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Abstract: In this study, we present a novel simulation model and case study to explore the long-term
dynamics of early detection of disease, also known as routine population screening. We introduce
a realistic and portable modeling framework that can be used for most cases of cancer, including
a natural disease history and a realistic yet generic structure that allows keeping track of critical
stocks that have been generally overlooked in previous modeling studies. Our model is specific to
prostate-specific antigen (PSA) screening for prostate cancer (PCa), including the natural progression
of the disease, respective changes in population size and composition, clinical detection, adoption of
the PSA screening test by medical professionals, and the dissemination of the screening test. The key
outcome measures for the model are selected to show the fundamental tradeoff between the main
harms and benefits of screening, with the main harms including (i) overdiagnosis, (ii) unnecessary
biopsies, and (iii) false positives. The focus of this study is on building the most reliable and flexible
model structure for medical screening and keeping track of its main harms and benefits. We show
the importance of some metrics which are not readily measured or considered by existing medical
literature and modeling studies. While the model is not primarily designed for making inferences
about optimal screening policies or scenarios, we aim to inform modelers and policymakers about
potential levers in the system and provide a reliable model structure for medical screening that may
complement other modeling studies designed for cancer interventions. Our simulation model can
offer a formal means to improve the development and implementation of evidence-based screening,
and its future iterations can be employed to design policy recommendations to address important
policy areas, such as the increasing pool of cancer survivors or healthcare spending in the U.S.

Keywords: simulation model; early detection of cancer; mass screening; decision-making;
dissemination; chronic disease; prevention; clinical practice guidelines; evidence-based guidelines;
policy decision thresholds; prostate cancer; natural history of disease; dissemination; biomarker;
prostate cancer; PSA

1. Introduction and Motivation

Decades after routine medical screening became common, our understanding of
screening and its consequences remains limited. Over the last few decades, the criteria for
screening for several disorders have changed significantly, including thresholds dividing
positive from negative test results and the recommended ages for routine screening. Major
health organizations have recommended changes in several common disease definitions,
often resulting in the expansion of the criteria for screening, diagnosis, and treatment,
generally leading to increases in reported incidence and prevalence [1,2].

PCa is the second most frequently diagnosed cancer in men, and about two-thirds of
these are diagnosed in high-income countries where 18% of the world’s male population
resides, with much of the variation reflecting differences in the use of PSA testing [3]. In
the U.S., approximately 90% of PCa is detected by means of screening. The lifetime risk
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of receiving a diagnosis of PCa nearly doubled after the introduction of prostate-specific
antigen (PSA) testing and increased from approximately 9% in 1985 [4] to 16% in 2007 [5].
The value of PSA screening to reduce deaths from PCa while balancing potential harms
remains controversial, and routine screening is not recommended in many European
countries [6,7]. In the U.S., the U.S. Preventive Services Task Force (USPSTF) recommends
that average-risk men aged 55–69 have a conversation with their healthcare provider about
the benefits and limitations of PSA testing to make an informed decision about whether
to be tested based on their personal values and preferences [8]. Based on 2017–2019 data,
approximately 12.6 percent of U.S. men will be diagnosed with PCa at some point during
their lifetime, with an estimated 3.3 million men living with PCa [9].

In this study, we present an extended case study specific to the PSA screening for
PCa, with the end goal of building a sound dynamic theory firmly grounded in empirical
evidence and data to explain both the core harm-and-benefit issues and the natural disease
progression and dissemination of the PSA screening practice among clinicians and the
general population. The PSA case study includes a natural history disease progression
model for PCa and a behavioral theory explaining how guidelines change over time in
response to changes in the evidence. These in turn depend on the fundamental tradeoff
between test sensitivity and specificity, the natural progression of the disease, and changes
in population size and composition. While PSA screening is not specific to the U.S., we
mainly treat the problem within the U.S. context where early detection of disease is most
controversial. Our model has a natural history disease model at its core as well as a classical
evidence-based dynamic theory for evolving screening indications, and interventions such
as screening are superimposed on the natural history model based on available evidence.
The natural history model has two stages, locoregional (M0) and distant (M1), and three
grades (high, low, and indolent) of disease can both be screen- or clinically detected. The
fundamental approach and assumptions for screening and its adoption/dissemination are
explained, while the various assumptions and propositions are supported by reference to
the modeling and medical literature. Model behavior shows reasonable correspondence to
historical screening trends in the U.S.

2. Methodology and Background of Systems Models for Cancer

We use the system dynamics (SD) modeling approach to complex systems to explain
the dissemination of medical screening for cancer within the U.S. context, supported by
qualitative data [10,11]. Modeling of PCa in this study draws on an extensive body of
SD work on healthcare issues across various domains and SD has been increasingly used
to model many public health and healthcare issues [12–21]. A full recent account on SD
applications in health and medicine can be found in Darabi and Hosseinichimeh [22].
Problems around early detection of disease are particularly suited to SD modeling because
of the presence of many time-related phenomena, delayed feedback, and nonlinearities,
such as varying trends in screening dissemination and population structure, and the delays
associated with disease progression, translation of evidence, and policy-making efforts. SD
methodology employs a series of guidelines for the model-building process, and a variety
of tests and types of evidence organized around the purpose of the model that serve to
increase confidence in model structure and dynamic theory [11,23,24].

The first attempt at a systems model of cancer was undertaken by Richmond, demon-
strating a structural model for cancer development [25]. Fett built two SD models to
examine breast cancer screening for public health policy analysis [26,27]. Fett et al. [27]
represented a model with multiple stages of breast cancer that could be used to exam-
ine the Australian breast cancer screening program. There have been a few other SD
studies involving population health screening: chlamydia, cervical cancer, or diabetes
screening, and decision/referral thresholds in developmental and behavioral screening
such as autism [28–30]. Royston et al. [28] used SD models to test alternative policies for
cervical cancer and chlamydia screening. The U.K. Department of Health found the results
to be useful for the development of screening guidelines. Policy questions included the
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optimal screening interval and coverage. The results suggested that it is more effective
to increase the screening coverage than to decrease the screening interval. More recently,
Palma and Lounsbury et al. [31] built an SD model for PCa that replicates the Prostate,
Lung, Colorectal, and Ovarian (PLCO) cancer screening trial to assess the benefits of PSA
screening for PCa-specific mortality.

Karanfil and Sterman [32] provide the foundations for the development of evidence-
based screening guidelines for the early detection of disease. They develop and test an
endogenous theory for population screening and present a stylized model to explore and
formalize the guideline formation process. In this study we are expanding the boundaries
of this classical evidence-based model for screening to create a more realistic life setting
and present a case study for cancer, particularly focusing on the adoption and diffusion
dynamics of PSA screening for PCa in the U.S. context. We tie the generic model presented
by [32,33] to a natural history model for PCa that simulates the population-level changes in
screening and dissemination. The range of screening indications in the model includes the
biopsy referral threshold and the recommended starting age.

3. Overview of the PSA Screening Model

We demonstrate correspondence to historical data on various metrics including popu-
lation counts, death rates, and some metrics on disease progression. Then, policy-relevant
factors and analysis in the base run will be shown, which replicates history and shows
the future trajectory. The case study model for PSA screening consists of six fundamental
sectors, including the dynamics of the U.S. male population and natural history of dis-
ease; screening and clinical detection; treatment; screening dissemination; harm reduction
technology; and the PSA screening harms and benefits. The fundamental approach, sector
diagrams, and assumptions for each sector with critical formulations are explained in the
Supplementary Materials. The various assumptions and propositions are supported by
references to the modeling and medical literature.

3.1. Data Types and Inputs

Data used in this study are from multiple sources. Some are secondary data based
on the literature, such as medical articles and reports we accessed directly. Others are
composite data, which we obtained by combining several data points to support the
model design. Most of the historical population and PCa trends are widely available on
organization websites such as the NCI, CDC, NHANES, U.S. mortality files by the NCHS,
NCI-SEER database, and NHIS. Complementary data were gathered from a literature
review of the history of PSA screening in the U.S. To bring the model assumptions and
findings closer to the real trends and to support the emerging model structure, we collected
additional data through interviews with domain experts from medical and healthcare
professions [33]. Figure 1 presents the conceptual framework used for modeling PCa’s
natural history, screening, adoption, utilization, harms, and benefits. Table 1 lists important
model inputs and references used throughout the paper with the range used for sensitivity
analysis, as well as associated data sources.

3.2. Population and Natural History of Disease
3.2.1. Population Increase and Aging

The target population of interest is U.S. males (all races) 50–80-year-olds; however, we
also model younger ages (35–50-year-olds) to improve the quality of model calibration to
target population trends. We define nine age groups by five-year intervals starting from 35,
and another age group that represents the 80+ male population. Different age groupings are
used to represent simulation results, including the most used 50+ or 65+ populations. Other
subpopulations include the 35 to 44, 45 to 54, 55 to 64, 65 to 75, and 75+-year-old age groups,
for which mortality data and population counts were made available by the National
Center for Health Statistics (NCHS) at the CDC [34]. The aging structure comprises one
inflow that indicates the rate of entering the indicated age category, for nine age groups,



Systems 2023, 11, 252 4 of 18

and one outflow that indicates the rate of leaving the age category. The inflow-of-male-
population-turning-35 time series is provided exogenously for the years 1980–2040, based
on U.S. census data history and future projections. The age cohort-specific all-cause death
rates and projections for the decrease in all-cause mortality were derived from sex- and
age-specific data. The all-cause death rates for all age groups are then compared to the
death counts specified by the CDC WONDER- [34,35]. Net immigration (migration to and
from a country) is another component that influences the historical and future population
counts in the U.S. that we considered.
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3.2.2. Natural History of Disease

Figures 2–4 gradually illustrate the sectors or the main stock-flow structure for the
natural history of PCa and its diagnosis, including the health states and transitions, the
asymptomatic onset of screen-detectable cancer, and disease progression through stages.
The model design (onset and progression through disease stages) and assumptions were
inspired by the PCa natural history diagnosis and history models developed by the NCI-
sponsored Cancer Intervention and Surveillance Modeling Network (CISNET) group and
other modeling studies published previously [36–40].
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Figure 2 shows the model sector for natural disease progression, where screen-
detectable cancers progress from the loco-regional (M0) to the distant-metastatic stage
(M1). “At Risk” populations with different screening results are lumped into one group
here for simplicity. People with undiagnosed disease may get both screening and clinical
detection, or progress to metastatic disease before being diagnosed. Cancers are localized
at onset and may be either low-grade (Gleason score 2–7), high-grade (Gleason score 8–10),
or indolent (any Gleason). High- and low-grade cancers represent those that are of a
progressive type and may get metastasized, while the indolent class tumors represent the
non-progressive or latent tumors, including regressive tumors which are, by definition,
destined to stay confined to the prostate and not metastasize or kill the patient. The model
assumes stage durations to be distributed independently according to exponential distri-
butions and not correlated with each other. Disease progression rates are independent of
patient age or disease onset, as with other studies.

Asymptomatic onset used in the model is estimated from autopsy studies and pre-
viously published models [36,41–43]. The model assumes that these adequately reflect
the real prevalence of disease in the U.S., although that may be an underestimation of the
true amount of latent disease in the population. Biopsy studies using better techniques
find a higher age-specific prevalence. The present model assumes a constant secular trend
in incidence, in line with other modeling studies. The probabilities of tumor grade at
onset determine the fraction of disease in each grade category (high, low, indolent) at the
onset. The metastasis hazard for men with cancer depends on the grade, and the hazard of
transition to metastatic disease from the loco-regional to distant stage is selected based on
the medical literature [44]. Mortality of PCa from loco-regional and distant disease stages
is represented with death fractions defined by grade. The death fraction and metastasis
hazard of indolent tumors are zero, by its definition.

3.3. Screening, Clinical Detection, Dissemination of Screening
3.3.1. Screening Structure and Test Specifics

We introduce a more realistic screening stock-flow structure for the at-risk popula-
tion compared to the available literature, which includes an explicit demonstration of
all potential pathways a subject can go through during the screening process (Figure 3).
Subjects in all the three at-risk stocks (at-risk and never screened, at risk and screened true
negative-TN, or at risk and screened false positive-FP) may eventually develop a disease
based on their age-specific onset. Note that subjects who are at risk and never screened
may get an initial screening test with an TN test result or an FP test result. Subjects with an
FP test result may then have a follow-up test or get a biopsy to confirm that they do not
have the disease.

The model estimates an effective test sensitivity that combines test sensitivity, biopsy
compliance, and biopsy detection rate. The endogenous PSA test sensitivity of loco-
regional, stage M0 disease is determined by the evidence-based model structure [32,33].
The sensitivity of stage M1 disease is assumed to be 100% accurate, as the test sensitivity
increases substantially when the disease has progressed beyond M0. The standard for
biopsy referral in the U.S. from 1990 to 2005 was a PSA level greater than 4 ng/mL, yet lower
thresholds were suggested and used in the 1990s, including 3, or even 2.5 ng/mL. In this
model, men are eligible for biopsy after screening if their PSA exceeds this endogenously
changing threshold. The screen detection rate of disease is given by age and grade. For the
average time between two consecutive screening tests; a testing interval of 2 years is found
to be reasonably consistent [39].

Not all men with positive test results submit to a follow-up biopsy. The model base
biopsy compliance rate following a positive PSA test is taken as 0.5, which is lower than
in Europe, where estimates range around 0.8–0.9. In the PLCO trial of the U.S., 40% of
men with a PSA between 4 and 7, 53% of men with a PSA between 7 and 10, and 69% of
men with a PSA greater than 10 had a follow-up biopsy [45]. Biopsy detection rate (or
biopsy accuracy) represents the ability of biopsy to detect men with the disease. Its value
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has increased with the dissemination of extended biopsy schemes over time. Before 1990,
4-core biopsies were standard, 6-core biopsies were by 1995, and 8- to 12-core biopsies were
standard by the early 2000s. A 6-core biopsy is 80% accurate, 4-core biopsy accuracy is 2/3
of this amount, and extended-core biopsies, which are presently used, are 100% accurate.
The biopsy detection rate varied from 0.6 to 1, based on estimates provided in previous
studies [46]. Cancer can also be clinically detected at any stage and the clinical detection
hazard by grade is assumed to be much higher after metastasis of the disease [39]. We do
not model digital rectal exam (DRE) testing explicitly and assume that the clinical detection
hazard stays constant after the PSA era. This is an important assumption that may lead to
an overestimation of the value of the PSA test since we do not capture possible increases
in the frequency of the DRE test rate. In fact, DRE detections are also likely to increase
because of disease awareness, which has increased over the years. Figure 4 illustrates the
final and simplified sector stock-flow structure for the natural history of disease including
disease progression and its detection by screening or clinical detection.

3.3.2. Screening Dissemination

The screening dissemination sector stock/flow structure is given in Figure 5. In our
model, the doctor’s adoption of PSA screening is modeled as adoption fraction A that
ranges between 0 and the maximum adoption fraction. Screening dissemination takes
place after 1985, the year PSA screening is introduced and rapidly diffuses in the medical
community after that. Adoption and dissemination parameters are estimated by the
first and repeat PSA screening data [46]. Screen eligibility is determined by the formally
recommended starting and stopping ages in guidelines and the standard eligibility fraction,
which indicates the maximum eligibility or the reference market for the PSA practice. The
effects of starting/stopping ages on screening-eligible fractions are modeled by using
graphical functions for an S-shaped curve. Accordingly, the screen-eligible fraction F is
closer to the maximum between the recommended starting and stopping ages, yet it fails
to reach its maximum within this range and extends beyond the formal ranges. Both the
screen-eligible fraction and the currently screened fraction are given for 5-year age groups
between the defined age ranges of 35–80+. Critical equations, graphical functions, and
other supporting assumptions are provided in Supplementary Materials.
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Table 1 lists important model inputs and symbols used with the range used for
sensitivity analysis, and associated data sources. The key selected outcome measures for
the model are selected to show the fundamental tradeoff between the harms and benefits
of screening. These include proxy variables for the most common harms and benefits
of screening and detection, mainly screen vs. clinical detection fractions, the fraction of
overdiagnosed cases, the number of unnecessary biopsies, the metastasized fraction of
cancer at initial detection, and men with FP test results. The main harms of screening
include (i) false positives, (ii) unnecessary biopsies, and (iii) overdiagnosis (and, hence,
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overtreatment). The main benefit is saving lives, or early detection of cancer (before it
gets metastasized).

Table 1. List of Important Model Inputs.

Name Parameter [Unit] Sensitivity
Range

Source(s) for
Base Case

Probability of indolent tumor at onset pOx [dmnl] 0.2–0.6 Expert judgement

Hazard Asymptomatic Onset (by age group)
PCa specific mortality fraction (by grade)

Oxi [1/year]
dfM0, dfM1

[1/year]

0.0–0.05
0.07–0.37

[36,41,42]
SEER survival

curves by stage,
[37,47,48]

Pre-metastasis clinical diagnosis hazard (by
age, grade) Cx1, Cx2 [1/year] 0–0.03 [37,39]

Multiplier for Hazard of Clinical Diagnosis
(by age group) MCx [dmnl] 15–25 [39]

Time between screenings TimeBtwSx [year] 1.5–2.5 [39]

Biopsy compliance (by stage) BiopCompM0/M1
[dmnl] 0.3–0.7; 0.9 [39,45]

Time to act τ [year] 0.25–0.5 [49]

alpha α [1/year] 0.015–0.03 Based on PSA
curve [46]

beta β [1/year] 0.45–0.65 Based on PSA
curve [46]

Max adoption fraction Amax [dmnl] 0.25–0.9 Expert judgement
Stopping age to screen Agestop [years] 70–85 Expert judgement

HBR Translation Delay λt [year] 2–10 Expert judgement

4. Simulation Results
4.1. Basic Dynamics and Model Validation

The model is implemented using VensimTM software (Ventana Systems Inc., Harvard,
MA, USA), initialized in 1980, in the pre-PSA era, and simulates forward by increments
of a 1/8th of a year through 2040; all output variables are calculated at every increment.
The time horizon is selected as 1980–2040, about 60 years, to capture the dynamic trends
in the diffusion of screening and compliance with recommendations and the potential
trajectories for selected policy variables. Detailed documentation of the model is available
upon request from the authors. We demonstrated correspondence to historical data on
various metrics including population counts, crude and death rates by age group, disease
prevalence, and some metrics on disease progression.

We conducted structurally oriented behavior validation experiments throughout the
model-building process to test the validity of the model with respect to its intended
purpose. First, we tested the model’s response to a series of extreme conditions to check
its robustness. For example, the latent disease cannot get detected in the absence of PSA
screening. After screening gets introduced, the loco-regional fraction of indolent disease
at detection becomes 100%, as an indolent disease cannot get metastasized by definition.
Table 2 provides a summary of the qualitative behavior of the PSA model under selected
extreme conditions and various logic tests, e.g., the indolent disease cannot get detected
in the absence of PSA screening and cannot get metastasized. Experiments prove that
model behavior matches the behavior expected from the model for the listed conditions
and passes all logic and extreme condition tests. Throughout the model-building process,
we also tested the model’s mass balance for the population counts by calculating the sum
of all the stocks in the model and comparing it against the integration of the net inflow over
the simulation horizon. The only inflow to the population stocks is the male-population-
turning-35 exogenous time series, and the net immigration flows.
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Table 2. Extreme condition tests with the corresponding (expected and confirmed) qualitative behavior.

Extreme Condition Test Qualitative Behavior

Screening switch turned off

PSA screening tests go to zero, % Ever had PSA goes to zero, % of Screen detected
cancer goes to zero, % of Clinically detected cancer goes to 100%, Reported PCa
prevalence goes down, % of men healthy with a FP goes to zero, no detection, and
treatment of latent (indolent) disease

Clinical detection switch turned off % of Cancer clinically detected goes to zero, All cancer detection is through
PSA screening

Both screen and clinical detection switches
turned off

Reported PCa incidence goes to zero, Reported PCa prevalence goes to zero, no new
PCa cancer survivors

Treatment switch turned off % Ever treated goes to zero, There are no survivors with primary treatment

Treatment is 100% effective No one dies of prostate cancer, M0 and M1 PCa deaths go to zero

Metastasis switch turned off M0 loco-regional disease doesn’t get metastasized, no distant M1 cases, no M1
prostate cancer deaths

All-cause mortality turned off Mean population age increases, only deaths are PCa deaths

Decrease in mortality trend is removed Overall deaths increase, population’s mean age goes down

All disease is indolent No prostate cancer deaths, 100% overdiagnosis

Other logic tests

% PSA detected % of disease detected by screening is 100% for indolent disease (Latent cancer cannot
get detected clinically)

PCa incidence/prevalence Reported PCa incidence is higher for older age groups

% Loco-regional at detection 100% for latent disease, as latent disease cannot get metastasized to M1 disease

% Distant at detection 0% for latent disease, higher for higher grade cancer

We provide a summary of simulation results to show the correspondence of the model
to historical data and future projections for the population stocks, including the total
population, percent above 65 years old, and for various age groups in Supplementary
Materials. The death rate is in terms of millions of deaths per year, and as a crude death
rate, expressed as the number of deaths reported each calendar year per factor selected.
The default factor at the CDC compressed mortality file is per 100,000 of the population,
reporting the death rate per 100,000 persons. Rates are for three age groups, 35–55, 55–75,
and 75+. Model behavior shows reasonable correspondence to historical behavior of the
total population counts and deaths.

4.1.1. Cancer Prevalence

The main and most important risk factor affecting all types of cancer, except cervical
cancer, is getting older. Autopsy studies indicate that prevalence of PCa is an increasing
function of age [41–43]. Since the real underlying prevalence of PCa is unknown, we use
estimates from autopsy studies. Figure 6 shows the fraction of men with a PCa tumor
at autopsy, a proxy for real underlying cancer prevalence. Prevalence estimates are from
Carter et al. [50], who studied 5250 autopsies from the U.S. literature. Estimates apply
to the symptom-free male population; men with a PCa diagnosis are excluded. Please
note that more recently conducted autopsy studies are finding a higher age-specific preva-
lence [41,42], so our estimates are conservative with respect to the underlying (unknown)
asymptomatic disease in the U.S. male population.



Systems 2023, 11, 252 10 of 18
Systems 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 6. Age specific prevalence of asymptomatic PCa among symptom-free men based on autopsy 

studies [50] vs. base case simulation. 

4.1.2. Screen vs. Clinical Detection and Overdiagnosis Rates 

Cancer overdiagnosis is a contentious issue with various definitions and implications 

for policy making. Models of cancer registry data and trial results estimate that 23% to 

42% of PSA-detected cancers would not be found without screening, and 42–66% of all 

diagnosed prostate cancers would have caused no clinical harm had they remained unde-

tected [51]. Cancer overdiagnosis has several definitions. It refers to people diagnosed 

with indolent disease, and to others who die of other causes. This study uses the most 

conservative definition of overdiagnosis, where a screen-detected case is considered over-

diagnosed if it is an indolent tumor. While existing estimates vary widely between 23%-

66% [1,51] our base case estimate is somewhere in this range on the conservative side, 

indicating 24% of all diagnosed cases, and 33% of all screen-detected cases, are overdiag-

nosed, once the adoption trends get stabilized. PSA screening started in 1985, before 

which cancer could only be detected clinically, as confirmed by the base case simulation 

(Figure 7). 

  
(a) (b) 

Figure 7. Base-case (a) fraction of screen- vs. clinically detected cancers; (b) overdiagnosis fraction 

of all diagnosed vs. screen-detected cases. 

4.2. Sensitivity Testing 

We conducted several types of sensitivity tests on the model by exploring the param-

eter space for selected key indicators, mainly overdiagnosis rates by detection method, 

other harms such as unnecessary biopsies due to an FP test result, and metastatic disease 

fraction at initial diagnosis. We chose these key outcome measures to provide insights into 

different system features, inform policymakers regarding each indicator’s tradeoffs, and 

apply the notion of multiplism suggesting that essential problems should be measured in 

different ways. 

1.4 2.95 6.21 13.06

27.49

39.88

0.4 2.05 5 11.27
23.04

40

20-30 30-40 40-50 50-60 60-70 70-80 80+

Prostate with Tumor (%)

Carter prevalence Model prevalence

Figure 6. Age specific prevalence of asymptomatic PCa among symptom-free men based on autopsy
studies [50] vs. base case simulation.

4.1.2. Screen vs. Clinical Detection and Overdiagnosis Rates

Cancer overdiagnosis is a contentious issue with various definitions and implications
for policy making. Models of cancer registry data and trial results estimate that 23% to
42% of PSA-detected cancers would not be found without screening, and 42–66% of all
diagnosed prostate cancers would have caused no clinical harm had they remained unde-
tected [51]. Cancer overdiagnosis has several definitions. It refers to people diagnosed with
indolent disease, and to others who die of other causes. This study uses the most conserva-
tive definition of overdiagnosis, where a screen-detected case is considered overdiagnosed
if it is an indolent tumor. While existing estimates vary widely between 23–66% [1,51] our
base case estimate is somewhere in this range on the conservative side, indicating 24%
of all diagnosed cases, and 33% of all screen-detected cases, are overdiagnosed, once the
adoption trends get stabilized. PSA screening started in 1985, before which cancer could
only be detected clinically, as confirmed by the base case simulation (Figure 7).
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Figure 7. Base-case (a) fraction of screen- vs. clinically detected cancers; (b) overdiagnosis fraction of
all diagnosed vs. screen-detected cases.

4.2. Sensitivity Testing

We conducted several types of sensitivity tests on the model by exploring the param-
eter space for selected key indicators, mainly overdiagnosis rates by detection method,
other harms such as unnecessary biopsies due to an FP test result, and metastatic disease
fraction at initial diagnosis. We chose these key outcome measures to provide insights into
different system features, inform policymakers regarding each indicator’s tradeoffs, and
apply the notion of multiplism suggesting that essential problems should be measured in
different ways.
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4.2.1. Over-Diagnosis Due to Large Pool of Indolent (Latent) Disease

Experimental results summarized in Figure 8a,b demonstrate the “indolent” or “latent”
fraction of disease as one of the most important underlying parameters affecting cancer
overdiagnosis rates. Indolent class tumors represent the non-progressive, or latent tumors,
including regressive tumors which are destined to stay confined to the prostate and not
metastasize or kill the patient by definition. We varied the value of the latent fraction
of disease between 20–50% (base case = 35%) to show its effect on the overdiagnosis
fraction of screen-detected, or all (screen- and clinically) detected cancers. Adoption of
the screening practice is another important parameter determining overdiagnosis rates.
Figure 8c shows that overdiagnosis rates are also affected by the PSA screening adoption
practice by medical professionals (base case value for maximum adoption fraction = 0.75).
As expected, detection and overdiagnosis of indolent disease drops to zero without PSA
screening, since they cannot be detected without screening.
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4.2.2. Parameter Set Exploration for Benefits and Harms of Screening

To explore the parameter space, we ran a global sensitivity analysis with combined
variations in all the parameters the model is sensitive to (as identified in Table 1). These
include all the important time constants related to screening, including the harms and
benefits ratio (HBR) translation delay indicating how long it takes to translate scientific
evidence to clinical practice, the time between screenings, the stopping age to screen,
and the time to act. Other sensitive parameters include the biopsy compliance rate (by
patients with a positive test result) and the maximum adoption fraction (of the PSA test
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by clinicians). The experimental results, in turn, show the confidence intervals (up to
100%) of the key indicators for harms and benefits from 300 runs, sufficient to explore the
state space of the harms and benefits in the screening and adoption subsystems. A Monte
Carlo simulation, also known as multivariate sensitivity simulation (MVSS), was used to
automate the sensitivity analysis. The experiment gives us the full range of possibilities for
potential harms and benefits of screening and allows us to observe their tradeoff.

Confidence plots in Figures 9 and 10 demonstrate the common and extreme operating
ranges for the main harms of medical screening, and the tradeoff between its harms and
benefits. The main harms of screening include (i) false positives, (ii) unnecessary biopsies,
and (iii) overdiagnosis (and, hence, overtreatment). The main benefit includes saved lives,
or early detection of cancer (before it gets metastasized). We selected respective proxy
variables as (1) the overdiagnosed fraction of all detected cases, (2) the cumulative number
of unnecessary biopsies, (3) the fraction of healthy male population living with an FP test
result, and (4) the fraction of disease already metastasized at initial detection or the fraction
of M1 at detection.
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5. Discussion

We present a generic simulation model for medical screening, and a case study specific
to PSA screening for PCa, including the natural history of the disease, screening, and
clinical detection of PCa; the adoption of the PSA screening test by medical professionals;
and the dissemination of the test in the U.S. context. While our focus for this study is
primarily on the fundamental tradeoff between the main harms and benefits of screening as
exemplified by the selected key proxy variables, the model can be used for policy analysis
and the estimation of potential future trajectories for other important policy variables,
such as the increasing pool of cancer survivors in the U.S. The reasons for choosing these
key outcome measures are to (i) keep track of the critical stocks for the cancer screening
problem, (ii) provide insights into different features of the system, (iii) inform policymakers
regarding the tradeoffs of each indicator, and (iv) apply the notion of multiplism suggesting
that a problem should be measured in different ways.

5.1. Strategic Insights

• One of the important contributions of this study is the introduction of a more realistic
yet flexible structure for routine medical screening that allows keeping track of critical
stocks that have been generally overlooked in previous modeling studies. Existing
modeling studies do not explicitly define some of these population stocks in the
screening process, including men who currently live with an FP test result, which has
implications for anxiety and depression. In this study, we use the flexibility of the SD
modeling stock-flow structure to keep track and account for all critical stocks in the
cancer screening problem, while their values are not readily measured in the literature.
Simulations show that the fraction of healthy men who live with an FP may vary
between 5 and 15% in most situations, depending on screening criteria, or breadth
indications of disease, and may increase up to 30% with lower biopsy compliance
rates. The value of the FP stock relative to the healthy population (i.e., “the fraction of
healthy male population currently living with an FP”) may be an important indicator
for policy making. Another variable for which we were not able to find historical data
includes the the “fraction of disease in target screening population”. These metrics
are potentially very important, yet not readily measured or considered in existing
medical and modeling literature. Simulations show that the fraction of false positives
in the healthy male population may have increased to as high as 18% in the 1990s
when screening was overused. At the same time, the real diseased fraction of the
target population must have dropped down to its historical minimum. We do not
aim to suggest optimal estimates for these variables but would like to highlight the
importance of having a better understanding of their dynamics by additional data
collection, rather than excluding them from our “mental” models, or making the
constancy assumption [52].

• The addition of an “indolent/latent” disease category is a novel addition in this
modeling study, facilitating to make of inferences about the real (yet unknown) occult
disease prevalence in the population. One aspect that increases the reported cancer
prevalence is the existence of a silent pool of indolent diseases, which varies among
different types of cancers. These are “TP” cases where the disease identified has
uncertain significance, and where men would never become aware of their disease if
they were not tested for it, as evidenced by the silent reservoirs of undetected thyroid,
breast, and prostate [41] cancers. Our interview data for the PCa case study confirms
the importance of the size of this latent pool of disease: “ . . . If you take enough time to
understand what this means, if I tell a patient, “Look I’m 47, my probability to have a prostate
cancer histologically under the microscope right now as I sit here, is about 30%. Period.”
That’s a start, so there’s a pool of prostate cancer that we all carry, most of them they’ll never
become symptomatic, some of us have to have bad cards. Do we understand who have bad
cards and who don’t? No, we don’t. There’s a residual risk that there’s something going on.
“—Peter Juni. MD-PhD, Director, Applied Health Research Centre, St. Michael’s Hospital,
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and Professor of Medicine, University of Toronto, Previous: University of Bern, Director of the
Institute of Primary Health Care, Professor and Chair of Primary Health Care and Clinical
Epidemiology in the Faculty of Medicine, Switzerland.

• We endogenize variables that are mostly taken as constants in other studies. These
include the breadth of indications of screening (including the biopsy threshold and
the starting age to screen), the prevalence of disease in the screening population,
the sensitivity and specificity of the test, and the harm reduction technology. It also
separates the formal decision thresholds for screening from the decision thresholds
that are implemented, showing their interdependency to each other as well as to the
diagnostics of the test. For example, existing studies usually assume a constant PSA
level as the trigger for biopsy, which stays constant over time, but this is not an accurate
reflection of the clinical practice. Endogenizing such variables allows us to show how
they are changing over time, affecting the target screening prevalence, and, hence, the
screening diagnostics themselves which are also taken as constants in most studies. To
be specific, the model endogenizes the adoption and diffusion of the screening process
and defines the different components of screen detection explicitly. These include the
fraction of the population that receives the screening test, the sensitivity of the test,
biopsy compliance, and biopsy detection. The test sensitivity and currently screened
fraction are endogenous to the model, while biopsy compliance and detection are
exogenous. Subjects are eligible to receive regular screenings if their doctor adopted
the PSA screening test at the time, and if they are around the age-eligible range for
the test. Interview results confirm that one of the main determinants of screening is
the doctor’s opinion: “Access to care, coverage, and I also think it is how the screening is
presented by their doctor . . . .a lot of medicine is sales, and if a doctor presents something as
either optional or a bad idea like, “You don’t really want to do that, do you?” the patient’s going
to say no. But if their doctor’s enthusiastic about it and believes in it, then they’re probably
more likely to go ahead and get it done . . . ”—MD, PhD Erin Hofstatter, Medical Oncologist,
Yale School of Medicine.

• Karanfil and Sterman show that the “formal” recommended starting age to screen
varies, both over time and between different guideline-issuing organizations [32]. The
recommended “formal” biopsy threshold for PSA testing stayed constant at 4 ng/mL
throughout the initial years of screening dissemination, after which it starts to vary
in the 2000s. The informal, “practice” threshold, however, has reportedly been lower
than the formal one, suggesting poor compliance with recommendations. The real
pattern for the average biopsy threshold is unknown, but it is generally accepted to
be 2.5 ng/mL between 1990 and 2000 [39]. In addition, Pinsky et al. [53] have shown
that biopsy frequencies of men with PSAs between 2.5 and 4 ng/mL were of the same
order of magnitude as for men with a PSA higher than 4 ng/mL. The actual starting
age data are also not available, but they presumably follow the same pattern as the
biopsy threshold, where formal indications first expand in the early years of screening
and then start to narrow as harms and the evidence for harms accumulate over time.

• Since the test diagnostics are directly derived from the underlying probability distri-
butions for diseased and healthy people, the model can as well be used to estimate the
real prevalence of the disease.

5.2. Limitations and Further Research

The results of this study rest on several key assumptions. First, as with any other
natural history model, we make assumptions about disease onset, progression, and di-
agnosis in the absence of screening. Second, we assume that disease incidence remains
constant at pre-PSA levels after 1987. Third, the model assumes that baseline PCa survival
remains constant in the PSA era. We use data from a variety of sources that are subject to
limitations. Data on some key indicators, such as the actual starting age and the actual
biopsy threshold used in clinical practice, are not available. We used data from expert
opinions and published medical literature to justify model propositions.
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We also assume a constant clinical detection hazard in the base case, which may lead
to an overestimation of screening benefits. In fact, clinical detection rates may also have
increased over time because of increased disease awareness in the PSA era. Immigration
data was not available by age group and was assumed to be distributed proportionally
between age groups, yet it may have implications for population aging. No historical data
were available for some other variables we identified as important, including the fraction
of healthy men with a false positive or true negative, or the progress of harm reduction
technology. However, the focus of this study was on building the most reliable and flexible
model structure for medical screening, rather than point prediction for policy variables.

This model is not primarily designed for making inferences about optimal screening
policies but can inform modelers and policymakers about potential levers in the system and
complement other modeling and interactive studies designed for cancer interventions [54].
Simulation models like ours are flexible tools that can aid healthcare professionals and
policymakers in making complex decisions. They can provide constructive insights and
dynamic intuition to supplement the typical empirical evidence for updating cancer screen-
ing recommendations and can offer a formal means to improve the development and
implementation of evidence-based screening.

Future iterations of our simulation model can be employed to design policy recommen-
dations and address important problem areas, such as policy making for cancer survivors,
cost of care, or quality of life considerations. Particularly, the increasing pool of cancer
survivors in the U.S. is an important consideration, as their numbers in the U.S. are at
a record high. The AACR Cancer Progress Report 2022 reports that there are 18 million
cancer survivors in the U.S., up from 3 million in 1971, and the number is expected to
increase to 26 million by 2040 [55].

The aging of the U.S. population and the increase in life expectancy has serious
implications for chronic disease incidence and prevalence since cancer is an age-related
disease and the aging of the male population implies more PCa survivors in the future. As
more and more men are given a cancer diagnosis by screening, the natural perception of
each “survivor” is that screening “saved” his life. However, a portion of these survivors
have a type of PCa that could have been treated as effectively when found later, or that
might not have caused problems. The problem is that for each “survivor”, there is no way to
know whether screening and the treatment “caused” survival, as there is no counterfactual.
Thus, the number of men who perceive benefits from screening may be substantially
greater than the actual number who receive benefits, and the impression of benefit may
get exaggerated.

Existing studies primarily focus on the medical evidence supporting different screen-
ing guidelines but usually neglect the broad boundary processes that condition the adoption
of and adherence to evidence-based guidelines by clinicians and the public. This simulation
study is part of a continuing line of research in our investigation of the universal problem
of evidence-based development of sound and reliable clinical practice guidelines (CPGs).
Despite their importance especially in high-risk conditions, guidelines are far from optimal
in practice. While there is a proliferation of modeling studies to inform CPGs, not many
are addressing the actual guideline-making process itself. The scientific community also
recently recognized the inherent complexity of the guideline formation process itself and
invited researchers to explore the potential implications of this complexity that is inherent
in complex decision-making environments. In line with this motivation, we aim to come
up with empirically grounded theoretical frameworks and provide formal simulation mod-
els to document the long-term effects and unintended consequences of changing disease
definitions on published screening guidelines and, consequently, on the actual practice,
the specific mechanisms that influence different implementations of these guidelines, and
the mechanisms which account for the gaps between the scientific evidence and the actual
practice of screening.

Eventually, we aim to expand the boundaries of this case study model to create a
more realistic life setting, including the influence of the socio-political environment where
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the actual screening decision is embedded. More specifically, we aim to look at how
medical professional societies—including radiologists, patient advocacy groups, and other
principal actors—influence the adoption and diffusion dynamics of medical screening in the
U.S. context.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/systems11050252/s1, Figure S1: Supplementary PSA; Table S1:
Supplementary PSA.
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