to determine the learning effect of the model. However, this leads
to the problem of parameter inconsistency in the model. To solve this problem, this
paper proposes using a new model to evaluate the learning effect of classes and adopting
a momentum model to reduce training computation. Based on the evaluation results,
different adversarial perturbation strengths, adversarial sample generation thresholds,
and pseudo-label generation thresholds are set. When introducing adaptive thresholds,
more low-confidence samples participate in the training. To reduce the negative impact
of low-confidence false labels, we set adaptive weights for unlabeled data and adjust the
impact of unlabeled data on the model in a more fine-grained manner. Therefore, the
algorithm proposed in this paper is called AatMatch. Our contributions are four-fold:

• Firstly, we propose a novel momentum update model specifically designed to evaluate
the learning effect of each class. The traditional approach of using historical informa-
tion in semi-supervised learning may lead to serious consistency problems. However,
incorporating an additional model can address this issue without compromising the
training process.

• Secondly, we introduce an adaptive adversarial training method that leverages course
learning to generate targeted data augmentations. Specifically, we propose a new data
augmentation approach that adds targeted perturbations in the gradient direction of
each class based on its learning effect. This approach generates adversarial examples
that are both effective and efficient in improving model performance.

• Thirdly, we propose a weight-setting mechanism that assigns weights to each unla-
beled data sample based on its confidence level, effectively reducing the negative
impact of low-confidence pseudo-labelling on the model.

• Lastly, we validate the effectiveness of our proposed AatMatch algorithm on several
different datasets. Our experiments demonstrate that the proposed approach achieves
state-of-the-art performance on CIFAR10, CIFAR100, and SVHN datasets. The results
showcase the potential of our approach to overcome the challenge of limited labeled
data and demonstrate its potential for practical applications in the real world.

2. Related Work

The consistency regularization method improves the generalization performance of a
model by reducing the difference in data prediction before and after perturbation. Laine
et al. [10] proposed the Π model and temporal ensembling model, in which the same
unlabeled data are input into the network twice during training. After such different
enhancements and dropouts, the outputs are subject to consistency regularization con-
straints. The temporal ensembling model imposes consistent regularization constraints on
the current model prediction results and the Exponential Moving Average (EMA) weights
results. Miyato et al. [11] proposed the Virtual Adversarial Training (VAT) model to en-
hance the robustness and generalization of the model by introducing adversarial training to
semi-supervised learning. They achieve this by adding adversarial noise to unlabeled data
and then imposing consistent regularization on the original output of the model and the
output after adding adversarial noise to improve prediction accuracy. Tarvainen et al. [12]
proposed the Mean Teacher model, which is divided into the teacher model and the student
model. In each update step, the teacher model is updated based on the EMA weights of the
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student model, effectively solving the updating problem in the temporal ensembling model.
Verma et al. [13] proposed the Interpolation Consistency Training (ICT) algorithm, which
applies the mixup [14] technique to unlabeled data and trains by restricting the prediction
of the mixup data to the mixup predicted by the data, with the advantage that it is simple
and computationally small and does not require large computational power such as VAT.
Xie et al. [15] proposed a semi-supervised learning algorithm UDA using the latest data
enhancement and proposed a Training Signal Annealing (TSA) method.

Pseudo-labelling refers to using a specific method to label data without labels. The
usual method is to select the model prediction probability that exceeds the threshold
as pseudo-labels. Lee et al. [5] explained how pseudo-labels work. Rizve et al. [16]
proposed the UPS algorithm, which introduces the idea of negative sampling and the
double standard of uncertainty and probability threshold to screen pseudo-labels. This
method improves the accuracy of pseudo-labels and reduces false pseudo-labels. Wang
et al. [17] proposed using a pseudo-label group comparison mechanism to reduce the
impact of noisy labels. The above methods enhance pseudo-labels’ confidence by different
processing methods for unlabeled data and achieve good experimental results, but they do
not consider labeled data.

Many researchers combine labelling methods with consistency regularization methods
or other algorithms. Berthelot et al. [18] proposed MixMatch, which enhances each unla-
beled sample K times and averages the predictions of different enhancements to reduce
entropy. The predicted probability distribution is then sharpened before providing the
final pseudo-label, and mixup regularization is applied to both labeled and unlabeled
data. Berthelot et al. [19] proposed the ReMixMatch, by aligning the labeled predictions
of unlabeled data using the label distribution of labeled data and using the predictions of
weakly augmented samples as the training target for strongly augmented samples. Sohn
et al. [20] proposed the FixMatch. FixMatch simplifies consistency regularization and
pseudo-labelling by using both weakly and strongly enhanced methods to obtain two
images for each unlabeled image. The prediction results of the weakly enhanced image
are used as a class of pseudo-labeled, and the cross-entropy between the predictions of
the strongly enhanced images is trained as a loss using a fixed threshold. Li et al. [21]
proposed the CoMatch, which combines the idea of graph and contrast learning with
semi-supervised learning to utilize the principle of graph structure consistency between
the image probabilities predicted by weak data enhancement and the embedding features
of images enhanced by strong data. Zhang et al. [22] proposed the FlexMatch algorithm
using dynamic thresholds by category, while Yang et al. [23] proposed class-aware con-
trastive semi-supervised learning (CCSSL), which divides unlabeled data into reliable
in-distribution and out-distribution data with noise and uses feature clustering and con-
trast learning approaches to enhance the model’s ability to fuse downstream tasks. Zheng
et al. [24] proposed SimMatch to enhance the learning ability of the model for features using
self-supervised learning to generate pseudo-labels with higher confidence by interacting
semantic similarity and instance similarity.

In summary, various methods have been proposed to tackle the challenges of semi-
supervised learning. The field continues to advance rapidly with the development of new
techniques and the integration of multiple approaches.

3. Methodology
3.1. Momentum Model and Adaptive Adversarial Training

For an C-class classification problem, let us define X = {(→xb, yb);b ∈ (1, . . . , B)} be a
batch of B labeled examples, where

→
xb is the training example, yb is the label corresponding

to
→
xb. Let U = {(→ub); b ∈ (1, . . . , , µB)} be a batch of µB unlabeled examples where µ is a

hyperparameter that determines the relative sizes of X and U.
In this section, we detail how our algorithm solves the parameter consistency problem

of the model and reduces the interference of erroneous pseudo labels on model learning.
The method leverages two augmentations: “weak” and “strong”. Weak augmentation α()
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is a standard flip-and-shift augmentation strategy. In contrast, strong augmentation A()
adopts RandAugment [7], making the augmentation image produce severe distortion and
cause a certain degree of distortion.

Semi-supervised learning is a challenging task where only a limited amount of labeled
data is available. If a portion of the labeled data is then separated from the training set as the
validation set, this will result in less labeled data being used for learning and worse model
performance. To mitigate this problem, several approaches leverage the model’s prediction
information from previous iterations to assist in training. However, incorporating historical
information can cause model inconsistency. We propose a momentum model that utilizes
historical information to address this issue while reducing the consistency problem. The
momentum model does not require additional training. Its parameters can be obtained
through Exponential Moving Average (EMA) updates based on the parameters of the
primary model, as shown in Equation (1), where m ∈ [0, 1) is a momentum coefficient, θ′ is
a parameter of the momentum model, and θ is a parameter of the classification model.

θ′ = (1−m)θ + mθ′ (1)

The consistency of prediction results for each mini-batch can be effectively improved
by a slowly updating model. Then, the class learning effect σt(c) corresponding to class
c, where c = 1, . . . , C, is judged based on the output of the momentum model:

σt(c) = ∑N
n=1 1

(
max

(
pt

θ′

(
y | α

(→
ub

)))
> τ

)
· 1
(

qt
θ′

(
α
(→

ub

))
= c
)

(2)

where qt
θ′

(
α
(→

ub

))
= argmax

(
pt

θ′

(
y | α

(→
ub

)))
is the pseudo label for unlabeled data

→
ub at

epoch/time step t, N is the total number of unlabeled data, pt
θ′

(
y | α

(→
ub

))
is the model’s

prediction for unlabeled data
→
ub at epoch/time step t, and 1() means 1 if the condition

in the brackets is met, otherwise it is 0. Following the FlexMatch approach, we proceed
to normalize σt(c). Subsequently, we employ flexible adjustments to the threshold for
the pseudo-label of the class, represented by Tt(c), and the strength of the adversarial
perturbation, represented by Et(c) as in Equation (3), where the fixed threshold τ is utilized
to regulate the generation of pseudo-label and adversarial samples, while the adversarial
perturbation strength is held constant at a fixed value denoted by ε.

βt(c) =
σt(c)

max
c

σt
, Tt(c) = βt(c) · τ, Et(c) = βt(c) · ε (3)

The combination of the adaptive pseudo-label threshold and the consistency regular-
ization method results in Equation (4), where Lu is the loss function for unlabeled data,
qb = pθ

(
y | α

(→
ub

))
is the prediction of the weakly augmentation version of the unlabeled

data, q̂b = argmax(qb). We assume that argmax() applied to a probability distribution
produces a valid “one-hot” probability distribution.

Lu =
1

µB∑µB
b=1 1(max(qb) ≥ Tt(q̂b)) ·H

(
q̂b, pθ

(
y | A

(→
ub

)))
(4)

where H() represents the cross-entropy loss function.
Adversarial sample generation for labeled data is shown in Equation (5), and adver-

sarial sample generation for unlabeled data is shown in Equation (6).

Ad
(→

xb

)i+1
= clip

(
Ad
(→

xb

)i
+ Et(yb)sign

(
∇jθ

(
Ad
(→

xb

)i
, y
))

(5)

Ad
(→

ub

)i+1
= clip

(
Ad
(→

ub

)i
+ Et(q̂b)sign

(
∇jθ

(
Ad
(→

ub

)i
, q̂b

))
(6)
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In Equations (5) and (6), Ad()i+1 represents the adversarial examples generated from
data at the (i + 1)-th iteration. The superscript i + 1 denotes the iteration in which the
adversarial examples are generated. sign() is the sign function, and ∇jθ() is the gradient
obtained from backpropagating the loss function with respect to the parameters θ of the
classification model. clip() is used to clip the adversarial perturbation within the range
[x − r, x + r], where r is a parameter that constrains the upper and lower limits of the
perturbation. ε represents the magnitude of the perturbation.

The consistency regularization method is then used to constrain the adversarial
samples, as shown in Equations (7) and (8), where Lsad is the loss function for super-
vised/labeled adversarial data, while Luad is the loss function for unsupervised/unlabeled
adversarial data.

Lsad =
1
B∑B

b=1 H
(

yb, pθ

(
y | Ad

(→
xb

)i+1
))

(7)

Luad =
1

µB∑µB
b=1 1(max(qb) ≥ Tt(q̂b)) ·H

(
q̂b, pθ

(
y | Ad

(→
ub

)i+1
))

(8)

3.2. Adaptive Weight

Using the adaptive pseudo label generation threshold of the class, the pseudo label
generation threshold of the classes where the model has difficulty learning can be lowered
so that more data can participate in the training. However, when the model is trained
with a large amount of pseudo-labeled data generated by low thresholds, it will inevitably
be trained with a large amount of false pseudo-labeled data. These incorrectly labeled
data will negatively affect the model. We also believe that the learning results of different
samples have different effects on the model, and the pseudo labels generated from unla-
beled data with high confidence should have a greater weight than those generated with
low confidence.

First, we normalize the prediction of the model to between 0 and 1 using Equation (9)
to form γb.

γb =
max

(
pθ
(

y | α
(→

ub

)))
max

(
pθ
(

y | →u
)) (9)

Based on γb, we could dynamically adjust the weight of each unlabeled data, repre-
sented by λb, so that the low-confidence data have low weights, thus allowing the model
to learn mainly from the high-confidence samples while not ignoring the information
contained in the low confidence samples. In this work, three weight mapping functions are
designed depending on the training task, including:

• a linear mapping function, λb = γb;
• a concave mapping function, λb = γb

2−γb
;

• a convex mapping function, λb = 1− exp(−kγb), where k is a hyperparameter.

In fact, more complicated functions could be designed to accomplish the mapping
between 0 and 1. Combining this new weight adjustment item λb with Equations (4) and
(8), two new loss functions can be expressed as in Equations (10) and (11).

Lu =
1

µB∑µB
b=1 1(max(qb) ≥ Tt(q̂b)) · λb ·H

(
q̂b, pθ

(
y | A

(→
ub

)))
(10)

Luad =
1

µB∑µB
b=1 1(max(qb) ≥ Tt(q̂b))·λb ·H

(
q̂b, pθ

(
y | Ad

(→
ub

)i+1
))

(11)
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3.3. Total Loss Function

Finally, the total loss L for the proposed AatMatch algorithm is expressed as a weighted
combination of supervised and unsupervised loss, as in Equation (12).

L = Ls + Lu + Lsad + Luad (12)

Ls is supervised loss, as shown in Equation (13), and Lu is the loss function for un-
labeled data, as shown in Equation (10). Lsad is the loss function for supervised/labeled
adversarial data, as shown in Equation (7), and Luad is the loss function for unsuper-
vised/unlabeled adversarial data, as shown in Equation (11).

Ls =
1
B∑B

b=1 H
(

yb, pθ

(
y | α

(→
xb

)))
(13)

Thus, the proposed AatMatch algorithm could be described as in Algorithm 1.

Algorithm 1 AatMatch algorithm

Require:
Batch of labeled examples and their one-hot labels X = {(→xb, yb);b ∈ (1, . . . , B)}, Batch of

unlabeled examples U =
{(→

ub

)
; b ∈ (1, . . . , , µB)

}
, fθ(): depth neural network with trainable

parameters θ, Confidence threshold τ, unlabeled data ratio µ, momentum coefficient m, weak
augmentation α(), strong augmentation A(), perturbation magnitude ε, number of iterations T.
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4. Results and Discussion
4.1. Datasets

To verify the effectiveness of the method proposed in this article, experiments were
carried out on the CIFAR-10, CIFAR-100, and SVHN data sets:

• CIFAR-10 [25] is a dataset with 60,000 images of shape 32 × 32 evenly distributed
across 10 classes. There are 6000 images in each class, 5000 of which constitute the
training set, and the remaining 1000 images are used as the test set.

• CIFAR-100 [25] is a dataset with 60,000 images of shape 32 × 32 evenly distributed
across 100 classes. There are 600 images in each class, 500 of which constitute the
training set, and the remaining 100 images are used as the test set.

• SVHN (Street View House Number) [26] is a dataset of street view house numbers,
in which each example is of shape 32 × 32. It consists of 10 classes, 73,257 training
samples, and 26,032 test samples.
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4.2. Experimental Set

“WideResNet28-2” [27] was utilized as the main network when the experiments were
performed on the CIFAR-10 and SVHN datasets, and “WideResNet28-8” was adopted
when the experiments were performed on the CIFAR-100 dataset. We compare with the
following baseline method: Π Model, Temporal ensembling model, Pseudo Label, VAT,
UDA, Mean Teacher, MixMatch, FixMatch, and FlexMatch. The batch size of labeled data
in the experimental is B = 64, and the hyperparameter µ = 7, m = 0.999, ε = 3.1 × 10−6. The
model uses the standard SGD optimizer [28] with momentum set to 0.9. In addition, the
experiment sets the cosine learning rate attenuation to (ηcos 7πt)/(16T ), where η = 0.03 is
the initial learning, t is the current batch training steps of the experiment, and T is the total
training steps of the experiment.

4.3. Results and Analysis

Three numbers of labeled data were divided on the CIFAR-10 dataset, 402,504,000,
respectively. The results on CIFAR-10 are shown in Table 1, where our method achieved
the best results in all cases.

Table 1. Error rates (%) on CIFAR-10.

Method 40 Labels 250 Labels 4000 Labels

Fully Supervised 4.62 ± 0.05

Π Model 74.34 ± 1.76 53.21 ± 1.29 17.41 ± 0.59
Pseudo Label 74.61 ± 0.26 49.98 ± 2.20 16.21 ± 0.19
Mean Teacher 70.09 ± 1.60 47.32 ± 3.30 10.36 ± 0.21

VAT 74.66 ± 2.12 36.03 ± 1.79 11.05 ± 0.12
MixMatch 47.54 ± 6.48 11.08 ± 0.59 6.24 ± 0.26

ReMixMatch 14.50 ± 2.58 9.21 ± 055 4.88 ± 0.05
UDA 29.05 ± 3.75 8.76 ± 0.06 5.29 ± 0.07

CoMatch 5.44 ± 0.05 5.33 ± 0.12 4.29 ± 0.04
FixMatch 8.39 ± 3.35 5.07 ± 0.33 4.31 ± 0.15
FlexMatch 5.22 ± 0.06 4.98 ± 0.05 4.29 ± 0.01
AatMatch 4.75 ± 0.32 4.65 ± 0.09 4.16 ± 0.13

Note: Bold indicates the lowest error rate among all semi-supervised methods.

The results on the CIFAR-100 dataset were divided into three labeled data numbers,
4,002,500 and 10,000, respectively. The results on CIFAR-100 are shown in Table 2, and in
scenarios with label counts of 2500 and 10,000, there is little difference between our method
and FlexMatch in the experimental results.

Table 2. Error rates (%) on CIFAR-100.

Method 400 Labels 2500 Labels 10,000 Labels

Fully Supervised 19.27 ± 0.03

Π Model 86.96 ± 0.8 58.80 ± 0.66 36.65 ± 0.0
Pseudo Label 87.45 ± 0.85 57.74 ± 0.28 36.55 ± 0.24
Mean Teacher 81.11 ± 1.44 45.17 ± 1.06 31.75 ± 0.23

VAT 85.20 ± 1.4 46.84 ± 0.79 32.14 ± 0.19
MixMatch 67.59 ± 0.66 39.76 ± 0.48 27.78 ± 0.29

ReMixMatch 57.10 ± 1.05 34.77 ± 0.45 26.18 ± 0.23
UDA 46.39 ± 1.59 33.13 ± 0.21 22.49 ± 0.23

CoMatch 60.98 ± 0.77 37.24 ± 0.24 28.15 ± 0.16
FixMatch 49.42 ± 0.82 28.64 ± 0.16 23.18 ± 0.12
FlexMatch 43.21 ± 1.35 26.49 ± 0.20 21.91 ± 0.15
AatMatch 40.96 ± 0.32 26.30 ± 0.09 21.64 ± 0.13

Note: Bold indicates the lowest error rate among all semi-supervised methods.
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The results on the SVHN dataset were divided into three numbers of labeled data,
402,501,000. The results on SVHN are shown in Table 3, where our method achieved the
best results in all cases.

Table 3. Error rates (%) on SVHN.

Method 40 Labels 250 Labels 1000 Labels

Fully Supervised 2.13 ± 0.02

Π Model 67.48 ± 0.95 13.30 ± 1.12 7.16 ± 0.11
Pseudo Label 64.61 ± 5.60 15.59 ± 0.95 9.40 ± 0.32
Mean Teacher 36.09 ± 3.98 3.45 ± 0.03 3.27 ± 0.05

VAT 74.74 ± 3.38 4.33 ± 0.12 4.11 ± 0.2
MixMatch 42.55 ± 14.53 4.56 ± 0.32 3.69 ± 0.37

ReMixMatch 31.27 ± 18.79 5.34 ± 1.09 5.34 ± 0.45
UDA 52.63 ± 20.51 5.69 ± 0.76 2.46 ± 0.24

CoMatch 9.51 ± 5.59 2.21 ± 0.20 1.96 ± 0.07
FixMatch 7.65 ± 1.18 2.64 ± 0.64 2.36 ± 0.10
FlexMatch 8.19 ± 3.20 6.59 ± 2.29 6.72 ± 0.30
AatMatch 2.14 ± 0.29 2.19 ± 0.30 2.12 ± 0.23

Note: Bold indicates the lowest error rate among all semi-supervised methods.

Combined with the above experimental analysis, we can learn that our method out-
performs FlexMatch on CIFAR-10, CFIAR-100, and SVHN datasets for all labeled scenarios.

4.4. Ablation Study

To further validate the effectiveness of the proposed method, an ablation study was
conducted to investigate the effect of different components and parameters on the model.
We studied three different values of m, τ, ε, three different weight functions, and different
algorithm components on the CIFAR-10 dataset with 40 labels.

As shown in Figure 1, “ori” refers to the original model without any algorithmic
components added. “ori+Adt” indicates the original model with the adaptive adversarial
module added. In contrast, “ori+Weight” indicates the original model with the adaptive
weight module added, the lack of any component of the algorithm AatMatch will make
degradation of the model performance. The adaptive adversarial module achieves the most
significant improvement in the model performance.
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In Figure 2, we compare the performance of three different weight functions: the
concave, linear, and convex functions. Our results indicate that the convex function
outperforms the others, while the concave function performs worst. This outcome is
because the convex function can more accurately distinguish the number of samples from
classes with varying learning effects, ultimately leading to better classification results.
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Figure 2. Ablation study of weight function.

Based on the results shown in Figure 3, the optimal classification performance is
achieved when the τ value is set to 0.95. If τ is too large, a significant number of samples
will be filtered out, resulting in insufficient training data. On the other hand, if τ is too
small, numerous low-confidence samples will be included in the training, thus impeding
the model training process. Therefore, selecting the appropriate value of τ is crucial in
balancing the training data’s quantity and quality, ultimately affecting the classification per-
formance.

Systems 2023, 11, x FOR PEER REVIEW 9 of 12 
 

 

Figure 1. Ablation study of algorithm module. 

In Figure 2, we compare the performance of three different weight functions: the con-
cave, linear, and convex functions. Our results indicate that the convex function outper-
forms the others, while the concave function performs worst. This outcome is because the 
convex function can more accurately distinguish the number of samples from classes with 
varying learning effects, ultimately leading to better classification results. 

 
Figure 2. Ablation study of weight function. 

Based on the results shown in Figure 3, the optimal classification performance is 
achieved when the 𝜏 value is set to 0.95. If 𝜏 is too large, a significant number of samples 
will be filtered out, resulting in insufficient training data. On the other hand, if 𝜏 is too 
small, numerous low-confidence samples will be included in the training, thus impeding 
the model training process. Therefore, selecting the appropriate value of 𝜏 is crucial in 
balancing the training data’s quantity and quality, ultimately affecting the classification 
performance. 

 
Figure 3. Ablation study of the parameter m. 

To explore the classification boundaries of low-density regions, adversarial pertur-
bations are added to the images. However, ensuring that these perturbations do not pro-
duce adversarial samples misclassified as other classes is important. As shown in Figure 
4, when the adversarial perturbation is too strong, it can cause a mismatch between the 
distribution of original data and that of adversarial data, which leads to the network learn-
ing wrong features from both domains and thus overfitting, ultimately reducing the 

Figure 3. Ablation study of the parameter m.

To explore the classification boundaries of low-density regions, adversarial perturba-
tions are added to the images. However, ensuring that these perturbations do not produce
adversarial samples misclassified as other classes is important. As shown in Figure 4, when
the adversarial perturbation is too strong, it can cause a mismatch between the distribution
of original data and that of adversarial data, which leads to the network learning wrong
features from both domains and thus overfitting, ultimately reducing the model’s clas-
sification performance. A properly selected magnitude of adversarial perturbation can
help improve the model’s classification performance. Specifically, the model achieved the
highest accuracy when the inverse perturbation was set to ε = 3.1 × 10−6.
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5. Conclusions

This paper introduces a novel semi-supervised learning algorithm, AatMatch, com-
bining curriculum learning and adversarial training to act as a data augmentation method
for generating adversarial samples. These samples are generated based on the learning
difficulty of a category and are then utilized to explore the classification boundaries. A mo-
mentum model is incorporated to address the consistency problem of historical information
effectively. Additionally, adaptive weights are assigned to each unlabeled data point based
on its prediction confidence, thereby minimizing the negative impact of low-confidence
data on the model’s performance. The proposed algorithm has demonstrated superior
performance compared to existing advanced methods across various datasets.
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