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Abstract: The environment and economy benefit from the sustained growth of a high-quality green
supplier. During a supplier evaluation and selection process, DMs tend to use fuzzy tools to express
evaluation information due to complex practical problems. Therefore, this study explores the green-
supplier evaluation method in a complex Fermatean fuzzy (FF) environment. First, a group of
indicators was created to evaluate the green capabilities and the social impact of suppliers. Second,
by combining the merits of the Heronian mean and power average approaches, a FF power Heronian
mean and its weighted framework were developed, and their related properties and special families
were then presented. Third, to acquire the relative importance of indicators, a marvelous unification
of the best–worst method (BWM) and FF entropy is then introduced. The challenge of choosing a
green supplier was finally solved using an integrated evaluation based on distance from the average
solution (EDAS) evaluation framework in the FF environment. Finally, the presented tool’s viability
and robustness were confirmed by actual case analysis.

Keywords: Fermatean fuzzy set; BWM; green supplier selection; power Heronian mean; EDAS

1. Introduction

Owing to the rapid advancement in science and technology since the industrial age,
domestic output has been high, resulting in an unprecedented level of material riches for
a nation and its citizens. Quality lifestyle requirements are becoming extremely impor-
tant with the rise in residents’ standards of living. Simultaneously, people’s purchasing
power has increased, propelling the domestic economy to a new level. However, various
significant social issues have emerged as well [1]. Rapid resource consumption has led
to an increase in environmental issues such as resource wastage and air pollution, which
are extremely challenging for the environment in which people live. Social unrest, eco-
nomic upheaval, and other unforeseen issues can eventually result from an ecological
imbalance. If the economy continues to develop without taking environmental protection
measures, the environment will inevitably become polluted, posing a threat to ecological
security. Environmentalism and economic growth are never mutually exclusive; rather,
they are interdependent. Economic growth will eventually be affected by ecological issues.
Therefore, prioritizing environmental conservation should go hand in hand with economic
development [2]; this is currently the global perspective. For example, the idea of sus-
tainable development was explained in a global report as early as 1987. China developed
and implemented a sustainable development strategy in March 1994 based on its unique
national circumstances [3]. Since then, a global green wave has begun, which is necessary to
advance sustainable development, raise awareness among citizens on the need to safeguard
the environment, and encourage synchronized economic and environmental growth [4]. In
this context, the concept of green supply chain management (GSCM) has emerged [5].
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All supply chain workstations and activities are intended to have a lower adverse
ecological impact through the use of GSCM [6]. A crucial aspect of GSCM is selecting
the right suppliers [7]. Green suppliers are in the upstream of the green supply chain,
influencing the downstream of procurement and production, etc. [8]. Offering green
products from green suppliers of the highest caliber can cut expenses while simultaneously
preserving the environment and has the potential to attract customers for enterprises. This
is highly beneficial to the enterprises and thereby enhances the abilities of both suppliers
and businesses to compete [9,10]. Responding to social needs and selecting appropriate
green suppliers for themselves is a strategic step toward scientific GSCM for business.

Green supplier selection (GSS) is a complex decision issue in a multi-attribute domain
since it involves multiple options, attributes, and decision-makers (DMs) [11]. However,
there is a significant amount of uncertainty in the green-supplier selection (GSS). DMs may
not be able to provide exact evaluation values based on each assessment criterion in the
context of GSS and evaluation. Fuzzy sets (FSs) [12], intuitionistic fuzzy sets (IFSs) [13], and
Pythagorean fuzzy sets (PFSs) [14] were all used as tools to evaluate the green suppliers.
However, the membership u and non-membership degree v of IFSs and PFSs need to
satisfy the constraints u + v ≤ 1 [15] and u2 + v2 ≤ 1 [16], respectively, that prevent them
from fully expressing uncertain information. Senapati and Yager [17] further reduced
the limitations to u3 + v3 ≤ 1, and proposed Fermatean fuzzy sets (FFSs) to describe
additional information.

A set of succinct and precise evaluation index systems is crucial to the GSS. Green
suppliers have numerous intricate evaluation standards. Economical details in traditional
supplier selection and environmental standards had been considered [18]. Scholars are
particularly concerned about the impact of green issues on GSS. For example, Tavana et al.
built an environmental capability evaluation index system for suppliers that included
pollution controls, pollution products, green protection, and environmental protection [19].

Research on decision-making methods and models of GSS has also received increasing
attention. Ref. [20] identified the importance of each green supplier evaluation index
using the best-worst method (BWM). Ref. [21] constructed an analytic hierarchy process
(AHP)-based model for determining the weight of green supplier indicators for steel
companies. Evaluation information from a single DM is not convincing. Several multi-
attribute group decision-making (MAGDM) models are proposed to obtain reliable GSS
results. After integrating the fuzzy green evaluation information using the weighted
average (WA) operator, VIKOR (ViseKriterijumska Optimizacija I Kompromisno Resenje)
and TOPSIS obtained the ideal green suppliers for edible oil [14] and agricultural tool [22]
enterprises, respectively.

With the above review, several research gaps continue to exist regarding GSS,
as follows:

(1) Uncertainty exists in the evaluation standards of green suppliers. The information
conveyed by IFSs and PFSs was limited. Few GSS studies considered the usefulness
of Fermatean fuzzy (FF) evaluation information.

(2) More factors need to be taken into account rather than just stating the characteris-
tics of traditional green suppliers. Refs. [18,19] focused only on the economic and
environmental benefits of green suppliers but neglected their social responsibility.

(3) In the group decision model related to GSS, the WA operator utilized to assemble
assessment fuzzy data in refs. [14,22] did not take into account the link between
attributes and the incorrect judgment brought on by extreme data.

(4) BWM [20] and AHP [21] were subjective weighting methods dominated by experts’
subjective judgments. It is impossible to make a fully reasonable judgment on the im-
portance of indicators without the joint participation of objective weighting methods.
Furthermore, it is crucial to apply precise and consistent evaluation methods when
ranking alternative solutions. Decision methods such as VIKOR [14] and TOPSIS [22]
may increase the negative impact of extreme value decision results.
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Driven by the above research gaps, this work’s central thrust is to support the GSS
using a comprehensive FF MAGDM approach, which combines the power Heronian mean
(PHM) operator, BWM, the entropy weight method (EWM), and evaluation based on
distance from the average solution (EDAS). In this context, information regarding expert
evaluations is aggregated using the FFPHM operator. A novel BWM based on entropy
measures is combined with the EWM to provide an integrated assignment approach. The
best green supplier is found by using EDAS to rank the considered alternatives. The
following are the study’s significant contributions:

(1) The GSS problem in the FF environment will be examined, where FFSs have a broader
range of information representation.

(2) Create a comprehensive set of index systems for evaluating green suppliers. This study
developed a set of index systems combining traditional qualities, green attributes,
and social attributes based on references and analysis of the existing index system.

(3) We propose the FFPHM and FFWPHM operators by applying the PHM operator to
the FF environment. The proposed operators consider the consistency and correlation
of data when aggregating evaluation information.

(4) For the GSS problem that it is unknown how important the various indicators are,
an integrated weight calculation method is offered in the foundations of EWM and
BWM. This integrated technique successfully lowers the disparity between subjective
and objective information.

(5) A FF MAGDM framework based on the integrated weight determination model and
EDAS is developed. EDAS simplifies the calculation process while reducing the
impact of extreme values on decision results. The method improves and deepens
fuzzy decision theory and gives specialists technical direction for resolving GSS issues.

The remaining portions of this work are divided into several parts. The literature
review component is given in Section 2. Section 3 summarizes and examines the current
green supplier evaluation criteria before proposing a new set of criteria that consider
social issues. Section 4 provides the definitions and properties of FFPHM and FFWPHM
operators, while the fundamentals of FFSs, power average (PA), and Heronian mean (HM)
operators are discussed in the Appendix A. In Section 5, an extended BWM based on the
entropy measure is introduced along with the EWM. In an FF environment, the unique
procedure of MAGDM based on an integrated EDAS is described. Through a case study of
the GSS, Section 6 offers a sensitivity and comparison analysis to show the viability of the
suggested strategy. The complete text is finally summarized in Section 7.

2. Literature Review
2.1. FFSs

Since Senapati first proposed the FFSs, scholars have recommended several aggrega-
tion operators to aggregate the FF information. Zeng et al. [23] introduced a FF Dombi-
weighted partitioned Muirhead mean operator and used it to aggregate Fermatean fuzzy
numbers (FFNs) for evaluating the quality of online instructions while considering the com-
plex correlation of attributes and calculation flexibility. Wei et al. [24] described Schweizer–
Sklar algorithms for FFNs and created an FF Schweizer–Sklar weighted average operator;
the operator has some flexibility because of its parameters. Similarly, Tan et al. [25] pre-
sented FF frank aggregation operators and operational principles of FFNs to increase the
flexibility of fusing information. Mishra and Rani [26] created a FF-weighted aggregated
sum product assessment (WASPAS) with the use of a unique score and entropy function
to strategically support the Indian government’s choice of appropriate medical waste dis-
posal sites. The integration of FFSs with the additive ratio assessment (ARAS) and VIKOR
methods by Gül [27] in response to the global health crisis allowed for the proper selection
of laboratories for performing health testing because of the stark differences between the
two approaches.
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The above analysis clearly shows that the FFSs have been cleverly used in combination
with decision methods to solve decision problems in several domains. However, the use of
EDAS to solve GSS problems in the FF environment has not been studied so far.

2.2. Power Heronian Mean Aggregation Operators

Owing to cognitive bias or personal preferences, DMs in a MAGDM process may give
certain irrational assessment values (maximum or minimum). Yager [28] suggested the PA
operator consider the degree of support between the data to lessen the effects of erroneous
data by considering the integrity between the data. Many academics have conducted
studies and consider academic promotion on this topic. Researchers have extended the PA
operator to various fuzzy environments to aggregate information in various fuzzy contexts.

In addition, there are often cases in which attributes are correlated but cannot be
solved by the PA operator in MAGDM problems. To effectively address interrelated issues,
Beliakov et al. [29] introduced the HM operator to handle similar challenges efficiently.
The HM operator was subsequently expanded upon by academics. Many academics
merged the PA and HM operators to propose the PHM operator, which successfully
reduced the detrimental effects of linked relationships while considering the interconnected
relationships and integrity of the data. Shi et al. [30] developed a power geometry Heronian
average operator in an intuitionistic fuzzy environment and provided related theorems
and properties. Liu et al. [31] proposed a linguistic neutrosophic PHM operator.

It is observed that many scholars have recognized that PHM operators can compensate
for the shortcomings of PA and HM operators, and they are widely extended to linguistic
and fuzzy sets. However, no studies using PHM operators to integrate FF information have
been found.

2.3. BWM and EWM for Attribute Weights

Attribute-confirmation methods are also significantly important in MAGDM prob-
lems with unknown attribute weights. Common weight determination methods include
subjective and objective weight determination methods. However, owing to the limitations
of both methods, integrated weights are often used to determine attribute weights. Since
the BWM introduced by Rezaei [32] offers particular benefits when deciding on subjective
weights, it is often combined with the EWM to calculate the integrated weights more
comprehensively. In different fuzzy environments, research using the integrated weighting
method to determine evaluation attribute weights has emerged. To solve MAGDM prob-
lems with IFSs, an integrated VIKOR model to select the best biowaste recycling channel
was proposed by Liu et al. [33]. To examine the various relevance of probable factors that
affect GSS, Wei et al. [24] presented a fuzzy entropy suitable for the FF environment and
fused it with the traditional BWM to obtain an extended BWM. Ma et al. [34] combined the
subjective and objective weights using a multiplicative integration method. An integrated
model in a probabilistic linguistic fuzzy environment was proposed to evaluate online
recycling platforms. The integrated weights that incorporate customer value and economic
goals were determined using a combination assignment approach by Feng et al. [35] in a
rough set that evaluates fuzzy information without membership functions.

Although the integrated assignment method based on BWM and EWM has received lit-
tle attention, the entropy measures involved in [24] make the computation more complicated.

2.4. Evaluation Methods for GSS

There is abundant research on the evaluation methods of GSS. Wang et al. [21] sug-
gested a complex AHP to enable DMs to measure and choose the best cooperative green
suppliers in light of the vagueness of appropriate analysis information. A double-hierarchy
hesitant fuzzy linguistic set was given the TODIM (an acronym in Portuguese for interac-
tive and multi-criteria decision making) treatment by Krishankumar et al. [36] to tackle
the GSS problem. After using AHP to determine the index weight, Nguyen et al. [18] used
VIKOR to rank the green suppliers to be evaluated and finally gave the optimal solution.
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Xiong et al. [37] set elasticity as an indicator and upgraded the WASPAS to determine a solu-
tion to the multi-attribute selection problem of green suppliers based on IFSs. Liu et al. [38]
utilized the BWM to assign weights to criteria based on experts’ knowledge levels and
familiarity with the problem. The study of a supplier selection method on the basis of a
q-rung orthopair fuzzy set (QROFS) encompasses the ambiguity of the selection process.
Considering the uncertainty of the selection process, a supplier selection method based
on QROFS has been studied. Considering environmental criteria in traditional supply
chains, Çalık [22] integrated fuzzy AHP and TOPSIS to select the most appropriate green
cooperative supplier for the firm. Baki [39] employed ARAS to help with green supplier
choice after investigating and determining the elements impacting GSS. Zhang et al. [40] de-
signed an EDAS-based decision framework for optimal GSS in a picture-fuzzy environment.
Zhang et al. [41] combined EDAS and cumulative prospect theory to evaluate community
group purchase platforms in a probabilistic linguistic environment. Mishra et al. [42] used
EDAS to select sustainable third-party reverse logistics providers. He et al. [43] extended
the EDAS method to probabilistic uncertain linguistic sets to examine its applicability
to GSS.

Scholars have been searching for decision models that can identify the best green
suppliers. Compared with TOPSIS and VIKOR, EDAS has higher efficiency and less
workload. The FFWA operator involved in the group decision of GSS [42] is prone to
the loss of integrated information, which may prevent EDAS from obtaining a reasonable
ranking. In summary, there is a lack of a hybrid GSS evaluation framework integrating the
FFPHM operator, BWM, EWM, and EDAS.

3. Evaluation Index System for GSS

An upper-tier green supplier may support an organization’s long-term expansion. The
best GSS is crucial to operating a green supply chain. Contrary to typical supplier selection,
the GSS should be based on both the economic and environmental benefits they may
provide. It is essential to understand how to build a collection of powerful index systems.
Therefore, this section presents a collection of index systems that combine environmental
and economic criteria to lay the foundation for a reasonable GSS.

Although numerous studies have been conducted on choosing green suppliers, each
study used a different index system. Nguyen et al. [18] set 12 sub-criteria to evaluate and
select green suppliers based on five aspects: quality, cost, transportation, technology, and
environment. Tavana et al. [19] proposed evaluation criteria for the best green tire recycling
supplier based on the environmental dimensions, including green products, pollution
output and control, and environmental management. Fazlollahtabar et al. [20] constructed
a set of index systems containing eight primary elements and thirty-one sub-criteria for
the GSS. To save resources and reduce pollution, Wang et al. [21] selected an optimal green
supplier for Vietnamese steel manufacturing companies by considering five aspects: price,
quality, transportation, service, and environment. In a study by Çalık [22], transportation,
pollution control, product quality, and environmental responsibility were evaluated by
different departments of the company to select optimal green suppliers. For the green
limestone supplier selection, Krishankumar et al. [36] set up six benefit-type criteria contain-
ing green products and impressions and three cost-type criteria containing pollution and
costs. Xiong et al. [37] determined the optimal elastic green supplier by evaluating green,
elasticity, and coincidence attributes. Liu et al. [38] employed the BWM to determine the
importance of the five attributes of product quality, green design, price, organizational and
transportation capacity, and the supplier’s environmentally friendly cooperative culture,
in which product quality, transportation, and organizational capabilities were selected as
the best and worst attributes, respectively. Baki [39] explored the factors that influence
GSS and established eight influencing factors to be tested in three dimensions—classical,
social, and environmental. The results showed that quality, social responsibility, service,
cost, and green products were key variables impacting the GSS. For the textile enterprises,
five primary characteristics were included in the index systems proposed by Xu et al. [44]:
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cost, quality, delivery, partnership, and environmental management. Wu et al. [45] se-
lected a MAGDM method for GSS of electric vehicle charging equipment and constructed
12 sub-criteria from five levels of cost, quality, delivery, technology, and environment.
Kang et al. [46] proposed seven main criteria, which include quality, cost, service coop-
eration, stability ability, green environment, green development, and green competition,
for analyzing and choosing environmentally friendly suppliers in papermaking enter-
prises covering the three dimensions. For optimal GSS, Gegovska et al. [47] identified four
classical criteria—quality, cost, transport, and service—and three environmental criteria,
namely pollution control, green products, and environmental management. To reduce
air pollution and select appropriate green suppliers for the construction of raw materials,
Krishankumar et al. [48] established three benefit-type criteria, including product delivery,
quality, and green design, and two cost-type criteria, including total cost, energy, and
resource utilization. Table 1 summarizes the criteria in the GSS literature mentioned above
and counts their frequency of occurrence.

Table 1. Evaluation criteria for the GSS.

Evaluation Criteria [18] [19] [20] [21] [22] [36] [37] [38] [39] [44] [45] [46] [47] [48] Occurrence
Percentage

Green design
√ √ √ √ √ √ √ √ √

64.29%
Service

√ √ √ √ √ √ √
50.00%

Green image
√ √ √ √ √ √

42.86%
Quality

√ √ √ √ √ √ √ √ √ √ √
78.57%

Environmental management
√ √ √ √ √ √ √ √ √

64.29%
Green product

√ √ √ √
28.57%

Delivery
√ √ √ √ √ √ √ √ √ √

71.43%
Cost

√ √ √ √ √ √ √ √ √ √ √
78.57%

Technology
√ √ √ √ √ √

42.86%
Pollution control

√ √ √ √ √ √ √
50.00%

Energy resource utilization
√ √ √ √ √

35.71%
Social responsibility

√ √
14.29%

Cooperation
√ √ √ √

28.57%

From the literature review and the summary in Table 1, we find that cost (78.57%),
quality (78.57%), delivery (71.43%), green design (64.29%), and environment management
(64.29%) are the most frequently occurring indicators. Many studies place a high priority
on them. Although the attribute “social responsibility” occurs only twice, the research by
Baki [39] exactly showed that among the eight factors to be tested, social responsibility had
a significant impact on GSS and could not be overlooked.

Hence, following the principles of wholeness, scientificity, and representativeness in
selecting indicators, as well as focusing on the frequency of citations, this study combines
classic attributes with green standards and social factors to establish a relatively complete
green supplier evaluation index system. Environmental indicators are divided into envi-
ronmental management and green design. Implementing environmental management and
green product design at all levels of the supply chain helps meet consumers’ environmental
protection demands and achieve environmental benefit targets. Economic indicators in-
clude quality, cost, and delivery. Economic efficiency is the primary goal of enterprises and
is a necessary prerequisite for achieving environmental and social benefits. Enterprises can
improve economic efficiency by improving product quality, reducing costs, and shortening
delivery times. Social responsibility is a social indicator. Companies should assume social
responsibility and contribute to society. The achievement of social benefit objectives drives
the sustainability of a company.

Environmental management (Λ1): To minimize potential sources of pollution at all
stages of production, green suppliers should formulate corresponding policies and plans
to form a complete environmental management system [36]. The implementation of the
policy and its continuous monitoring can be examined.
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Green design (Λ2): This is mainly measured by product design, including the total
number of environment-friendly products, the use of energy-saving and consumption-
reducing technologies, and the recovery and recycling of waste equipment [22,38].

Quality (Λ3): Green suppliers should have a complete quality assurance system. Only
by providing qualified products can the economic benefits of an enterprise be realized.
Enterprises can assess the quality of products based on quality inspection pass rates and
durability [45]. A higher quality inspection pass rate indicates better product quality, and
excellent products have a lower failure rate during the warranty period [46].

Cost (Λ4): Whether an enterprise can minimize cost and maximize profit margin
depends on the price of the product provided by the supplier [21]. The price that depends
on the cost can be measured by the transportation, environmental governance, and product
research and development costs of green suppliers [18].

Delivery (Λ5): Green suppliers should respond to order demands on time. Knowing
the historical supply performance of green suppliers helps determine whether they have
sufficient resources and production capacity to ensure the on-time delivery of products. It
can also examine whether green suppliers have the flexibility to adjust their quantity and
delivery time [18,47]. If the ordered products required by enterprises are provided within
the shortest production cycle, it would be helpful to establish a long-term good partnership
with them and help both parties to pre-empt fierce market competition.

Social responsibility (Λ6): From a social perspective, green suppliers’ social responsi-
bility can be measured in aspects such as employee welfare [18], vocational training, and
workplace mental health concerns. Understanding the compliance with laws and regula-
tions, credit behavior, and administrative penalty records of green suppliers is also helpful.

4. Fermatean Fuzzy Power Heronian Mean Aggregation Operators

We will review the relevant knowledge of FFSs, PAs, and HM operators in preparation
for suggesting new operators in this section. The definitions of PA and HM operators and
the basics of FFSs are listed in Appendix A.

The PA aggregation method focuses on the integrity of the data [28], whereas the
HM operator can help solve the problem of data correlation [29]. Using the benefits of PA
and HM operators as a starting point, the concept of FFPHM is given below. The FFPHM
operator is introduced for aggregating FF information in this study, which focuses on both
integrity and correlation.

Definition 1. Let Ai = (ui, vi)(i = 1, 2, . . . , ň) be a set of FFNs, where ξ, ζ ≥ 0 and

Ψi = (1 + σ(Ai))/
ň
∑

t=1
(1 + σ(At)) . Then:

FFPHM(A1,A2, . . . ,Aň) =

(
2

ň(ň + 1)
ň
⊕

i=1,i=j

(
(ňΨiAi)

ξ ⊗
(
ňΨjAj

)ζ
)) 1

ξ+ζ

(1)

is called FFPHM operator, where

Ω
(
Ai,Aj

)
= 1− d

(
Ai,Aj

)
, (2)

σ(Ai) =
ň

∑
j=1,j 6=i

Ω
(
Ai,Aj

)
. (3)

Theorem 1. Let Ai = (ui, vi)(i = 1, 2, . . . , ň) be a set of FFNs where ξ, ζ ≥ 0. Hence, the
aggregation result obtained by the FFPHM operator is also a FFN and can be described as:

FFPHM(A1,A2, . . . ,Aň) = (µ, υ). (4)
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where µ =

1−

 ň
∏

i=1.j=i

1−
(

1−
(
1− u3

i
)ňΨi
)ξ
(

1−
(

1− u3
j

)ňΨj
)ζ
 2

ň(ň+1)


1
3(ξ+ζ)

and

υ =
3

√√√√√√1−

1−
(

ň
∏

i=1,j=i

(
1−

(
1− v3ňΨi

i

)ξ(
1− v

3ňΨj
j

)ζ
)) 2

ň(ň+1)


1
ξ+ζ

.

Following Theorem 1, we will propose and demonstrate the properties of the FFPHM
operator, laying the groundwork for its use.

Property 1 (Idempotency). Let Ai = (ui, vi)(i = 1, 2, . . . , ň) be a set of FFNs and
A1 = A2 = . . . = Aň = A, then:

FFPHM(A1,A2, . . . ,Aň) = A.

Proof.

FFPHM(A1,A2, . . . ,Aň) =

(
2

ň(ň+1)

ň
⊕

i=1,i=j

(
(ňΨiAi)

ξ ⊗
(
ňΨjAj

)ζ
)) 1

ξ+ζ

=

 2
ň(ň+1)

ň
⊕

i=1,i=j


ň (1+σ(A))

ň
∑

t=1
(1+σ(A))

A


ξ

⊗

ň (1+σ(A))
ň
∑

t=1
(1+σ(A))

A


ζ



1
ξ+ζ

=

(
2

ň(ň+1)

ň
⊕

i=1,i=j

(
Aξ+ζ

)) 1
ξ+ζ

= A

.

�

Property 2 (Commutativity). Let Ai = (ui, vi)(i = 1, 2, . . . , ň) be a set of FFNs and
M1,M2, . . . ,Mň be a random permutation of A1,A2, . . . ,Aň, then,

FFPHM(A1,A2, . . . ,Aň) = FFPHM(M1,M2, . . . ,Mň).

Proof. Let ψi = (1 + σ(Mi))/
ň
∑

t=1
(1 + σ(Mt)) , then

FFPHM(A1,A2, . . . ,Aň)

=

(
2

ň(ň+1)

ň
⊕

i=1,i=j

(
(ňΨiAi)

ξ ⊗
(
ňΨjAj

)ζ
)) 1

ξ+ζ

=

(
2

ň(ň+1)

ň
⊕

i=1,i=j

(
(ňΨiMi)

ξ ⊗
(
ňΨjMj

)ζ
)) 1

ξ+ζ

= FFPHM(M1,M2, . . . ,Mň)

.

�
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Property 3 (Boundedness). Let Ai = (ui, vi)(i = 1, 2, . . . , ň) be a set of FFNs and
fi = ň (1+σ(Ai))

ň
∑

t=1
(1+σ(At))

Ai, where f+ = max
i

( fi) and f− = min
i
( fi). Then

f− ≤ FFPHM(A1,A2, . . . ,Aň) ≤ f+. (5)

When aggregating FF decision information, it is often necessary to consider the impor-
tance of attributes. Therefore, we provide the concept of an FFWPHM operator as below.

Definition 2. Let Ai = (ui, vi)(i = 1, 2, . . . , ň) be a set of FFNs, where ξ, ζ ≥ 0. The weighted

vector is ϕ = (ϕ1, ϕ2, . . . , ϕň)
T , where ϕi ∈ [0, 1] and

ň
∑

i=1
ϕi = 1. Then,

FFWPHM(A1,A2, . . . ,Aň)

=

 2
ň(ň+1)

ň
⊕

i=1,i=j


 ňϕi(1+σ(Ai))

ň
∑

t=1
ϕt(1+σ(At))

Ai


ξ

⊗

 ňϕj(1+σ(Aj))
ň
∑

t=1
ϕt(1+σ(At))

Aj


ζ



1
ξ+ζ

is called the FFWPHM operator, where σ(Ai) =
ň
∑

j=1,j 6=i
ϕjΩ

(
Ai,Aj

)
and Ω

(
Ai,Aj

)
have the

same definition.

Theorem 2. Let Ai = (ui, vi)(i = 1, 2, . . . , ň) be a set of FFNs, where ξ, ζ ≥ 0. The weighted

vector is ϕ = (ϕ1, ϕ2, . . . , ϕň)
T , where ϕi ∈ [0, 1] and

ň
∑

i=1
ϕi = 1. Then, the aggregation value

obtained by the FFWPHM operator is also an FFN.

The FFWPHM shares the equivalent characteristics of the FFPHM operator. Since their
properties are identical to those for Theorem 1 and Properties 1–3, correspondingly, the
proofs are omitted.

5. Fermatean Fuzzy MAGDM Model Based on the Integrated EDAS Method

In this section, we outlined the precise phases of the suggested comprehensive
MAGDM model.

5.1. Integrated Weight Based on BWM and Fermatean Fuzzy Entropy

(1) Objective weight determination based on the EWM.

Let R =
(
hij
)
}×ň

be the comprehensive evaluation matrix of the scheme sets
F = {F1,F2, . . . ,F}} normalized under the criterion Λ = {Λ1, Λ2, . . . , Λň}. Then, the
objective weight φj for attribute Λj(j = 1, 2, . . . , ň) can be calculated as:

φj =
1− Ẽj

ň−
ň
∑

j=1
Ẽj

, (6)

where Ẽj =
1
}

}
∑

i=1
E
(
hij
)
. E
(
hij
)

is the entropy value of hij and is calculated as follows [49]:

E
(
hij
)
= 1−

[(
u3

ij − v3
ij

)(
u3

ij + v3
ij

)]2
. (7)
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Therefore, according to the FF entropy measure calculation formula, we can obtain the

objective weights φj = (φ1, . . . , φň)
T , where φj ∈ [0, 1] and

ň
∑

j=1
φj = 1.

(2) Subjective weight determination method based on the BWM.

BWM significantly reduces errors that may be caused by the objective weights. Com-
pared with AHP, BWM has fewer comparisons, less bias, and higher agreement. The BWM
is widely used owing to its excellent characteristics. The specific steps of the BWM for
determining the subjective weight are as follows.

Step 1. Choose the best ΛB and worst attributes ΛW in the attribute collection
{Λ1, Λ2, Λ3, . . . , Λň}.

Step 2. Build comparison vectors BO = (BB1, BB2, . . . , BBň) and
OW = (W1W , W2W , . . . , WňW), where BBj and Wjň(j = 1, . . . , ň) represent the preference of
the best attribute ΛB over other attributes, and them over the worst attribute ΛW . BBj and
WjW are expressed in FFNs.

Step 3. Compute the entropy values E
(

BBj
)

and E
(

BjW
)

of BBj and WjW based on
Equation (7) and obtain the preference matrices EBO and EOW:

EBO = (E(BB1), E(BB2), . . . , E(BBň)), (8)

EOW = (E(W1W), E(W2W), . . . , E(WňW)). (9)

Step 4. The FF entropy measure is used to build the following BWM solution
weight model:

minx

s.t



∣∣∣ ϕB
ϕB+ϕj

− E
(

BBj
)∣∣∣ ≤ x∣∣∣ ϕj

ϕj+ϕW
− E

(
WjW

)∣∣∣ ≤ x
ň
∑

j=1
ϕj = 1

ϕj ≥ 0

, (10)

Equation (10) can be changed subsequently to the formula below:

minx1

s.t



∣∣ϕB −
(

ϕB + ϕj
)
× E

(
BBj
)∣∣ ≤ x1∣∣ϕj −

(
ϕj + ϕW

)
× E

(
WjW

)∣∣ ≤ x1
ň
∑

j=1
ϕj = 1

ϕj ≥ 0

. (11)

By using the LINGO 18.0 software, we can easily obtain the subjective weights
ϕj = (ϕ1, ϕ2, . . . , ϕň)

T .

(3) Integrated weight determination method based on the BWM and EWM.

According to the BWM and EWM, the subjective ϕj = (ϕ1, ϕ2, . . . , ϕň)
T and objective

weights φj = (φ1, φ2, . . . , φň)
T are calculated. Therefore, the integrated weights can be

calculated using the Equation (12):

vj = φj ϕj/
ň

∑
j=1

ϕjφj , (12)

evidently, vj ∈ [0, 1] and
n
∑

j=1
vj = 1.
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5.2. Procedure of Fermatean Fuzzy Integrated EDAS Model

Consider a MAGDM issue that requires the cooperation of FFNs. LetF = {F1,F2, . . . ,F}}
denote the discrete set of alternatives, while Λ = {Λ1, Λ2, . . . , Λň} denotes the finite set
of evaluation attributes. The expert evaluation set is E = {e1, e2, . . . , eh} and correspond-
ing weight is λ = {λ1, λ2, . . . , λh}. Assume that the evaluation information of expert
ek(k = 1, . . . , h) about alternatives Fi ∈ F under the considered attribute Λj ∈ Λ is denoted

by FFN hk
ij =

(
uk

ij, vk
ij

)
, where uk

ij, vk
ij ∈ [0, 1] and 0 ≤

(
uk

ij

)3
+
(

vk
ij

)3
≤ 1. Therefore, the

FFN evaluation matrix provided by expert ek(k = 1, . . . , h) can be expressed as follows:

Rk =
(

hk
ij

)
}×ň

=

hk
11
· · · hk

1ň
...

. . .
...

hk
}1
· · · hk

}ň

. (13)

Considering the material above, Figure 1 depicts the workflow of the FF integrated EDAS
model and the precise procedures for the FF integrated EDAS model are presented below.
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Figure 1. Process of FF’s integrated EDAS model.

Step 1. To help experts better express evaluation information, each expert needs
to provide personal evaluation linguistic terms for each alternative under each criterion.
Using the conversion criteria in Table 2, the evaluated linguistic phrases are reduced to
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FFNs. Therefore, the evaluation matrix Rk =
(

hk
ij

)
}×ň

of the expert ek(k = 1, 2, . . . , h) can

be obtained, where hk
ij =

(
uk

ij, vk
ij

)
.

Table 2. Evaluating linguistic terms and conversion criteria for FFN.

Linguistic Term FFN

Very Eligible (VE) (0.9, 0.2)
Eligible (E) (0.8, 0.3)

Medium Eligible (ME) (0.7, 0.5)
Medium (0.6, 0.6)

Medium Unqualified (MU) (0.5, 0.7)
Unqualified (U) (0.3, 0.8)

Very Unqualified (VU) (0.2, 0.9)

Step 2. Using the FFWPHM operator proposed in Section 4, the individual evaluations
of experts are integrated to obtain a comprehensive decision matrix R̃ =

(
h̃ij

)
}×ň

, where

h̃ij =
(
ũij, ṽij

)
.

Step 3. Make the decision matrix normalized. Unify attribute types with the conver-
sion criterion (14) to further obtain the standardized decision R =

(
hij
)
}×ň

, where Jb and Jc
are the benefit and cost-type attribute collections.

hij =
(
uij, vij

)
=

{ (
ũij, ṽij

)
, Cj ∈ Jb(

ṽij, ũij
)
, Cj ∈ Jc

(14)

Step 4. Determine the average solution matrix AV =
[
AVj

]
1×ň

:

AVj =
1
}

}
⊕

i=1
hij =

 3

√√√√1−
}

∏
i=1

(
1−

(
uij
)3
) 1

} ,
}

∏
i=1

(
vij
) 1
}

 (15)

Step 5. Compute the positive distance from the average (PDA) and negative distance
from the average (NDA):

(
PDAij

)
}×ň

=
max

(
0, S
(
hij
)
− S

(
AVj

))
S
(

AVj
) , (16)

(
NDAij

)
}×ň

=
max

(
0, S
(

AVj
)
− S

(
hij
))

S
(

AVj
) , (17)

where S
(

AVj
)

and S
(
hij
)

are the score values of AVj and hij calculated by Equation (A2) in
Appendix A.

Step 6. Calculate the subjective weight ϕj =
(

ϕj, . . . , ϕň
)T and objective weight

φj = (φ1, . . . , φň)
T of the attributes based on the BWM and EWM proposed in Section 5,

respectively. Thus, the integrated weight v = (v1, . . . , vň)
T of the attributes according to

Equation (12) is obtained.
Step 7. Aggregate the PDA and NDA to get SPi and SNi.

SPi =
ň
∑

j=1
vjPDAij

SNi =
ň
∑

j=1
vjNDAij

(18)
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Step 8. Normalize SPi and SNi.{
NSPi =

SPi
max(SPi)

NSNi = 1− SNi
max(SNi)

(19)

Step 9. Calculate the final evaluation value ASi of the alternative Fi.

ASi =
NSPi + NSNi

2
(20)

Step 10. Sort the alternatives on the basis of ASi. The larger the value of ASi, the
better the alternative Fi is.

6. Case Study

A business is currently suggesting that the best partner be selected from four environ-
mental suppliers (F1, F2, F3, and F4). An expert panel consisting of the top management in
this company as well as university academics and representatives from research institutes
in the fields of supply chain and environmental management is formed. Four experts
ek(k = 1, 2, 3, 4) in total with the weight vector (0.27, 0.2, 0.3, 0.23)T are invited to assess
the four green suppliers according to attributes Λj(j = 1, 2, 3, 4, 5, 6). Among them, Λ1 is
environmental management, Λ2 is green design, is quality, Λ4 is cost Λ3, Λ5 is delivery,
and Λ6 is social responsibility. It is easily identifiable that Λ4 is a cost-type attribute and
the rest are benefit-type attributes. The specific process steps are as follows:

Step 1. Create an individual FF assessment matrix. Based on the six constructed
attributes above, experts ek(k = 1, 2, 3, 4) provided evaluations in linguistic terms of the
four green suppliers that are observed in Table 3. The linguistic words are then converted
into FFNs using the conversion criteria in Table 2. Finally, Table 4 summarizes the evaluation
data of the four experts.

Table 3. Expert evaluation of linguistic terms.

Experts Alternatives Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

e1

F1 E E U U VE E
F2 M VU E M U VE
F3 E E U VU M U
F4 ME E E M M U

e2

F1 VE E U M E ME
F2 U MU E ME M E
F3 E VE MU U ME MU
F4 VE VE E U M E

e3

F1 E E M U E E
F2 U MU E E M VE
F3 VE VE U U M U
F4 E ME VE M E U

e4

F1 VE ME U ME VE E
F2 U U ME VE E E
F3 VE E U MU M U
F4 E M E M VE M
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Table 4. Expert evaluation information.

Experts Alternatives Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

e1

F1 (0.8, 0.3) (0.8, 0.3) (0.3, 0.8) (0.3, 0.8) (0.9, 0.2) (0.8, 0.3)
F2 (0.6, 0.6) (0.2, 0.9) (0.8, 0.3) (0.6, 0.6) (0.3, 0.8) (0.9, 0.2)
F3 (0.8, 0.3) (0.8, 0.3) (0.3, 0.8) (0.2, 0.9) (0.6, 0.6) (0.3, 0.8)
F4 (0.7, 0.5) (0.8, 0.3) (0.8, 0.3) (0.6, 0.6) (0.6, 0.6) (0.3, 0.8)

e2

F1 (0.9, 0.2) (0.8, 0.3) (0.3, 0.8) (0.6, 0.6) (0.8, 0.3) (0.7, 0.5)
F2 (0.3, 0.8) (0.5, 0.7) (0.8, 0.3) (0.7, 0.5) (0.6, 0.6) (0.8, 0.3)
F3 (0.8, 0.3) (0.9, 0.2) (0.5, 0.7) (0.3, 0.8) (0.7, 0.5) (0.5, 0.7)
F4 (0.9, 0.2) (0.9, 0.2) (0.8, 0.3) (0.3, 0.8) (0.6, 0.6) (0.3, 0.8)

e3

F1 (0.8, 0.3) (0.8, 0.3) (0.6, 0.6) (0.3, 0.8) (0.8, 0.3) (0.8, 0.3)
F2 (0.3, 0.8) (0.5, 0.7) (0.8, 0.3) (0.8, 0.3) (0.6, 0.6) (0.9, 0.2)
F3 (0.9, 0.2) (0.9, 0.2) (0.3, 0.8) (0.3, 0.8) (0.6, 0.6) (0.3, 0.8)
F4 (0.8, 0.3) (0.7, 0.5) (0.9, 0.2) (0.6, 0.6) (0.8, 0.3) (0.3, 0.8)

e4

F1 (0.9, 0.2) (0.7, 0.5) (0.3, 0.8) (0.7, 0.5) (0.9, 0.2) (0.8, 0.3)
F2 (0.3, 0.8) (0.3, 0.8) (0.7, 0.5) (0.9, 0.2) (0.8, 0.3) (0.8, 0.3)
F3 (0.9, 0.2) (0.8, 0.3) (0.3, 0.8) (0.5, 0.7) (0.6, 0.6) (0.3, 0.8)
F4 (0.8, 0.3) (0.6, 0.6) (0.8, 0.3) (0.6, 0.6) (0.9, 0.2) (0.6, 0.6)

Step 2. Four individual assessments are integrated with the use of FFWPHM operator
(ξ = ζ = 3) to obtain the collective decision matrix R̃ =

(
h̃ij

)
4×6

, as summarized in Table 5.

Table 5. Collective decision matrix R̃.

Λ1 Λ2 Λ3

F1 (0.8548, 0.2530) (0.7926, 0.3503) (0.5371, 0.7259)
F2 (0.5200, 0.7350) (0.4058, 0.7929) (0.7926, 0.3503)
F3 (0.8696, 0.2564) (0.8655, 0.2570) (0.4027, 0.7794)
F4 (0.8151, 0.3291) (0.7946, 0.3963) (0.8446, 0.2798)

Λ4 Λ5 Λ6

F1 (0.6009, 0.6741) (0.8655, 0.2545) (0.7960, 0.3454)
F2 (0.8092, 0.3933) (0.6887, 0.5574) (0.8748, 0.2570)
F3 (0.4238, 0.7869) (0.6256, 0.5797) (0.4027, 0.7794)
F4 (0.6021, 0.6201) (0.8034, 0.4115) (0.4948, 0.7478)

Step 3. Make the decision matrix normalized. Since Λ4 is a cost-type attribute, it
is transformed into a benefit-type attribute using Equation (14). Thus, the normalized
decision matrix R =

(
hij
)

4×6 has been obtained and represented in Table 6.

Table 6. Normalized decision matrix R.

Λ1 Λ2 Λ3

F1 (0.8548, 0.2530) (0.7926, 0.3503) (0.5371, 0.7259)
F2 (0.5200, 0.7350) (0.4058, 0.7929) (0.7926, 0.3503)
F3 (0.8696, 0.2564) (0.8655, 0.2570) (0.4027, 0.7794)
F4 (0.8151, 0.3291) (0.7946, 0.3963) (0.8446, 0.2798)

Λ4 Λ5 Λ6

F1 (0.6741, 0.6009) (0.8655, 0.2545) (0.7960, 0.3454)
F2 (0.3933, 0.8092) (0.6887, 0.5574) (0.8748, 0.2570)
F3 (0.7869, 0.4238) (0.6256, 0.5797) (0.4027, 0.7794
F4 (0.6201, 0.6021) (0.8034, 0.4115) (0.4948, 0.7478)



Systems 2023, 11, 162 15 of 23

Step 4. Compute the average solution matrix AV =
[
AVj

]
1×6.

[
AVj

]
1×6 =

〈
(0.8070, 0.3539), (0.7746, 0.4101), (0.7178, 0.4852),
(0.6618, 0.5935), (0.7710, 0.4289), (0.7333, 0.4769)

〉
Step 5. Compute the PDA and NDA, as listed in Tables 7 and 8.

Table 7. PDA.

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

F1 0.2642 0.1497 0.0000 0.1067 0.6653 0.6201
F2 0.0000 0.0000 0.7800 0.0000 0.0000 1.2824
F3 0.3313 0.5955 0.0000 4.0925 0.0000 0.0000
F4 0.0511 0.1102 1.2710 0.0000 0.1831 0.0000

Table 8. NDA.

Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

F1 0.0000 0.0000 1.8905 0.0000 0.0000 0.0000
F2 1.5330 2.0905 0.0000 6.8093 0.5956 0.0000
F3 0.0000 0.0000 2.5965 0.0000 0.8682 2.4275
F4 0.0000 0.0000 0.0000 0.7508 0.0000 2.0389

Step 6. First, using the BWM suggested in this study, the subjective weights
ϕi(i = 1, . . . , 6) of the attributes were determined. Following the advice of the expert
panel, the greatest and worst characteristics were Λ1 and Λ4, respectively. The preferences
for the finest and worst attributes in relation to other attributes were ascertained using FF
information to obtain FFBO and FFOW:

FFBO = ((0.5, 0.5), (0.85, 0.25), (0.92, 0.15), (0.9, 0), (0.91, 0.2), (0.93, 0.5))

FFOW = ((0.9, 0), (0.95, 0.2), (0.85, 0.25), (0.5, 0.5), (0.92, 0.2), (0.95, 0.15)).

Calculate the entropy value of each FFN using Equation (7):

EBO = (1.000, 0.8579, 0.6323, 0.7176, 0.6776, 0.6014)

EWO = (0.7176, 0.4597, 0.8579, 1.0000, 0.6324, 0.4597)

A linear model of the problem is constructed as follows:

minx1

s.t



|ϕ1 − (ϕ1 + ϕ2)× 0.8579| ≤ x1
|ϕ1 − (ϕ1 + ϕ3)× 0.6323| ≤ x1
|ϕ1 − (ϕ1 + ϕ4)× 0.7176| ≤ x1
|ϕ1 − (ϕ1 + ϕ5)× 0.6776| ≤ x1
|ϕ1 − (ϕ1 + ϕ6)× 0.6014| ≤ x1
|ϕ2 − (ϕ2 + ϕ4)× 0.4597| ≤ x1
|ϕ3 − (ϕ3 + ϕ4)× 0.8579| ≤ x1
|ϕ5 − (ϕ5 + ϕ4)× 0.6324| ≤ x1
|ϕ6 − (ϕ6 + ϕ4)× 0.4597| ≤ x1
ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5 + ϕ6 = 1
ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 ≥ 0

.

The subjective weights were then calculated using the LINGO 18.0 software.
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Second, the EWM mentioned in Section 5.1 was implemented to calculate the objective
weights. Finally, the integrated weights were calculated using Equation (12). Attribute
weights of different types were presented in Table 9.

Table 9. Attribute weights of different types.

Method Λ1 Λ2 Λ3 Λ4 Λ5 Λ6

Subjective weights ϕ 0.288 0.090 0.223 0.078 0.189 0.132
Objective weights φ 0.249 0.201 0.143 0.075 0.142 0.190

Integrated weights v 0.400 0.100 0.178 0.033 0.150 0.140

Step 7. Using the integrated weights from Table 9 as a guide, aggregate the PDA
and NDA to obtain SPi and SNi, and then normalize them to get NSPi and NSNi. Finally,
the final evaluation value ASi was calculated and the alternatives were ranked. Table 10
provides a summary of the findings.

Table 10. Calculation results and ranking under integrated weights.

SPi SNi NSPi NSNi ASi Ranking

F1 0.3104 0.3384 0.9620 0.7000 0.8310 1
F2 0.3192 1.1280 0.9890 0.0000 0.4945 4
F3 0.3227 0.0948 1.0000 0.1712 0.5856 3
F4 0.2864 0.3095 0.8875 0.7256 0.8066 2

As shown in Table 10, the alternatives are ranked F1 � F4 � F3 � F2 and F1 is the
optimal alternative.

6.1. Sensitivity Analysis

Attribute weights hold an important position in evaluation and decision results, and
effective GSS can be aided by reasonable attribute weights. Subjective weights based on the
BWM, objective weights based on the EWM, and integrated weights were then calculated
in this study. Here, the impact of EDAS based on different weight types on GSS was
analyzed. The results calculated using the subjective and objective weights are listed in
Tables 11 and 12, respectively.

Table 11. Calculation results and ranking under subjective weights.

SPi SNi NSPi NSNi ASi Ranking

F1 0.3055 0.4216 0.6524 0.6689 0.6607 2
F2 0.3432 1.2733 0.7330 0.0000 0.3665 4
F3 0.4682 1.0635 1.0000 0.1648 0.5824 3
F4 0.3427 0.3277 0.7319 0.7427 0.7373 1

Table 12. Calculation results and ranking under objective weights.

SPi SNi NSPi NSNi ASi Ranking

F1 0.3115 0.2703 0.6118 0.8103 0.7111 1
F2 0.2808 1.4252 0.5516 0.0000 0.2758 4
F3 0.5091 1.8558 1.0000 0.3995 0.6998 2
F4 0.2512 0.3252 0.4935 0.7717 0.6326 3

The evaluation values and change trends of each alternative under different weight
types are shown in Figure 2.
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From Tables 11 and 12 and Figure 2, we can see that the alternative under the subjective
weight is ranked F4 � F1 � F3 � F2, the ranking list under the objective weight is
F1 � F3 � F4 � F2, and the F1 � F4 � F3 � F2 is under the integrated method. On
the basis of these ordered lists, we can see that when the attribute weights are different,
the ranking of the schemes differs. There is a slight difference between the objective
and integrated weights of the alternative ranking, whereas the subjective and integrated
weights are quite different. Therefore, it is impossible to disregard the availability of
objective weights while evaluating and choosing green suppliers. Since the objective weight
generally rests with objective data, we should focus on both the subjective awareness
of evaluation experts and the objectivity of the original data in the evaluation process.
Integrating subjective and objective weights leads to more rational decisions.

The decision’s effectiveness is directly correlated with the change in parameters. We
will conduct sensitivity analyses on several parameters involved in the integrated EDAS
group decision model below. In the above numerical study, when aggregating expert
evaluation information using the proposed FFWPHM operator, only case ξ = ζ = 3 is
considered, which cannot comprehensively demonstrate the stability of the FFWPHM
operator and EDAS in evaluating green suppliers. Subsequently, we discuss the selection
of the ideal solution for the green suppliers in relation to the adjustment of the parameters
ξ and ζ in the FFWPHM operator.

The proposed FFWPHM operator includes two variables, ξ and ζ, thus when those val-
ues change, the way in which expert assessment data is integrated will likewise change. Due
to the different decision matrices obtained by the aggregation of operators, the integrated
weights based on aggregated data also change accordingly. The changes to the optimal
GSS achieved by different parameters in ξ and ζ remain to be discussed. We set ξ and ζ as
different real numbers and fused the rigorous assessment data. Table 13 lists the ranking
outcomes using the EDAS and FFWPHM operator under different parameter combinations.
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Table 13. Calculation results under different ξ and ζ.

AS1 AS2 AS3 AS4 Ranking

FFWPHM(2,2) − EDAS 0.7856 0.5000 0.4786 0.8019 F4 � F1 � F2 � F3

FFWPHM(2.5,3) − EDAS 0.8348 0.5033 0.5840 0.8152 F1 � F4 � F3 � F2

FFWPHM(3,3.5) − EDAS 0.8007 0.4551 0.5986 0.7804 F1 � F4 � F3 � F2

FFWPHM(3.5,4) − EDAS 0.7722 0.4186 0.6079 0.7558 F1 � F4 � F3 � F2

FFWPHM(4,4.5) − EDAS 0.7393 0.3778 0.6217 0.7266 F1 � F4 � F3 � F2

FFWPHM(4.5,5) − EDAS 0.7081 0.3380 0.6383 0.6974 F1 � F4 � F3 � F2

FFWPHM(5,5) − EDAS 0.6968 0.3228 0.6445 0.6862 F1 � F4 � F3 � F2

FFWPHM(5.5,5.5) − EDAS 0.6668 0.2822 0.6672 0.6582 F3 � F1 � F4 � F2

FFWPHM(6,6) − EDAS 0.6374 0.2446 0.6913 0.6309 F3 � F1 � F4 � F2

From Table 13, it is noted that while ξ and ζ change between [2.5, 5], the scheme’s sort
remains consistent F1 � F4 � F3 � F2, which is the same as the result when ξ = ζ = 3.
This means that the proposed integrated EDAS decision model in the FF environment has
a certain stability under different values of ξ and ζ. It can also be observed that the ranking
of the solutions alters as ξ and ζ are beyond the above mentioned range. However, the
poorest option is always the alternative F2, while the best choice changes from F1 to F3. In
other words, the operator can consistently aggregate decision information while remaining
adaptable. To adapt to various decision situations, DMs can adjust the parameters in
response to their risk preferences.

6.2. Comparative Analysis

Some current representative decision mechanisms, specifically TOPSIS [17], WAS-
PAS [26], VIKOR [27], and ARAS [27], are adopted for comparative analysis to further
verify the viability and applicability of the proposed framework in the FF environment.
To guarantee the uniformity of the results, under the situation of ξ = ζ = 3, the weight
vector (0.288, 0.090, 0.223, 0.078, 0.189, 0.132)T computed in this work is incorporated into
the calculation procedure of each approach. Tables 14 and 15 display the main computing
results and rankings produced by various decision techniques.

Table 14. Main computing results and ranking under EDAS, VIKOR, and ARAS.

Proposed Integrated EDAS VIKOR [27] ARAS [27]

ASi Ranking Si Ri Qi Ranking sc(Fi) Ki Ranking

F1 0.6607 2 0.2938 0.1834 0.1588 3 0.4487 0.7358 1
F2 0.3665 4 0.6155 0.2880 1.0000 1 0.2067 0.3389 4
F3 0.5824 3 0.5440 0.2230 0.7102 2 0.3141 0.5150 3
F4 0.7373 1 0.3005 0.1189 0.0121 4 0.4268 0.6998 2

Table 15. Main computing results and rankings under TOPSIS and WASPAS.

TOPSIS [17] WASPAS [26]

D(Fi,F+) D(Fi,F−) ς(Fi) Ranking C(1)
i C(2)

i Ci Ranking

F1 0.1803 0.2249 −0.0510 2 0.5380 0.4526 0.4953 1
F2 0.2013 0.2159 −0.2103 3 0.3977 0.2817 0.3397 4
F3 0.2140 0.2046 −0.3322 4 0.4580 0.2852 0.3716 3
F4 0.1750 0.2297 0.0000 1 0.5273 0.4613 0.4943 2

As observed by Tables 14 and 15, not only do the computing values computed by the
established model differ from the current methods, but also the final green supplier ranking
produced is significantly varied. Only the optimal solution obtained by [17] is compatible
with the suggested model and F4 is the best green supplier. Different core ideas of each
decision method cause variations in ranking.
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By modifying the relationship between the weighted summation and the product
model, WASPAS can increase decision accuracy. The core idea of the ARAS approach for
choosing the appropriate solution is to identify the weighted decision matrix’s optimal
function for calculating the utility level of the decision object. The proximity to optimal
solutions, both positive and negative, is emphasized by TOPSIS and VIKOR. However,
TOPSIS only adds up the distances between negative and positive ideal alternatives, while
VIKOR additionally takes into account the relative significance of these distances. The
distinguishing characteristic of EDAS is that it assesses options by figuring out their distance
from the typical option. With EDAS, the extremely positive and negative ideal solutions
can be converted into the average solution, which has a more realistic meaning.

According to the study presented above and the thorough comparison shown in
Table 16, compared to the created model, the following drawbacks of the other decision
approaches exist:

Table 16. A comprehensive comparison of different approaches.

Established Model [17] [26] [27] [27]

Ranking method EDAS TOPSIS WASPAS VIKOR ARAS
Decision process Group Single Group Single Single

Multiple aggregation strategies Yes No No No No
DMs’ weights Assumed No Computed No No

Criteria weights Integrated Assumed Objective Assumed Assumed
Parameters involved Yes No Yes Yes No

(1) In regard to the ranking approach, it is not suitable to utilize the closeness degree
formula that was finally employed for ranking in [17] when an alternative to being
considered is a positive ideal solution. The concept of superior and inferior solutions
is transformed by EDAS into a compromise idea, which significantly improves the
influence of extreme values on the decision outcome. The FF weighted average
(FFWA) operator engaged in research [26,27] may result in information loss and
even rank inability when membership or non-membership is equal to zero in the
FF environment.

(2) Only simple decision-making environments are covered by [17,27]. Due to insufficient
information and poor consideration, a single DM might not be capable of making
appropriate decisions. Meanwhile, the introduction of the FFWA operator into the
MAGDM by [26] may cause incorrect initial assessment information aggregation. The
decision-making model proposed assumes the participation of numerous DMs, and
the choice results generated by the group of DMs with their collective wisdom are
more practical to implement.

(3) All other approaches engaged in the comparison only focus on the objective data
and consider the objective weights of attributes in their investigations but neglect the
subjective judgment of DMs, which is a main drawback. Subjective weights are rather
realistic and aid in lowering the bias of the results. The integrated weighting technique
constructed can measure the importance of attributes more comprehensively and also
addresses the unscientific effects brought on by too strong subjective psychology in
the calculation.

7. Conclusions

This study constructed a comprehensive series of index systems for GSS, and an
innovative MAGDM strategy for selecting the ideal green supplier was created. The
proposed model used the FFWPHM operator to aggregate the FF information of the
reviewing experts, which overcomes the obstacles of data correlation and incompleteness.
A novel BWM based on FF entropy was combined with the EWM to compute the integrated
weight of each attribute, which respects the subjective judgment of DMs and relies on
objective data. Finally, EDAS was used to evaluate the options, and the numerical analysis



Systems 2023, 11, 162 20 of 23

shows that option 1 is the most reasonable green supplier. The findings of the sensitivity
analysis show that the sequence of alternatives remained the same when the parameters
were altered within a certain range, thus demonstrating the robustness of the proposed
model. The results of the comparative analysis highlight the limitations of other methods
and illustrate the strong applicability of the suggested approach.

This study provides management suggestions for companies and suppliers. In the
context of green development nowadays, suppliers should properly reconcile environmen-
tal protection with economic efficiency. From the case study, we find that DMs place a
high priority on environmental management. So suppliers can improve their competi-
tiveness by upgrading their environmental management capabilities. Enterprises should
also create social value while improving their profits. It costs labor and material resources
to implement green technology and product innovation in a short period of time, but
these investments are beneficial to boost the core competitiveness of enterprises from a
development standpoint.

Although our proposed hybrid model can provide applied value for GSS, there are
still limitations in the research. Green supplier evaluation involves various indicators
in multiple dimensions; however, the constructed index system does not cover all the
sub-criteria. Future research may expand or add some other related indicators to build a
more scientific and comprehensive index system. This paper discusses the ideal situation
where the DMs’ weight is known; however, the social interactions between experts can
be complex, and the situations where the DMs’ weight is unknown exist in the actual
decision process. In future research, we can introduce social networks into the calculation
of expert weights.
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Appendix A

Here we will briefly review the fundamentals of FFSs, specifically the basic concepts,
operations, and comparison rules between FFNs. The basic concepts of HM and PA
operators are reviewed to enable laying of the groundwork for suggesting new operators.

Definition A1 ([17]). Let X be a non-empty set. An FFS is presented as follows:

F =
{〈

xj, uF
(
xj
)
, vF
(
xj
)〉∣∣xj ∈ X

}
, (A1)

where u : X → [0, 1] is the membership function uF
(

xj
)(

0 ≤ uF
(
xj
)
≤ 1

)
and v : X → [0, 1]

is the non-membership function vF
(
xj
)(

0 ≤ vF
(
xj
)
≤ 1

)
. For xj ∈ X, it satisfies the condition

0 ≤
(
uF
(

xj
))3

+
(
vF
(

xj
))3 ≤ 1. If πF

(
xj
)
= 3
√

1−
(
uF
(
xj
))3 −

(
vF
(
xj
))3, then πF

(
xj
)

is
defined to be the indeterminacy of the set F. For clarity and brevity, F = (uF, vF) denotes an FFN.

Definition A2 ([17]). If λ > 0 exists, let A1 = (u1, v1) and A2 = (u2, v2) be two FFNs. The
algorithms between FFNs are as follows:

(1) Ac
1 = (v1, u1);

(2) A1 ⊕A2 =
(

3
√

u3
1 + u3

2 − u3
2u3

2, v1v2

)
;

(3) A1 ⊗A2 =
(

u1u1, 3
√

v3
1 + v3

2 − v3
1v3

2

)
;

(4) λA1 =

(
3
√

1−
(
1− u3

1
)λ, (v1)

λ
)

;
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(5) Aλ
1 =

(
(u1)

λ, 3
√

1−
(
1− v3

1
)λ
)

.

Definition A3 ([17]). Let A = (uA, vA) be an FFN; its score and accuracy functions are deter-
mined as follows:

O(A) = (uA)
3 − (vA)

3, (A2)

Θ(A) = (uA)
3 + (vA)

3, (A3)

where O(F) ∈ [−1, 1] and Θ(F) ∈ [0, 1].

Definition A4 ([17]). Let A1 = (u1, v1) and A2 = (u2, v2) be two FFNs; then,

(1) if O(A1) > O(A2), then A1 > A2;
(2) if O(A1) = O(A2), then,

(a) if Θ(A1) > Θ(A2), then A1 > A2;
(b) if Θ(A1) = Θ(A2), then A1 = A2.

Definition A5 ([50]). Let A1 = (u1, v1) and A2 = (u2, v2) be two FFNs; then, the standard
Hamming distance between A1 and A2is described below:

d(A1,A2) =
1
2

(∣∣∣u3
1 − u3

2

∣∣∣+ ∣∣∣v3
1 − v3

2

∣∣∣+ ∣∣∣π3
1 − π3

2

∣∣∣). (A4)

Definition A6 ([29]). Let Ai ≥ 0(i = 1, 2, . . . , ň) be the set of real values, where ξ, ζ ≥ 0. Then,

HM(A1,A2, . . . ,Aň) =

(
2

ň(ň + 1)

ň

∑
i=1,j=i

A
ξ
i A

ζ
j

) 1
ξ+ζ

(A5)

is called the HM operator.

Definition A7 ([28]). Let Ai ≥ 0(i = 1, 2, . . . , ň) be the set of real numbers. Then the PA operator
is defined as:

PA(A1,A2, . . . ,Aň) =
ň

∑
i=1

1 + σ(Ai)
ň
∑

t=1
(1 + σ(At))

, (A6)

where Ω
(
Ai,Aj

)
denotes the support of Ai and Aj, satisfying the properties mentioned below:

(1) Ω
(
Ai,Aj

)
∈ [0, 1];

(2) Ω
(
Ai,Aj

)
= Ω

(
Aj,Ai

)
;

(3) If
∣∣Ai −Aj

∣∣ ≤ |Ak −Al |, then Ω
(
Ai,Aj

)
≥ Ω(Ak,Al).
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