
Citation: Esmaeili, A.; Ghorrati, Z.;

Matson, E.T. Agent-Based

Collaborative Random Search for

Hyperparameter Tuning and Global

Function Optimization. Systems 2023,

11, 228. https://doi.org/10.3390/

systems11050228

Academic Editors: Philippe Mathieu,

Juan M. Corchado, Alfonso

González-Briones and Fernando De

la Prieta Pintado

Received: 2 March 2023

Revised: 1 May 2023

Accepted: 3 May 2023

Published: 5 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Agent-Based Collaborative Random Search for Hyperparameter
Tuning and Global Function Optimization †

Ahmad Esmaeili * , Zahra Ghorrati and Eric T. Matson

Department of Computer and Information Technology, Purdue University, West Lafayette, IN 47907, USA
* Correspondence: aesmaei@purdue.edu
† This paper is an extended version of our paper published in the proceedings of the 20th International

Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2022), L’Aquila, Italy,
13–15 July 2022.

Abstract: Hyperparameter optimization is one of the most tedious yet crucial steps in training
machine learning models. There are numerous methods for this vital model-building stage, ranging
from domain-specific manual tuning guidelines suggested by the oracles to the utilization of general
purpose black-box optimization techniques. This paper proposes an agent-based collaborative
technique for finding near-optimal values for any arbitrary set of hyperparameters (or decision
variables) in a machine learning model (or a black-box function optimization problem). The developed
method forms a hierarchical agent-based architecture for the distribution of the searching operations
at different dimensions and employs a cooperative searching procedure based on an adaptive width-
based random sampling technique to locate the optima. The behavior of the presented model,
specifically against changes in its design parameters, is investigated in both machine learning
and global function optimization applications, and its performance is compared with that of two
randomized tuning strategies that are commonly used in practice. Moreover, we have compared the
performance of the proposed approach against particle swarm optimization (PSO) and simulated
annealing (SA) methods in function optimization to provide additional insights into its exploration in
the search space. According to the empirical results, the proposed model outperformed the compared
random-based methods in almost all tasks conducted, notably in a higher number of dimensions and
in the presence of limited on-device computational resources.

Keywords: multi-agent systems; distributed machine learning; hyperparameter tuning; agent-based
optimization; random search

1. Introduction

Almost all machine learning (ML) algorithms comprise a set of hyperparameters that
control their learning process and the quality of their resulting models. The number of
hidden units, the learning rate, the mini-batch sizes, etc., in neural networks, the kernel
parameters and regularization penalty amount in support vector machines, and maximum
depth, sample split criteria, and the number of used features in decision trees are a few
common hyperparameter examples that need to be configured for the corresponding learn-
ing algorithms. Assuming a specific ML algorithm and a dataset, one can build a countless
number of models each with a potentially different performance and/or learning speeds,
by assigning different values to the algorithm’s hyperparameters. While they provide
ultimate flexibility in using ML algorithms in different scenarios, they also account for most
failures and tedious development procedures. Unsurprisingly, there are numerous studies
and practices in the machine learning community devoted to the optimization of hyper-
parameters. The most straightforward yet difficult approach utilizes expert knowledge
to identify potentially better candidates in hyperparameter search spaces to evaluate and
use. The availability of expert knowledge and generating reproducible results are among

Systems 2023, 11, 228. https://doi.org/10.3390/systems11050228 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11050228
https://doi.org/10.3390/systems11050228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0003-0612-2351
https://doi.org/10.3390/systems11050228
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11050228?type=check_update&version=1


Systems 2023, 11, 228 2 of 22

the primary limitations of such a manual searching technique [1], particularly due to the
fact that using any learning algorithm on different datasets likely requires different sets of
hyperparameter values [2].

Formally speaking, let Λ = {λ} denote the set of all possible hyperparameter value
vectors and X = {X (train),X (valid)} be the dataset split into training and validation sets.
The learning algorithm with hyperparameter values vector λ is a function that maps
training dataset X (train) to model M, i.e., M = Aλ(X (train)), and the hyperparameter
optimization problem can be formally written as [1]:

λ(∗) = arg min
λ∈Λ

Ex∼Gx

[
L
(

x;Aλ(X (train))
)]

(1)

where Gx and L(x;M) are, respectively, the grand truth distribution and the expected loss
of applying learning modelM over i.i.d. samples x; and Ex∼Gx

[
L
(

x;Aλ(X (train))
)]

gives
the generalization error for algorithmAλ. To cope with the inaccessibility of the grand truth
in real-world problems, the generalization error is commonly estimated using the cross-
validation technique [3], leading to the following approximation of the above-mentioned
optimization problem:

λ(∗) ≈ arg min
λ∈Λ

mean
x∈X (valid)

L
(

x;Aλ(X (train))
)
≡ arg min

λ∈Λ
Ψ(λ) (2)

where Ψ(λ) is called the hyperparameter response function [1].
Putting the manual tuning approaches aside, there is a wide range of techniques that

use black-box optimization methods to address the ML hyperparameter tuning problem.
Grid search [4,5], random search [1], Bayesian optimization [6–8], and evolutionary and
population-based optimizations [9,10] are some common tuning methodologies that are
studied and used extensively by the community. In grid search for instance, every com-
bination of a predetermined set of values in each hyperparameter is evaluated, and the
hyperparameter value vector that minimizes the loss function is selected. For k number of
configurable hyperparameters, if we denote the set of candidate values for the j-th hyperpa-
rameter λ

(i)
j ∈ λ(i) by Vj, the grid search would evaluate T = Πk

j=1|Vj| number of trials that
can grow exponentially with the increase in the number of configurable hyperparameters
and the quantity of the candidate values for each dimension. This issue is referred to
as the curse of dimensionality [11] and is the primary reason for making grid search an
uninteresting methodology in large-scale real-world scenarios. Moreover, in the standard
random search, a set of b uniformly distributed random points in the hyperparameter
search space, {λ(1), . . . , λ(b)} ∈ Λ are evaluated to select the best candidate. As the number
of evaluations only depends on the budget value b, a random search does not suffer from
the curse of dimensionality, is shown to be more effective than grid search [1], and is often
used as a baseline method. Bayesian optimization, as a global black-box expensive function
optimization technique, iteratively fits a surrogate model to the available observations
(λ(i), Ψλ(i)), and then uses an acquisition function to determine the next hyperparameter
values to evaluate and use in the next iteration [8,12]. Unlike grid and random search
methods, in which the searching operations can be easily parallelized, the Bayesian method
is originally sequential, though various distributed versions have been proposed in the
literature [13,14]. Nevertheless, thanks to its sample efficiency and robustness to noisy
evaluations, Bayesian optimization is a popular method in the hyperparameter tuning of
deep-learning models, particularly when the number of configurable hyperparameters
is less than 20 [15]. Evolution and population-based global optimization methods, such
as genetic algorithms and swarm-based optimization techniques, form the other class of
common tuning approaches in which the hyperparameter configurations are improved
over multiple generations generated by local and global perturbations [10,16]. Population-
based methods are embarrassingly parallel [17] and, similar to grid and random search
approaches, the evaluations can be distributed over multiple machines.



Systems 2023, 11, 228 3 of 22

Multi-agent systems (MAS) and agent-based technologies, when applied to machine
learning and data mining, bring about scalability and autonomy and facilitate the decen-
tralization of learning resources and the utilization of strategic and collaborative learning
models [18–20]. Neither agent-based machine learning nor collaborative hyperparameter
tuning are novelties of this paper, as they have been previously studied in the literature.
The research reported in [21] is among the noteworthy contributions, which proposes a
surrogate-based collaborative tuning technique incorporating the experience achieved from
previous experiments. To put it simply, this model performs simultaneous configurations
of the same hyperparameters over multiple datasets and employs the gained information
in all subsequent tuning problems. Auto-tuned models (ATM) [22] is a distributed and
collaborative system that automates hyperparameter tuning and classification model selec-
tion procedures. At its core, ATM utilizes the conditional parameter tree (CPT), in which a
learning method is placed at the root, and its children are the method’s hyperparameters to
represent the hyperparameter search space. Different tunable subsets of hyperparameter
nodes in the CPT are selected during model selection and assigned to a cluster of workers
to be configured. Koch et al. [23] introduced autotune as a derivative-free hyperparam-
eter optimization framework. Composed of a hybrid and extendable set of solvers, this
framework concurrently runs various searching methods, potentially distributed over a
set of workers, to evaluate objective functions and provide feedback to the solvers. Auto-
tune employs an iterative process during which all of the points that have already been
evaluated are exchanged with the solvers to generate new sets of points to evaluate. In
learning-based settings, the work reported in [24] used mutli-agent reinforcement learning
(MARL) to optimize the hyperparameters of deep convolutional neural networks (CNN).
The suggested model splits the design space into sub-spaces and devotes each agent to
tuning the hyperparameters of a single network layer using Q-learning. Parker-Holder
et al. [25] presented the population-based bandit (PB2) algorithm, which efficiently directs
the searching operation of hyperparameters in reinforcement learning using a probabilistic
model. In PB2, a population of agents is trained in parallel, and their performance is
monitored on a regular basis. An underperforming agent’s network weights are replaced
with those of a better-performing agent, and its hyperparameters are tuned using Bayesian
optimization.

In continuation of our recent generic collaborative optimization model [20], this paper
delves into the design of a multi-level agent-based distributed random search technique
that can be used for both hyperparameter tuning and general purpose black-box function
optimization. The proposed method, at its core, forms a tree-like structure comprising
a set of interacting agents that, depending on their position in the hierarchy, focus on
tuning/optimizing a single hyperparameter/decision variable using a biased hyper-cube
random sampling technique or aggregating the results and facilitating collaborations
based on the gained experience of other agents. The rationales behind choosing random
search as the core tuning strategy of the agents include, but are not limited to, its intrinsic
distributability, acceptable performance in practice, and it does not require differentiable
objective functions. Although the parent model in [20] does not impose any restrictions
on the state and capabilities of the agents, this paper assumes homogeneity in the sense
that the tuner/optimizer agents use the same mechanism for their assigned job. With
that said, the proposed method is analyzed in terms of its design parameters, and the
empirical results from the conducted ML classification and regression tasks, as well as
various multi-dimensional function optimization problems, demonstrate that the suggested
approach not only outperforms the underlying random search methodologies under the
same deployment conditions, but also provides a better-distributed solution in the presence
of limited computational resources.

The remainder of this paper is organized as follows: Section 2 dissects the proposed
agent-based random search method; Section 3 presents the details of used experimental ML
and function optimization settings and discusses the performance of the proposed model



Systems 2023, 11, 228 4 of 22

under different scenarios; and finally, Section 4 concludes the paper and provides future
work suggestions.

2. Methodology

This section dissects the proposed agent-based hyperparameter tuning and black-box
function optimization approaches. To help with a clear understanding of the proposed algo-
rithms, this section begins by providing the preliminaries and introducing the key concepts,
then presents the details of the agent-based randomized search algorithms accompanied by
hands-on examples whenever needed.

2.1. Preliminaries

An agent, as the first-class entity in the proposed approach, might play different roles
depending on its position in the system. As stated before, this paper uses hierarchical
structures to coordinate the agents in the system, and hence, it defines two agent types:
(1) internals, which play the role of result aggregators and collaboration facilitators in
connection with their subordinates; and (2) terminals, which, implementing a single-variable
randomized searching algorithm, are the actual searchers/optimizers positioned at the
bottom-most level of the hierarchy. Assuming G to be the set of all agents in the system
and the root of the hierarchy to be at level 0, this paper uses gl

λi
( Gl

λj
) to denote the agent

(the set of agents) at level l of the hierarchy that are specialized in tuning hyperparameter
λi (hyperparameter set λj), respectively, where λj ⊆ λ and gl+1

λi
∈ Gl

λj
iff. λi ∈ λj.

As denoted above, the hyperparameters that the agents represent determine their
position in the hierarchy. Let Aλ={λ2,λ2,...λn} be the ML algorithms for which we intend to
tune the hyperparameters. As the tuning process might not target the entire hyperparameter
set of the algorithm, the proposed method divides the set into two objective and fixed disjoint
subsets which, respectively denoted by λo and λ f refer to the hyperparameter sets that we
intend to tune and the ones we need to keep fixed. Formally, that is λ = λo ∪ λ f and λo ∩
λ f = ∅. The paper further assumes two types of objective hyperparameters: (1) primary
hyperparameters denoted by λ̂o, which comprise the main targets of the corresponding
tuners (agents); and (2) subsidiary hyperparameters denoted by λ̂′o, which include the ones
whose values are set by the other agents to help limit the searching space. These two sets
are complements of each other, i.e., λ̂′o = λo− λ̂o, and the skill of an agent is determined
by the primary objective set λ̂o, that it represents. With that said, for all terminal agents in
the hierarchy, we have |λ̂o| = 1, where | . . . | denotes the set cardinality.

The agents of a realistic MAS are susceptible to various limitations that are imposed
by their environment and/or computational resources. This paper, due to its focus on the
decentralization of the searching process, foresees two limitations for the agents: (1) the
maximum number of concurrent connections, denoted by c that an agent can manage;
(2) the number of concurrent processes, called budget and denoted by b that the agent can
execute and handle. In the proposed method, c > 1 determines the maximum number of
subordinates (children) that an internal agent can have. However, the budget b ≥ 1 puts a
restriction on the maximum number of parallel evaluations that an agent can perform in
the step of searching for the optima.

Communications play a critical role in all MAS, including the agent-based method
proposed in this paper. For all intra-systems, i.e., between any two agents, and inter-
systems, i.e., between an agent and a user’s interactions, the suggested method uses the
following tuple-based structure for the queries:〈

Aλ, {λ̂o, λ̂′o, λ f },V , {X (train),X (valid)},L
〉

(3)

where V = {(λi, vi)}1≤i≤n denotes the set containing the candidate values for all hyperpa-
rameters, and the remaining notations are as defined in Equation (1). Based on what was
discussed before, it is clear that |λ f | ≤ |V | ≤ λ.



Systems 2023, 11, 228 5 of 22

2.2. Agent-Based Randomized Searching Algorithm

The high-level abstract view of the proposed approach is composed of two major
steps: (1) distributedly building the hierarchical MAS; and (2) performing the collaborative
searching process through vertical communications in the hierarchy. The sections that
follow go into greater detail about these two stages.

2.2.1. Distributed Hierarchy Formation

As for the first step, each agent t divides the primary objective hyperparameter set of
the query it receives, i.e., λ̂o, into a ct > 1 number of subsets, for each of which the system
initiates a new agent to handle. This process continues recursively until there is only one
hyperparameter in the primary objective set, i.e., |λ̂o| = 1, which is assigned to a terminal
agent. Figure 1 provides an example hierarchy resulting from the recursive division of the
primary objective set λo = {λ1, λ2, λ3, λ4, λ5, λ6}. For the sake of clarity, we have used
the indexes of the hyperparameters as the labels of the nodes in the hierarchy, and the
green and orange colors are employed to highlight the members of the λ̂o and λ̂′o sets,
respectively. Regarding the maximum number of concurrent connections that the agents
can handle in this example, it is assumed for all agents that c = 2, except for the rightmost
agent in the second level of the hierarchy, for which c = 3. It is worth emphasizing that
at the beginning of the process, when the tuning query is received from the user, we have
λ̂o = λo and λ̂′o = ∅, which is the reason for the all-green node of the root node in this
example.

1, 2, 3, 4, 5, 6

1, 2, 3 , 4, 5, 6

1, 2 , 3, 4, 5, 6

1 , 2, 3, 4, 5, 6 1 , 2 , 3, 4, 5, 6

1, 2 , 3 , 4, 5, 6

1, 2, 3 , 4, 5, 6

1, 2, 3 , 4 , 5, 6 1, 2, 3, 4 , 5 , 6 1, 2, 3, 4, 5 , 6

Figure 1. Hierarchical structure built for λo = {λ1, λ2, λ3, λ4, λ5, λ6}, where the primary and com-
plementary hyperparameters of each node are, respectively, highlighted in green and orange, and the
labels are the indexes of λi.

Algorithm 1 presents the details of the process. We have chosen self-explanatory
names for the functions and variables and provided comments wherever they are required
to improve clarity. In this algorithm, the function PREPARERESOURCES in line 3 prepares
the data and computational resources for the newly built/assigned terminal agent. Such
resources are used for training, validation, and tuning processes. The function SPAWNOR-
CONNECT in line 8 creates a subordinate agent that represents the ML algorithm Aλ and
expected loss function L. This is achieved by either creating a new agent or connecting to
an existing idle one if the resources are reused. Two functions, PREPAREFEEDBACK and
TUNE in lines 17 and 18, respectively, are called when the structure formation process
is over and the root agent initiates the tuning process in the hierarchy. Later, these two
functions are discussed in more detail.



Systems 2023, 11, 228 6 of 22

Algorithm 1: Distributed formation of the hierarchical agent-based hyperparam-
eter tuning structure.

1 Function START(
〈
Aλ, {λ̂o, λ̂′o, λ f },V , {X (train),X (valid)},L

〉
):

2 if |λ̂o| = 1 then . agent is terminal

3 R ←PREPARERESOURCES(
〈
{λ̂o, λ̂′o, λ f }, {X (train),X (valid)}

〉
)

4 INFORM(Parent,R) . informs the parent agent
5 else . agent is internal (|λ̂o| > 1)
6 k← min(cmy, |λ̂o|) . the number of children
7 for i← 1 to k do
8 Gi ← SPAWNORCONNECT(Aλ,L)
9 λ̂oi ←DIVIDE(λ̂o,i, k) . the ith unique devision

10 λ̂′oi
← (λ̂o− λ̂oi ) ∪ λ̂′o

11 Ri ←ASK(Gi, START,〈
Aλ, {λ̂oi , λ̂′oi

, λ f },V , {X (train),X (valid)},L
〉

)

12 end
13 R ←AGGREGATE({Ri}i) . combines children’s answers
14 if Parent 6= ∅ then
15 INFORM(Parent,R)
16 else
17 F ← PREPAREFEEDBACK(R,V)
18 TUNE(F ) . initiates the tuning process
19 end
20 end
21 end

2.2.2. Collaborative Tuning Process

The collaborative tuning process is conducted through a series of vertical commu-
nications in the built hierarchy. Initiated by the root agent, as explained in the previous
section, the TUNE request is propagated to all of the agents in the hierarchy. As for the
internal agents, the request will be simply passed down to the subordinates as they arrive.
As for the terminal agents, moreover, the request launches the searching process in the
sub-space specified by the parent. The flow of the results will be in an upward direction
with a slightly different mechanism. As soon as a local optimum is found by a terminal
agent, it will be sent up to the parent agent. Having waited for the results to be collected
from all of its subordinates, the parent aggregates them together and passes the combined
result to its own parent. This process continues until it reaches the root agent, where the
new search guidelines are composed for the next search round.

Algorithm 2 presents the details of the iterated collaborative tuning process, which
might be called by both terminal and internal agents. When it is called by a terminal agent,
it initiates the searching operation for the optima of the hyperparameter that the agent
represents and informs the result to its parent. Let gl

λj
be the terminal agent concentrating

on tuning hyperparameter λj. As it can be seen in line 3, the result of the search will be

a single-item set composed of the identifier of the hyperparameter, i.e., λj, the set V (∗)
j

containing the coordinates of the best candidate agent gl
λj

has been found, and the response

function value for that best candidate is, i.e., Ψ(∗)
j . An internal agent running this procedure

merely passes the tuning request to the subordinates and waits for their search results (line 7
of the algorithm). Please note that this asking operation comprises a filtering operation
on set F . That is, a subordinate will receive a subset F i ⊂ F that only includes the
starting coordinates for the terminal agents that are reachable through that agent. Having
collected all of the results from its subordinates, the internal agent aggregates them by



Systems 2023, 11, 228 7 of 22

simply joining the result sets and informing its own parent, in case it is not the root agent.
This process is executed recursively until the aggregated results reach the root agent of
the hierarchy. Depending on whether the stopping criteria of the algorithm are reached,
the root prepares feedback to initiate the next tuning iteration or a report detailing the
results. The collaboration between the agents is conducted implicitly through the feedback
that the root agent provides to each terminal agent based on the results it has gathered
in the previous iteration. As presented in line 17 of the algorithm, this feedback basically
determines the coordinates of the position where the terminal agents should start their
searching operation. It should be noted that the argmin function in this operation is due
to employing the loss function L as a metric to evaluate the performance of an ML model.
For performance measures in which maximization is preferred, such as in accuracy, this
operation needs to be replaced by argmax accordingly.

Algorithm 2: Iterated collaborative tuning procedure.

1 Function TUNE(F ):
2 if Children = ∅ then . terminal agent agent

3 {(λj,V
(∗)
j , Ψ(∗)

j )} ←RUNTUNINGALGORITHM(F = V )

4 INFORM(Parent, {(λj,V
(∗)
j , Ψ(∗)

j )})
5 else
6 foreach Gl+1

i ∈ Children do
7 R(∗)

i ←ASK(Gl+1
i , TUNE, F i ⊂ F ) . R(∗)

i = {(λk,V (∗)
k , Ψ(∗)

k )}k
8 end

9 R(∗) ← ⋃
Gl+1

i ∈Children
R(∗)

i . aggregates results

10 if Parent 6= ∅ then . non-root internal agent
11 INFORM(Parent,R(∗))
12 else
13 if SHOULDSTOP(StopCriteria) 6= True then

14 F ←
{
(λi,V j); j = arg min

1≤k≤n
Ψ(∗)

k

}
1≤i≤n

. prepares feedback

15 TUNE(F ) . initiates next tuning iteration
16 else
17 PREPAREREPORT(R(∗)) . reports final result
18 end
19 end
20 end
21 end

The details of the tuning function that each terminal agent runs in line 3 of Algorithm 2
to tune a single hyperparameter are presented in Algorithm 3. As its input, this function
receives a coordinate that agent gl

λi
will use as its starting point in the searching process.

The received argument, together with b additional coordinates that the agent generates
randomly, are stored in the set of candidate C. Accordingly, C[c] and C[c](λi) refer to the
c-th coordinate in the set and the value assigned to the hyperparameter λi of that coordinate,
respectively. Moreover, please recall from Section 2.1 that b denotes the evaluation budget
of a terminal agent. The terminal agents in the proposed method employ slot-based uniform
random sampling to explore the search space. Formally, let E = {ελ1 , ελ2 , . . . , ελn} be a set
of real values that each agent utilizes for each hyperparameter to control the size of slots
in any iteration. Similarly, let s = {sλ1 , sλ2 , . . . , sλn} specify the coordinate of the position
that an agent starts its searching operation in any iteration. To sample b random values in



Systems 2023, 11, 228 8 of 22

the domain Dλj of any arbitrary hyperparameter λj, the agent will generate one uniform
random value in range

R =
[
max(infDλj , sλj − ελj), min(supDλj , sλj + ελj))

]
(4)

and b − 1 random values in Dλj − R by splitting it into b − 1 slots and choosing one
uniform random value in each slot (lines 6 and 8 of the algorithm). The generation of the
uniform random values is achieved by calling the function UNIFORMRAND(A1, A2, A3).
This function divides range A1 into A2 equal-sized slots and returns the uniform random
value generated in the A3-th slot. As it can be seen in line 12 of the algorithm, the agent
employs the same function to generate one and only one value per each element in its
subsidiary objective hyperparameter set λ̂′o.

The slot width parameter set E is used to control the exploration behavior of the
agent around the starting coordinates in the search space. For instance, for any arbitrary
hyperparameter λi, very small values of ελi emphasize generating candidates in the close
vicinity of the starting position. Moreover, larger values of ελi decrease the chance that
the generated candidate will be close to the starting position. In the proposed method, the
agents adjust E adaptively. To put it formally, each agent starts the tuning process with
the pre-specified value set E (0), and assuming that C(∗) denotes the best candidate that
the agent has found in the previous iteration, the width parameter set E in iteration i is
updated as follows:

E (i) =
{

∆� E (i−1) If V = C(∗)

E (i−1) otherwise
(5)

where ∆ = {δλ1 , δλ2 , . . . , δλn} denotes the scaling changes to apply to the width parame-
ters, and � denotes the element-wise multiplication operator. As the paper discusses in
Section 3, despite the generic definitions provided here for futuristic extensions, using the
same scaling value for all primary hyperparameters has led to satisfactory results in our
experiments.

Algorithm 3: A terminal agent’s randomized tuning process.

1 Function RUNTUNINGALGORITHM(F = V = {(λm, vm)}1≤m≤n):
2 C[0]← V
3 Rλi ←

[
max(infDλi , vi − ελi ), min(supDλi , vi + ελi ))

]
4 for c← 1 to c = b do
5 if c = 1 then . the first sample for λ̂o = {λi}
6 C[c](λi)←UNIFORMRAND(Rλi , 1, 1)
7 else . the remaining samples for λ̂o = {λi}
8 C[c](λi)←UNIFORMRAND(Dλi −Rλi , b− 1, c− 1)
9 end

10 forall λk ∈ λ̂′o do
11 Rλk ←

[
max(infDλk , vk − ελk ), min(supDλk , vk + ελk ))

]
12 C[c](λk)←UNIFORMRAND(Rλk , 1, 1)
13 end
14 end
15 C(∗) ← arg min

0≤j≤b
Ψ(C[j])

16 return {(λi,C(∗), Ψ(C(∗))}
17 end

To better understand the suggested collaborative randomized tuning process of agents,
an illustrative example is depicted in Figure 2. In this figure, each agent is represented by a
different color, and the best candidate that each agent finds at the end of each iteration is



Systems 2023, 11, 228 9 of 22

shown by a filled shape. Moreover, we have assumed that the value of the loss function
becomes smaller as we move inwards in the depicted contour lines, and to prevent any
exploration in the domain of the subsidiary hyperparameters, we have set E = {ελ1 =
1
6 , ελ2 = 0} and E = {ελ1 = 0, ελ2 = 1

6} for agents g1
λ1

and g1
λ2

, respectively, assuming that
the domain size of each hyperparameter is 1 and b = 3. In Iteration 1, both agents start at
the top right corner of the search space and are able to find candidates that yield lower
loss function values than the starting coordinate. For iteration 2, the starting coordinate of
each agent is set to the coordinate of the best candidate found by all agents in the previous
iteration. As the best candidate was found by agent g1

λ2
, we only see the change in the

searching direction of the red agent, i.e., g1
λ2

. The winner agent at the end of this iteration is
agent g1

λ1
; hence, we do not see any change to its searching direction in iteration 3. Please

note that the four circles for agent g1
λ1

in the last depicted iteration is because it shows the
starting coordinate, which happens to remain the best candidate in this iteration. It is also
worth emphasizing that the starting coordinates are not evaluated again by the agents,
as they have already been accompanied by their corresponding response values from the
previous iterations.

Version May 1, 2023 submitted to Systems 9 of 24

λ1

λ2

iteration = 1

g1
λ1

g1
λ2

λ1

λ2

iteration = 2

g1
λ1

g1
λ2

λ1

λ2

iteration = 3

g1
λ1

g1
λ2

Figure 2. A toy example demonstrating 3 iterations of running the proposed method for tuning two
hyperparameters λ1, and λ2 using terminal agents g1

λ1
and g1

λ2
, respectively. It is assumed that for

each agent, b = 3.

agent g1
λ1

; hence, we do not see any change to its searching direction in iteration 3. Please 260

note that having 4 circles for agent g1
λ1

in the last depicted iteration is because of showing 261

the starting coordinate, which happens to stay the best candidate, in this iteration. It is 262

also worth emphasizing that the starting coordinates are not evaluated again by the agents, 263

as they have already been accompanied by their corresponding response values from the 264

previous iterations. 265

3. Results and Discussion 266

This section dissects the performance of the proposed method in more detail. It begins 267

with the computational complexity of the technique and then provides empirical results on 268

both machine learning and general function optimization tasks. 269

3.1. Computational Complexity 270

Forming the hierarchical structure and conducting the collaborative searching process 271

are the two major stages of the proposed method. These stages need to be conducted in 272

sequence, and the rest of this section investigates the complexity of each step separately 273

and in relation to one another. 274

Regarding the structural formation phase of the suggested method, the shape of the
hierarchy depends on the maximum number of connections that each agent can handle; the
fewer the number of manageable concurrent connections, the deeper the resulting hierarchy.
Using the same notations presented in section 2.1 and assuming the same c > 1 for all
agents, the depth of the formed hierarchy is ⌈logc |λo|⌉. Thanks to the distributed nature of
the formation algorithm and the concurrent execution of the agents, the worst-case time
complexity of the first stage will beO(logc |λo|). With the same assumption, it can be easily
shown that the resulting hierarchical structure is a complete tree. Hence, denoting the total
number of agents in the system by G, this quantity would be:

c⌈logc |λo|⌉ − 1
c− 1

< G ≤ c⌈logc |λo|⌉+1 − 1
c− 1

(6)

With that said, the space complexity for the first phase of the proposed technique 275

would be O( c⌈logc |λo|⌉+1−1
c−1 ) = O(|λo|). It is worth noting that among all created agents, 276

only |λo| terminal agents would require dedicated computational resources as they are 277

doing the actual searching and optimization process, and the remaining G− |λo| can all be 278

hosted and managed together. 279

The procedures in each round of the second phase of the suggested method can be 280

broken into two main components: (i) transmitting the start coordinates from the root of 281

the hierarchy to the terminal agents, transmitting the results back to the root, and preparing 282

the feedback; and (ii) conducting the actual searching process by the terminal agents to 283

locate a local optimum. The worst-case time complexity of preparing the feedback based 284

on the algorithms that were discussed in section 2 would be O(|λo|), which is because of 285

Figure 2. A toy example demonstrating three iterations of running the proposed method for tuning
two hyperparameters λ1 and λ2 using terminal agents g1

λ1
and g1

λ2
, respectively. It is assumed that

for each agent, b = 3.

3. Results and Discussion

This section dissects the performance of the proposed method in more detail. It begins
with the computational complexity of the technique and then provides empirical results on
both machine learning and general function optimization tasks.

3.1. Computational Complexity

Forming the hierarchical structure and conducting the collaborative searching process
are the two major stages of the proposed method and these stages need to be conducted in
sequence. The rest of this section investigates the complexity of each step separately and in
relation to one another.

Regarding the structural formation phase of the suggested method, the shape of the
hierarchy depends on the maximum number of connections that each agent can handle; the
fewer the number of manageable concurrent connections, the deeper the resulting hierarchy.
Using the same notations presented in Section 2.1 and assuming the same c > 1 for all
agents, the depth of the formed hierarchy is dlogc |λo|e. Thanks to the distributed nature of
the formation algorithm and the concurrent execution of the agents, the worst-case time
complexity of the first stage will beO(logc |λo|). With the same assumption, it can be easily
shown that the resulting hierarchical structure is a complete tree. Hence, denoting the total
number of agents in the system by G, this quantity would be:

cdlogc |λo|e − 1
c− 1

< G ≤ cdlogc |λo|e+1 − 1
c− 1

(6)



Systems 2023, 11, 228 10 of 22

With that said, the space complexity for the first phase of the proposed technique
would be O( cdlogc |λo|e+1−1

c−1 ) = O(|λo|). It is worth noting that among all created agents,
only |λo| terminal agents would require dedicated computational resources as they are
completing the actual searching and optimization process, and the remaining G− |λo| can
all be hosted and managed together.

The procedures in each round of the second phase of the suggested method can be
broken down into two main components: (i) transmitting the start coordinates from the
root of the hierarchy to the terminal agents, transmitting the results back to the root, and
preparing the feedback; and (ii) conducting the actual searching process by the terminal
agents to locate a local optimum. The worst-case time complexity of preparing the feedback
based on the algorithms that were discussed in Section 2 would beO(|λo|), which is because
it finds the best candidate among all returned results. In addition, due to the concurrency
of the agents, the first component is only processed at the height of the built structure.
Therefore, the time complexity of component (i) would be O(|λo|+ logc |λo|) = O(|λo|).
The complexity of the second component, moreover, depends on both the budget of the
agent, i.e., b, and the complexity of building and evaluating response function Ψ. Let O(R)
denote the time complexity of a single evaluation. As a terminal agent makes a b number
of such evaluations to choose its candidate optima, the time complexity for the agent
would be O(bR). As all agents work in parallel, the complexity of a single iteration at the
terminal agents would be O(bR), leading to the overall time complexity of O(|λo|+ bR).
In machine learning problems, we often haveO(|λo|)� O(R). Therefore, if I denotes the
number of iterations until the second phase of the tuning method stops, the complexity of
the second stage would beO(IbR). The space complexity of the second phase of the tuning
method depends on the way that each agent is implementing the main functionalities, such
as the learning algorithms they represent, transmitting the coordinates, and providing
feedback. Except for the ML algorithms, all internal functionalities of each agent can be
implemented using O(|λo|) space. Moreover, we have G agents in the system, which leads
to a total space complexity of O(|λo|2) for non-ML tasks. Let O(S) denote the worst-case
space complexity of a machine learning algorithm that we are tuning. The total space
complexity of the second phase of the proposed tuning method would be O(|λo|2 + S).
Similar to the time complexity, in machine learning, we often haveO(|λo|)� O(S), which
makes the total space complexity of the second phase O(S). Please note that we have
factored out the budgets of the agents and the number of iterations because we did not
store the history between different evaluations and iterations.

Considering both stages of the proposed technique and due to the fact that they are
conducted in sequence, the time complexity of the entire steps in an ML hyperparameter
tuning problem, from structure formation to completing the searching operations, would be
O(logc |λo|+ IbR) = O(IbR). Similarly, the space complexity would be O(|λo|+ S) =
O(S).

3.2. Empirical Results

This section presents the empirical results of employing the proposed agent-based
randomized searching algorithm and discusses the improvements resulting from the sug-
gested inter-agent collaborations. Hyperparameter tuning in machine learning is basically a
back-box optimization problem, and hence, to enrich our empirical discussions, this section
also includes results from multiple multi-dimensional optimization problems.

The performance metrics used for the experiments are based on those that are commonly
used by the ML and optimization communities. Additionally, we analyze the behavior of
the suggested methodology based on its own design parameter values, such as budget,
width, etc. The methods that have been chosen for the sake of comparison are the standard
random search and the Latin hypercube search methods [1] that are commonly used in
practice. Our choices are based on the fact that not only are these methods embarrassingly
parallel and among the top choices to be considered in distributed scenarios, but they are
also used as the core optimization mechanisms of the terminal agents in the suggested



Systems 2023, 11, 228 11 of 22

method, and hence can better present the impact of the inter-agent collaborations. In its
generic format, as emphasized in [20], one can easily employ alternative searching methods
or diversify them at the terminal level, as needed.

Throughout the experiments, each terminal agent runs on a separate process, and
to make the comparisons fair, we keep the number of model/function evaluations fixed
among all of the experimented methods. To put it in more detail, for a budget value of b for
each of |λo| terminal agents and I number of iterations, the proposed method will evaluate
the search space in b× I coordinates. We use the same |λo| number of independent agents
for the compared random-based methodologies and, keeping the evaluation budgets of the
agents fixed—the budgets are assumed to be enforced by the computational limitations of
devices or processes running the agents—we repeat those methods I times and report the
best performance among all agents’ repetition histories as their final result.

The experiments assess the performance of the proposed method in comparison to the
other random-based techniques in four categories: (1) iteration-based assessment, which
checks the performance of the methods for a particular iteration threshold. In this category,
all other parameters, such as budget, connection number, etc., are kept fixed; (2) budget-
based assessment, which examines the performance under various evaluation budgets for
the terminal agents. It is assumed that all agents have the same budget; (3) width-based
assessment, which checks how the proposed method performs for various exploration
criteria specified by the slot width parameter; and finally, (4) connection-based evaluation,
which inspects the effect of the parallel connection numbers that the internal agents can
handle. In other words, this evaluation checks if the proposed method is sensitive to the
way that the hyperparameter or decision variables are split during the hierarchy formation
phase. All implementations use Python 3.9 and the scikit-learn library [26], and the results
reported in all experiments are based on 50 different trials.

For the ML hyperparameter tuning experiments, we have dissected the behavior of
the proposed algorithm in two classifications and two regression problems. The details
of such problems, including the hyperparameters that are tuned and the used datasets
are presented in Table 1. In all of the ML experiments, we have used five-fold cross-
validation as the model evaluation method. The results obtained for the classification
and regression problems are plotted in Figure 3 and Figure 4, respectively. Please note
that there are numerous ML algorithms that can be used to evaluate our approach. Our
selected algorithms are representative of different types of classifiers/regressors, including
linear and non-linear models with different regularization methods, and we found them
widely used in hyperparameter tuning literature based on their performance sensitivity
to the choice of hyperparameter values. We also experienced this empirically during our
evaluations of some other ML algorithms. We found that all of the compared models
converged to a local optimum point quickly, potentially due to the geometry of their
response functions, which would not demonstrate the improvements of our model. By
comparing the performance of the presented methods on these models, we hope to draw
more general conclusions about the effectiveness of the methods in various settings.

For the iterations plot in the first column plots of Figures 3 and 4, we fixed the
parameters of the proposed method for all agents as follows: b = 3, E = 2−6, c = 2,
∆ = {2, 2, . . . , 2}. As can be seen, when the proposed method is allowed to run for more
iterations, it yields better performance, and its superiority against the other two random-
based methods is evident. Comparing the relative performance improvements resulting
from the proposed method in the presented ML tasks, it can be seen that as the search
space of the agents and the number of hyperparameters needed to be tuned increased,
the proposed collaborative method achieved a higher improvement. For the Stochastic
Gradient Descent (SGD) classifier, for instance, the objective hyperparameter set comprises
six members with continuous domain spaces, and the number of improvements that have
been made after 10 iterations is much higher, about 17%, than in the other experiments
with three to four hyperparameters and mixed continuous and discrete domain spaces.



Systems 2023, 11, 228 12 of 22

Table 1. The details of the machine learning algorithms and the datasets used for hyperparameter
tuning experiments.

ML Algorithm λo Dataset Performance Metric

C-Support Vector Classification (SVC) [26,27] {c, γ, kernel} 1 artificial (100,20) † accuracy
Stochastic Gradient Descent (SGD) Classifier [26] {α, l1_ratio, tol, ε, η0, val_frac} 2 artificial (500,20) † accuracy
Passive Aggressive Regressor [26,28] {c, tol, ε, val_frac} 3 artificial (300,100) ‡ mean squared error
Elastic Net Regressor [26,29] {α, l1_ratio, tol, selection} 4 artificial (300,100) ‡ mean squared error

1 c∼logUni f orm(10−2, 1013), γ∼Uni f orm(0, 1), kernel ∈ {poly, linear, rbf, sigmoid}. 2 α∼Uni f orm(0, 103), l1_ratio
∼Uni f orm(0, 1), tolerance∼Uni f orm(0, 103), ε∼Uni f orm(0, 103), η0∼Uni f orm(0, 103), validation_fraction∼
Uni f orm(0, 1). 3 c∼Uni f orm(0, 103), tolerance∼Uni f orm(0, 103), validation_fraction∼Uni f orm(0, 1), ε∼
Uni f orm(0, 1). 4 α∼Uni f orm(0, 1), l1_ratio∼Uni f orm(0, 1), tolerance∼Uni f orm(0, 1), selection ∈ {cyclic,
random}. † An artificially generated binary classification dataset using scikit-learn’s make_classification
function [30]. The first number represents the number of samples and the second figure is the number of features.
‡ An artificially generated regression dataset using scikit-learn’s make_regression function [30]. The first number
represents the number of samples and the second figure is the number of features.

Version March 1, 2023 submitted to Systems 14 of 22

1 2 3 4 5 6 7 8 9 10

87.5

88

88.5

89

89.5

90

90.5

91

91.5

92

92.5
·10�2

av
er

ag
e

ac
cu

ra
cy

Iterations

1 2 3 4 5 6 7

78

80

82

84

86

88

90

92

94
·10�2 Budgets

1 3 5 7 9 11 13 15 17 19

91.2

91.4

91.6

91.8

92

92.2

92.4
·10�2 Exploration

2 3

91.4

91.6

91.8

92

92.2

92.4
·10�2 Connections

1 2 3 4 5 6 7 8 9 10

50

55

60

65

70

·10�2

I

av
er

ag
e

ac
cu

ra
cy

1 2 3 4 5 6 7 8 9 10

50

55

60

65

70

75

80

·10�2

b
1 3 5 7 9 11 13 15 17 19

56

58

60

62

64

66

68

70

72

74

·10�2

w
2 3 4 5 6

58

60

62

64

66

68

70

72

·10�2

c

Proposed Randomized Latin Hyper-cube

SV
C

SG
D

Figure 3. Average performance of C-Support Vector Classification (SVC) (first row) and Stochastic
Gradient Descent (SGD) (second row) classifiers on two synthetic classification datasets based on the
accuracy measure. The error bars in each plot are calculated based on the standard error.

Figure 3. Average performance of the C-support vector classification (SVC) (first row) and stochastic
gradient descent (SGD) (second row) classifiers on two synthetic classification datasets based on the
accuracy measure. The error bars in each plot are calculated based on the standard error.

The second column of Figures 3 and 4 illustrate how the performance of the proposed
technique changes when we increase the evaluation budgets of the terminal agents. For
this set of experiments, we set the parameter values of our method as follows: I = 10,
E = 2−6, c = 2, ∆ = {2, 2, . . . , 2}. By increasing the budget value, the performance of the
suggested approach per se improves. However, the rate of improvement slows down for
higher budget values, and comparing it against the performance of the other two random-
based searching methods, the improvement is significant for lower budget values. In other
words, the proposed tuning method surpasses the other two methods when the agents
have limited searching resources. This makes our method a good candidate for tuning the
hyperparameters of deep learning approaches with expensive model evaluations.



Systems 2023, 11, 228 13 of 22

Version March 1, 2023 submitted to Systems 15 of 22

1 2 3 4 5 6 7 8 9 10

10

15

20

25

30

35

40

45

50

·10�1

av
er

ag
e

M
SE

Iterations

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

·10�1 Budgets

1 3 5 7 9 11 13 15 17 19

10

12

14

16

18

20

22

·10�1 Exploration

2 3 4

10

12

14

16

18

20

·10�1 Connections

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

·102

I

av
er

ag
e

M
SE

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60
·102

b
1 3 5 7 9 11 13 15 17 19

20

30

40

50

60

70

80

·101

w
2 3 4

10

20

30

40

50

60

70

80

·101

c

Proposed Randomized Latin Hyper-cube

Pa
ss

iv
e

A
gg

re
ss

iv
e

El
as

ti
c

N
et

Figure 4. Average performance of Passive Aggressive (first row) and Elastic Net (second row)
regression algorithms on two synthetic regression datasets based on the mean squared error (MSE)
measure. The error bars in each plot are calculated based on the standard error.

Figure 4. Average performance of the passive aggressive (first row) and elastic net (second row)
regression algorithms on two synthetic regression datasets based on the mean squared error (MSE)
measure. The error bars in each plot are calculated based on the standard error.

The behavior of the suggested method under various exploration parameter values
can be seen in column 3 of Figures 3 and 4. The ω values on the x-axis of the plots are used
to set the initial value for the slot width parameter of all agents using E = 2−ω−1. Based
on this configuration, higher values of ω yield lower values of E , and as a result, there is
more exploitation around the starting coordinates. The other parameters of the method
are configured as follows: I = 10, b = 3, c = 2, ∆ = {2, 2, . . . , 2}. Recall from Section 2
that the exploration parameter is used by an agent for the dimensions that it does not
represent. Based on the results obtained from various tasks, choosing a proper value for
this parameter depends on the characteristics of the response function. Having said that,
the behavior for a particular task remains almost consistent. Hence, trying one small and
one large value for this parameter in a specific problem will reveal its sensitivity and help
choose an appropriate value for it.

Finally, the last set of experiments investigates the impact of the number of parallel
connections that the internal agents can manage, i.e., c, on the performance of the suggested
method. The results of this study are plotted in the last column of Figures 3 and 4. The
difference in the number of data points in each plot is because of the difference in the size of
the hyperparameters that we tune for each task. The values of the parameters that we kept
fixed for this set of experiments are as follows: I = 10, b = 3, E = 2−6, ∆ = {2, 2, . . . , 2}.
As can be seen from the illustrated results, the proposed method is not very sensitive to
the value that we choose or that is enforced by the system for parameter c. This parameter
plays a critical role in the shape of the hierarchy that is distributedly formed in phase
1 of the suggested approach; therefore, one can opt to choose a value that fits with the
connection or computational resources that are available without sacrificing performance
very much.

As stated before, we have also studied the suggested technique for the black-box
optimization problem to see how it performs in finding the optima of various convex



Systems 2023, 11, 228 14 of 22

and non-convex functions. These experiments also help us to closely check the relative
performance improvements in higher dimensions. We have chosen three non-convex
benchmark optimization functions and a convex toy function, the details of which are
presented in Table 2. For each function, we run the experiments in three different dimension
sizes, and the goal of the optimization is to find the global minimum. Very similar to the
settings that we discussed for ML hyperparameter tuning, whenever we mean to fix the
value of each parameter value in different experiment sets, we use the following parameter
values: I = 10, b = 3, E = 2−10, c = 2, ∆ = {2, 2, . . . , 2}.

Table 2. The details of the multi-dimensional functions used for black-box optimization experiments.

Function λo Domain f (x∗)

Hartmann, 3D, 4D, 6D [31] {x1, . . . , xd}, d ∈ {3, 4, 6} xi ∈ [0, 1] 3D:−3.86278, 4D:−3.135474, 6D:−3.32237

Rastrigin, 3D, 6D, 10D [32] {x1, . . . , xd}, d ∈ {3, 6, 10} xi ∈ [−5.12, 5.12] 3D:0, 6D:0, 10D:0

Styblinski–Tang, 3D, 6D, 10D [33] {x1, . . . , xd}, d ∈ {3, 6, 10} xi ∈ [−5, 5] 3D:−117.4979, 6D:−234.9959, 10D:391.6599

Mean Average Error, 3D, 6D, 10D † {x1, . . . , xd}, d ∈ {3, 6, 10} xi ∈ [0, 100] 3D:0, 6D:0, 10D:0 ‡

† This is a toy multi-dimensional MAE function that is defined as f (x) = 1
n ∑n

i=1 |x− χ|, where χ denotes a
ground truth vector that is generated randomly in the domain space for each experiment. ‡ This is a convex
function and the coordinate of its minimum value depends on the ground truth vector that is generated, i.e.,
when x = χ.

The plots are grouped by functions and can be found in Figures 5–8. The conclusion
that was drawn concerning the behavior of the proposed approach under different values
of its design parameters applies to these optimization experiments as well. That is, the
more the proposed method runs, the better performance it achieves; its superiority on low
budget values is clear; its sensitivity to exploration parameter values is consistent; and the
way that the decision variables are broken down during the formation of the hierarchy
does not affect the performance very much. Furthermore, as can be seen in each group
figure, the proposed algorithm yields a better minimum point in comparison to the other
two random-based methods when the dimensionality of a function increases.

Disregarding its multi-agent formulation, autonomy, and inter-agent collaborations,
the proposed method shares similarities with heuristic and population-based black-box
optimization approaches. We believe that even with such a viewpoint, our method can
be more applicable due to its simple architecture, low number of hyperparameters, its
innate distribution, and because it requires less domain knowledge. Figures 9 and 10
provide a comparison between the performance of our agent-based method and the ones
of particle swarm optimization (PSO) [34] and simulated annealing (SA) [35]. Please note
that these comparisons are not to prove our method’s superiority over population-based
and/or heuristic methods, but to give a glimpse into some additional behaviors and the
potentiality of the agent-based solution. In its current immature condition, we do not doubt
that our immature approach will most probably be outperformed by the many mature
heuristic methods available.

For the PSO algorithm, we have employed the standard version and set its hyper-
parameter values as c1 = c2 = 1.5 and ω = 0.7. As for the SA algorithm, we have used
Kirkpatrick’s method [35] to define the accepting probabilities with T0 = 100 and the
geometric process for the annealing schedule, i.e., Tk = T0αk with α = 0.95. Please note
that our choices for the aforementioned values are based on multiple trials and errors and
the general practical suggestions found in the literature. Finally, the values that we have
utilized for our agent-based solution are as follows: c = 2, E = 2−10, ∆ = {2, 2, . . . 2} and
I = 10, b = 3, whenever they are assumed fixed. Please note that these values are the same
as the ones we applied in the previous set of analyses, and we have not conducted any
optimization to choose the best possible values.



Systems 2023, 11, 228 15 of 22

Version March 1, 2023 submitted to Systems 17 of 22

1 2 3 4 5 6 7 8 9 10

�3.8

�3.6

�3.4

�3.2

�3

�2.8

�2.6

�2.4

av
er

ag
e

f(
x⇤

)

Iterations

1 2 3 4 5 6 7 8 9 10
�4

�3.5

�3

�2.5

�2

�1.5

�1

Budgets

1 5 9 13 17 21 25 29 33 37

�3.75

�3.7

�3.65

�3.6

�3.55

�3.5

�3.45

�3.4

Exploration

2 3

�3.6

�3.58

�3.56

�3.54

�3.52

�3.5

�3.48

�3.46

�3.44

Connections

1 2 3 4 5 6 7 8 9 10

�2.8

�2.6

�2.4

�2.2

�2

�1.8

�1.6

�1.4

�1.2

�1

�0.8

�0.6

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10
�3

�2.5

�2

�1.5

�1

�0.5

0

0.5

1 5 9 13 17 21 25 29 33 37

�2.7

�2.6

�2.5

�2.4

�2.3

�2.2

�2.1

�2

2 3 4

�2.7

�2.6

�2.5

�2.4

�2.3

�2.2

�2.1

1 2 3 4 5 6 7 8 9 10

�2.8

�2.6

�2.4

�2.2

�2

�1.8

�1.6

I

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

�3

�2.8

�2.6

�2.4

�2.2

�2

�1.8

�1.6

�1.4

b
1 5 9 13 17 21 25 29 33 37

�2.9

�2.8

�2.7

�2.6

�2.5

�2.4

�2.3

�2.2

�2.1

w
2 3 4 5 6

�2.9

�2.8

�2.7

�2.6

�2.5

�2.4

�2.3

�2.2

�2.1

c

Proposed Randomized Latin Hyper-cube

H
ar

tm
an

n
3D

H
ar

tm
an

n
4D

H
ar

tm
an

n
6D

Figure 5. Average function values of the Hartmann function under variable iteration, budget,
exploration, and connection thresholds. Each row of the figure pertains to a particular dimension size
and the error bars are calculated based on the standard error.

Figure 5. Average values of the Hartmann function optimized under variable iterations, budgets,
explorations, and connection thresholds. Each row of the figure pertains to a particular dimension
size, and the error bars are calculated based on the standard error.

Due to the different underlying principles used in each of these algorithms, providing
an absolutely fair comparison would not be possible. For instance, in our method, the
number of agents is fixed, and each agent has an evaluation budget. In the PSO algorithm,
however, the population size is a hyperparameter, and each particle makes a single evalua-
tion. The SA, moreover, is a single-agent, centralized approach with one evaluation in each
of its iterations. To the best of our ability, in this empirical comparison, we have tried to
keep the total number of evaluations fixed among all experiments. Strictly speaking, we
set the same number of iterations, i.e., I , in the PSO but set its population size to b× |λo|.
Similarly, in the SA, we set the number of iterations to b× |λo| × I .



Systems 2023, 11, 228 16 of 22

Version March 1, 2023 submitted to Systems 18 of 22

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

av
er

ag
e

f(
x⇤

)

Iterations

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

Budgets

1 5 9 13 17 21 25 29 33 37

4

6

8

10

12

14

16

18

20

Exploration

2 3
4

6

8

10

12

14

16

18

20

Connections

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

100

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37

10

20

30

40

50

60

2 3 4 5 6
10

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6 7 8 9 10

40

60

80

100

120

140

160

I

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

b
1 5 9 13 17 21 25 29 33 37

30

40

50

60

70

80

90

100

110

120

w
2 3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

110

c

Proposed Randomized Latin Hyper-cube

R
as

tr
ig

in
3D

R
as

tr
ig

in
6D

R
as

tr
ig

in
10

D
Figure 6. Average function values of the Rastrigin function under variable iteration, budget, explo-
ration, and connection thresholds. Each row of the figure pertains to a particular dimension size and
the error bars are calculated based on the standard error.

Figure 6. Average values of the Rastrigin function optimized under variable iterations, budgets,
explorations, and connection thresholds. Each row of the figure pertains to a particular dimension
size, and the error bars are calculated based on the standard error.

The results presented in Figure 9 show how each different method behaves under
different numbers of iterations in each of the benchmark problems. As can be seen, in
most benchmarks, the proposed method has outperformed both PSO and SA in higher
iteration numbers. Recalling the true optimal function values from Table 2, the tied or close
conditions among all methods happen near the global optima, which we believe can be
improved through an adaptive exploitation method. Furthermore, due to the relatively
higher improvements in the Rastrigin and Styblinski–Tang functions and the fact that these
two functions are composed of several local optima, we can conclude that our proposed
method has better capability to escape those local positions.



Systems 2023, 11, 228 17 of 22

Version March 1, 2023 submitted to Systems 19 of 22

1 2 3 4 5 6 7 8 9 10
�120

�110

�100

�90

�80

�70

�60

�50

av
er

ag
e

f(
x⇤

)

Iterations

1 2 3 4 5 6 7 8 9 10

�120

�100

�80

�60

�40

�20

0

Budgets

1 5 9 13 17 21 25 29 33 37

�115

�110

�105

�100

�95

�90

Exploration

2 3

�115

�110

�105

�100

�95

Connections

1 2 3 4 5 6 7 8 9 10

�220

�200

�180

�160

�140

�120

�100

�80

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10
�250

�200

�150

�100

�50

0

1 5 9 13 17 21 25 29 33 37

�230

�220

�210

�200

�190

�180

�170

�160

2 3 4 5 6

�230

�220

�210

�200

�190

�180

�170

�160

1 2 3 4 5 6 7 8 9 10

�350

�300

�250

�200

�150

I

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

�400

�350

�300

�250

�200

�150

�100

�50

0

b
1 5 9 13 17 21 25 29 33 37

�360

�340

�320

�300

�280

�260

�240

w
2 3 4 5 6 7 8 9 10

�360

�340

�320

�300

�280

�260

�240

c

Proposed Randomized Latin Hyper-cube

St
yb

lin
sk

i-
Ta

ng
3D

St
yb

lin
sk

i-
Ta

ng
6D

St
yb

lin
sk

i-
Ta

ng
10

D

Figure 7. Average function values of the Styblinski-Tang function under variable iteration, budget,
exploration, and connection thresholds. Each row of the figure pertains to a particular dimension size
and the error bars are calculated based on the standard error.

Figure 7. Average values of the Styblinski–Tang function optimized under variable iterations, budgets,
explorations, and connection thresholds. Each row of the figure pertains to a particular dimension
size, and the error bars are calculated based on the standard error.

The results exhibited in Figure 10 show the behavior of the tested optimization algo-
rithms under various budget restrictions. In this set of experiments, we have fixed the
number of iterations to I = 10, and the results show a promising success of our method in
outperforming the other two in most problems. Similar to the rationale provided above, the
amount of improvement in Rastrigin and Styblinski–Tang functions is evident. Moreover,
our method also shines when we have a low budget for the number of evaluations in each
iteration. In other words, it can be a good candidate for optimizing expensive-to-evaluate
problems or its use in computationally limited devices.



Systems 2023, 11, 228 18 of 22

Version March 1, 2023 submitted to Systems 20 of 22

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20

av
er

ag
e

f(
x⇤

)

Iterations

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

Budgets

1 5 9 13 17 21 25 29 33 37

2

4

6

8

10

12

14

Exploration

2 3

2

4

6

8

10

12

14

Connections

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

40

1 5 9 13 17 21 25 29 33 37

2

4

6

8

10

12

14

16

18

20

22

2 3 4 5 6

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

I

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

b
1 5 9 13 17 21 25 29 33 37

4

6

8

10

12

14

16

18

20

w
2 3 4 5 6 7 8 9 10

4

6

8

10

12

14

c

Proposed Randomized Latin Hyper-cube

To
y

M
A

E
3D

To
y

M
A

E
6D

To
y

M
A

E
10

D
Figure 8. Average function values of the Toy Mean Absolute Error function under variable iteration,
budget, exploration, and connection thresholds. Each row of the figure pertains to a particular
dimension size and the error bars are calculated based on the standard error.

Figure 8. Average values of the toy mean absolute error function optimized under variable iterations,
budgets, explorations, and connection thresholds. Each row of the figure pertains to a particular
dimension size, and the error bars are calculated based on the standard error.

Regarding the computational time, we extend our analysis of the time complexity of
the proposed methods in the previous section to the compared random-based methods. Let
b, I , and |λo| denote the evaluation budget of each agent, the number of iterations, and the
total number of hyperparameter/decision variables to be optimized, respectively. As we
have compared the methods under fair conditions, i.e., giving each agent the opportunity
to run its randomized algorithm for I times, and since we have assumed that all |λo|
agents run independently in parallel, the time complexity of both “randomized” and “Latin
hypercube” methods would beO(IbR), whereR denotes the complexity of the underlying
ML model or function evaluation. Recall from the previous section that the time complexity
of the proposed method is O(|λo|+ IbR) due to its initial structure formation phase and
the vertical communication of non-terminal agents. In other words, our proposed approach
requires additional O(|λo|) computational time in the worst case. The worst case occurs
when the computational time complexity of the evaluation of the objective function or the
ML model, i.e., O(R), is low. In almost all ML tasks however, we have O(|λo|)� O(R),
hence the time difference is negligible. It is worth emphasizing that this comparison is
based on the assumption of a fair comparison and parallel execution of the budgeted agents.



Systems 2023, 11, 228 19 of 22

It is clear that any changes applied to the benefit of a particular method will definitely
change the requirements. For instance, if we limit the number of evaluations in randomized
methods, they will require less time to find a local minimum; however, the result will be
of lower quality. Regarding the tested heuristic methods, as we have kept the number
of evaluations fixed and due to using a similar amount of work internally, we expect a
computational complexity similar to our approach for them.

Version April 30, 2023 submitted to Systems 19 of 22

1 2 3 4 5 6 7 8 9 10

�3.5

�3

�2.5

�2

�1.5

�1

av
er

ag
e

f(
x⇤

)

Hartmann

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

Rastrigin

1 2 3 4 5 6 7 8 9 10
�120

�110

�100

�90

�80

�70

�60

�50

Styblinski-Tang

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

40

Toy MAE

1 2 3 4 5 6 7 8 9 10

�2.5

�2

�1.5

�1

�0.5

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

�220

�200

�180

�160

�140

�120

�100

�80

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

�2.8

�2.6

�2.4

�2.2

�2

�1.8

�1.6

I

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

40

60

80

100

120

140

160

I
1 2 3 4 5 6 7 8 9 10

�350

�300

�250

�200

�150

�100

I
1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

I

Proposed PSO SA

3D
6D

(4
D

fo
r

H
ar

tm
an

n)
10

D
(6

D
fo

r
H

ar
tm

an
n)

Figure 9. Average function values of the Hartmann function under variable iteration, budget,
exploration, and connection thresholds. Each row of the figure pertains to a particular dimension size
and the error bars are calculated based on the standard error.

The last two figures are being gen- 430

erated for Revision 1. For explana- 431

tions and texts refer to the cleaned 432

file 433

4. Conclusion 434

This paper presented an agent-based collaborative random search method that can 435

be used for machine learning hyper-parameter tuning and global optimization problems. 436

The approach employs two types of agents during the tuning/optimization process: the 437

internals and the terminal agents that are responsible for facilitating the collaborations and 438

tuning an individual decision variable respectively. Such agents and the interaction network 439

between them are created during the hierarchy formation phase and remain the same for 440

Figure 9. Average function values of four objective functions optimized under a variable number
of iterations. Each row of the figure pertains to a particular dimension size, and the error bars are
calculated based on the standard error.

It is worth reiterating that the contribution of this paper is not to compete with the
state-of-the-art algorithms in function optimization, but to propose a distributed tun-
ing/optimization approach that can be deployed on a set of distributed and networked
devices. The discussed analytical and empirical results not only demonstrated the behavior
and impact of the design parameters that we have used in our approach, but also suggested
the way that they can be adjusted for different needs. We believe the contribution of this
paper can be significantly improved with more sophisticated and carefully chosen tuning
strategies and corresponding configurations.



Systems 2023, 11, 228 20 of 22

Version April 30, 2023 submitted to Systems 20 of 22

1 2 3 4 5 6 7 8 9 10
�4

�3.8

�3.6

�3.4

�3.2

�3

�2.8

�2.6

�2.4

�2.2

�2

�1.8

av
er

ag
e

f(
x⇤

)

Hartmann

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

Rastrigin

1 2 3 4 5 6 7 8 9 10

�120

�115

�110

�105

�100

�95

�90

�85

�80

�75

Styblinski-Tang

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

Toy MAE

1 2 3 4 5 6 7 8 9 10

�2.5

�2

�1.5

�1

�0.5

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10
�240

�230

�220

�210

�200

�190

�180

�170

�160

�150

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

�3

�2.8

�2.6

�2.4

�2.2

�2

�1.8

�1.6

b

av
er

ag
e

f(
x⇤

)

1 2 3 4 5 6 7 8 9 10

20

40

60

80

100

120

b
1 2 3 4 5 6 7 8 9 10

�380

�360

�340

�320

�300

�280

�260

b
1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

20

b

Proposed PSO SA

3D
6D

(4
D

fo
r

H
ar

tm
an

n)
10

D
(6

D
fo

r
H

ar
tm

an
n)

Figure 10. Average function values of the Hartmann function under variable iteration, budget,
exploration, and connection thresholds. Each row of the figure pertains to a particular dimension size
and the error bars are calculated based on the standard error.

Figure 10. Average function values of four objective functions optimized under a variable number of
budget values. Each row of the figure pertains to a particular dimension size, and the error bars are
calculated based on the standard error.

4. Conclusions

This paper presented an agent-based collaborative random search method that can be
used for machine learning hyper-parameter tuning and black-box optimization problems.
The approach employs two types of agents during the tuning/optimization process: the
internal and terminal agents that are responsible for facilitating collaborations and tuning
individual decision variables, respectively. Such agents and the interaction network be-
tween them are created during the hierarchy formation phase and remain the same for the
entire runtime of the suggested method. Thanks to the modular and distributed nature of
the approach and its procedures, it can be easily deployed on a network of devices with
various computational capabilities. Furthermore, the design parameters used in this tech-
nique enable each individual agent to customize its own searching process and behavior
independent from its peers in the hierarchy, allowing for diversity in both algorithmic and
deployment levels.

The paper dissected the proposed model from different aspects and provided some
tips on handling its behavior for various applications. According to the analytical dis-



Systems 2023, 11, 228 21 of 22

cussions, our approach requires slightly more computational and storage resources than
the traditional and Latin hypercube randomized search methods that are commonly used
for both hyper-parameter tuning and black-box optimization problems. However, this
results in significant performance improvements, especially in computationally restricted
circumstances with higher numbers of decision variables. This conclusion was verified
in both machine learning model tuning tasks and general multi-dimensional function
optimization problems. Furthermore, the empirical results on two widely used heuristic
methods, namely PSO and SA, showed that our method exhibits better exploration and
potential for escaping local optima while using limited computational resources.

The presented work can be further extended both technically and empirically. As was
discussed throughout this paper, we kept the searching strategies and the way the design
parameters are configured as simple as possible so we could reach a better understanding
of the effectiveness of the collaborations and searching space divisions. A few potential
extensions in this direction include: the utilization of diverse searching methods, hence
the possession of a heterogeneous multi-agent system at the terminal level; the split of the
searching space that is not based on the dimensions, but rather on the range of the values
that decision variables in each dimension can have; employment of more sophisticated
collaboration techniques; and the use of a learning-based approach to dynamically adapt
the values of the design parameters during the runtime of the method. Empirically, the
presented research can be extended by completing an in-depth comparison with population-
based methods and applying our method to expensive machine learning tasks, such as
tuning deep learning models with a large number of hyper-parameters. We are currently
working on some of these studies and suggest them as future work.

Author Contributions: Methodology, A.E.; validation, Z.G.; investigation, A.E. and Z.G.; writing—
original draft, A.E.; writing—review and editing, Z.G.; visualization, A.E.; supervision, E.T.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
2. Kohavi, R.; John, G.H. Automatic parameter selection by minimizing estimated error. In Machine Learning Proceedings 1995;

Elsevier: Amsterdam, The Netherlands, 1995; pp. 304–312.
3. Bischl, B.; Mersmann, O.; Trautmann, H.; Weihs, C. Resampling Methods for Meta-Model Validation with Recommendations for

Evolutionary Computation. Evol. Comput. 2012, 20, 249–275. [CrossRef] [PubMed]
4. Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017.
5. John, G.H. Cross-Validated C4.5: Using Error Estimation for Automatic Parameter Selection; Technical Report; Stanford University:

Stanford, CA, USA, 1994.
6. Močkus, J. On Bayesian methods for seeking the extremum. In Proceedings of the Optimization Techniques IFIP Technical

Conference, Novosibirsk, Russia, 1–7 July 1974; Springer: Berlin/Heidelberg, Germany, 1975; pp. 400–404.
7. Mockus, J. Bayesian Approach to Global Optimization: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2012; Volume 37.
8. Feurer, M.; Hutter, F. Hyperparameter optimization. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 3–33.
9. Simon, D. Evolutionary Optimization Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013.
10. Alibrahim, H.; Ludwig, S.A. Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian

Optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Kraków, Poland, 28 June–1 July
2021; pp. 1551–1559.

11. Bellman, R.E. Adaptive Control Processes; Princeton University Press: Princeton, NJ, USA, 1961.
12. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian

optimization. Proc. IEEE 2015, 104, 148–175. [CrossRef]
13. Garcia-Barcos, J.; Martinez-Cantin, R. Fully Distributed Bayesian Optimization with Stochastic Policies. In Proceedings of the

Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019.
14. Young, M.T.; Hinkle, J.D.; Kannan, R.; Ramanathan, A. Distributed Bayesian optimization of deep reinforcement learning

algorithms. J. Parallel Distrib. Comput. 2020, 139, 43–52. [CrossRef]
15. Frazier, P.I. A Tutorial on Bayesian Optimization. arXiv 2018, arXiv:1807.02811.

http://doi.org/10.1162/EVCO_a_00069
http://www.ncbi.nlm.nih.gov/pubmed/22339368
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1016/j.jpdc.2019.07.008


Systems 2023, 11, 228 22 of 22

16. Friedrichs, F.; Igel, C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64, 107–117. [CrossRef]
17. Loshchilov, I.; Hutter, F. CMA-ES for hyperparameter optimization of deep neural networks. arXiv 2016, arXiv:1604.07269.
18. Ryzko, D. Modern Big Data Architectures: A Multi-Agent Systems Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2020.
19. Esmaeili, A.; Gallagher, J.C.; Springer, J.A.; Matson, E.T. HAMLET: A Hierarchical Agent-Based Machine Learning Platform.

ACM Trans. Auton. Adapt. Syst. 2022, 16, 1–46. [CrossRef]
20. Esmaeili, A.; Ghorrati, Z.; Matson, E.T. Hierarchical Collaborative Hyper-Parameter Tuning. In Proceedings of the Advances in

Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection, L’Aquila, Italy,
13–15 July 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 127–139.

21. Bardenet, R.; Brendel, M.; Kégl, B.; Sebag, M. Collaborative hyperparameter tuning. In Proceedings of the International
Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 199–207.

22. Swearingen, T.; Drevo, W.; Cyphers, B.; Cuesta-Infante, A.; Ross, A.; Veeramachaneni, K. ATM: A distributed, collaborative,
scalable system for automated machine learning. In Proceedings of the 2017 IEEE International Conference on Big Data (Big
Data), Boston, MA, USA, 11–14 December 2017; pp. 151–162.

23. Koch, P.; Golovidov, O.; Gardner, S.; Wujek, B.; Griffin, J.; Xu, Y. Autotune: A derivative-free optimization framework for
hyperparameter tuning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, London, UK, 19–23 August 2018; pp. 443–452.

24. Iranfar, A.; Zapater, M.; Atienza, D. Multi-agent reinforcement learning for hyperparameter optimization of convolutional neural
networks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 41, 1034–1047. [CrossRef]

25. Parker-Holder, J.; Nguyen, V.; Roberts, S.J. Provably efficient online hyperparameter optimization with population-based bandits.
Adv. Neural Inf. Process. Syst. 2020, 33, 17200–17211.

26. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

27. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27.
[CrossRef]

28. Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; Singer, Y. Online passive aggressive algorithms. J. Mach. Learn. Res. 2006,
7, 551–585.

29. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw.
2010, 33, 1. [CrossRef] [PubMed]

30. Scikit-Learn API Reference. Available online: https://scikit-learn.org/stable/modules/classes.html (accessed on 24 Novem-
ber 2022).

31. Jamil, M.; Yang, X.S. A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer.
Optim. 2013, 4, 150. [CrossRef]

32. Rudolph, G. Globale Optimierung Mit Parallelen Evolutionsstrategien. Ph.D. Thesis, Diplomarbeit, Universit at Dortmund,
Fachbereich Informatik, Dortmund, Germany, 1990.

33. Styblinski, M.; Tang, T.S. Experiments in nonconvex optimization: Stochastic approximation with function smoothing and
simulated annealing. Neural Netw. 1990, 3, 467–483. [CrossRef]

34. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

35. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neucom.2004.11.022
http://dx.doi.org/10.1145/3530191
http://dx.doi.org/10.1109/TCAD.2021.3077193
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
https://scikit-learn.org/stable/modules/classes.html
http://dx.doi.org/10.1504/IJMMNO.2013.055204
http://dx.doi.org/10.1016/0893-6080(90)90029-K
http://dx.doi.org/10.1126/science.220.4598.671

	Introduction
	Methodology
	Preliminaries
	Agent-Based Randomized Searching Algorithm
	Distributed Hierarchy Formation
	Collaborative Tuning Process


	Results and Discussion
	Computational Complexity
	Empirical Results

	Conclusions
	References

