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Abstract: In this paper, we aimed to demonstrate how to engineer Internet of Things (IoT)-based
open multiagent systems (MASs). Specifically, we put forward an IoT/MAS architectural framework,
along with a case study within the important and challenging-to-engineer vehicle-to-grid (V2G)
and grid-to-vehicle (G2V) energy transfer problem domain. The proposed solution addresses the
important non-functional requirement of scalability. To this end, we employed an open multiagent
systems architecture, arranging agents as modular microservices that were interconnected via a
multi-protocol Internet of Things platform. Our approach allows agents to view, offer, interconnect,
and re-use their various strategies, mechanisms, or other algorithms as modular smart grid services,
thus enabling their seamless integration into our MAS architecture, and enabling the solution of
the challenging V2G/G2V problem. At the same time, our IoT-based implementation offers both
direct applicability in real-world settings and advanced analytics capabilities via enabling digital
twin models for smart grid ecosystems. We have described our MAS/IoT-based architecture in detail;
validated its applicability via simulation experiments involving large numbers of heterogeneous
agents, operating and interacting towards effective V2G/G2V; and studied the performance of various
electric vehicle charging scheduling and V2G/G2V-incentivising electricity pricing algorithms. To
engineer our solution, we used ASEME, a state-of-the-art methodology for multiagent systems
using the Internet of Things. Our solution can be employed for the implementation of real-world
prototypes to deliver large-scale V2G/G2V services, as well as for the testing of various schemes in
simulation mode.

Keywords: internet of things (IoT); open multiagent systems; smart grid; engineering multiagent
systems (EMASs); digital twin

1. Introduction

The smart grid [1] constitutes an important emerging application domain for artificial
intelligence and multiagent systems (MAS). In the smart grid, energy and information both
flow over electricity distribution and transmission networks in all possible directions. As
such, buildings, as well as electric vehicles (EVs), become active energy consumers and/or
producers, and the need for their effective integration into the system arises. Not only
is the smart grid an electricity network with diverse consumers and producers, it is also
a dynamic marketplace where heterogeneous devices appear and need to connect and
interoperate [2,3]. To date, several smart grid-related business models and information
system architectures have been proposed, but they do not always adhere to particular
standards [4]. This is not surprising, given the fact that energy markets can differ in scale,
i.e., they can be global, regional, or isolated; that they may be regulated or owned by a
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public authorities or the private sector; that they can involve renewable energy sources
or non-renewable sources; and finally that they can allow for dynamic pricing based on
demand and offers.

As such, energy markets can be naturally viewed as open multiagent systems [5–7]:
Participants are agents that can freely enter or exit the system at any time and who are
(proactively) setting and pursuing their own (presumably diverse) agendas, goals, and
business models. They are able to compete, adapt, or react to their ever-changing, dynamic
environment [8]. Moreover, they are socially able: they can negotiate, argue, and partner
with others in coalitions [9].

Currently, the Internet of Things (IoT) offers a networking layer that interconnects
distributed resources, such as charging controllers, power meters, various sensors and
actuators, and processing and decision-support services [3,10]. Given this state of affairs,
heterogeneous resources are rendered interoperable by the IoT, since they are henceforth
able to exchange information and also reconfigure the parameters that are crucial for their
operation [11]. Thus, the actual deployment of such approaches is now possible.

An IoT-enabled smart grid digital twin can represent the running states of the multi-
tude of underlying interconnected physical devices (e.g., smart meters, controllers, energy
storage devices), and has the ability to continuously collect the respective sensor measure-
ments. The actual per-device grid state can thus be made available to the operators in
real-time [12,13]. This monitoring capability can be further expanded with predictive main-
tenance techniques, allowing for the detection of malfunctions even before they occur [14].
At the same time, having access to historical per-device measurements allows the post-hoc
analysis and/or training of machine-learning models [13]. To this end, agents can enable
the digital twins of (cyber-) physical objects by being able to represent all (physical) assets
of the smart grid domain. Agents can also represent classes of producers/consumers or
even prosumers (i.e., entities that can be both consumers or producers). Electric vehicles,
in particular, act as consumers while charging, but can also be producers if they provide
energy from their batteries back to the Grid.

However, existing smart grid approaches do not provide functional open prototypes
offering features such as the above, nor do they adequately exploit existing engineering
MAS research paradigms. This is especially true for our particular domain of focus in
this paper, the vehicle-to-grid (V2G)/grid-to-vehicle (G2V) problem. Regardless of this,
there is a real need for diverse agents representing stakeholders in an open system to be
equipped with predefined protocols which they can use in order to interact [7]. Importantly,
stakeholders also need to be able to enrich such protocols with their own goals and/or
algorithms.

The objective of our work in this paper was to fulfil such requirements in the V2G/G2V
domain, contributing a novel IoT-based open MAS architecture designed to meet the
aforementioned objectives. The innovative aspects of our work are, on the one hand, the
fact that by employing our architecture, according to their particular goals, the various
stakeholders are able to develop new agents, or to re-use existing ones, as they see fit, to
cover their needs. Moreover, on the other hand, by employing an IoT platform that supports
multiple application-layer protocols, we ensure that new, diverse agents can connect to the
system to offer their services and to exchange energy, given pricing mechanisms that are
possibly dynamic—i.e., designed to adapt and fluctuate so as to promote system stability
and reliability in a game-theoretic manner [15].

In particular, our system employs SYNAISTHISI, a research-oriented IoT platform
deployed in docker containers, which allows agents to connect and communicate using the
Message Queuing Telemetry Transport (MQTT) publish/subscribe protocol [16], among
others. We demonstrate the validity of the approach via simulation experiments involving
three different charging scheduling algorithms and two dynamic pricing mechanisms
proposed in the recent V2G/G2V research literature.

In this paper we extend upon a recent study presented at the 20th International Con-
ference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2022) [17] in
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three ways. First, we emphasize the engineering aspect of the development of this system.
We describe the application of the agent systems engineering methodology (ASEME) [18]
and provide insights on the agents’ architecture, as well as the interaction protocols that
they use. The ASEME methodology was selected as it has been used in the past for
IoT-based MAS development [19] and is also referred to in surveys of this application
domain [20–22]. Second, we show explicitly how agents enable the digital twins of vehicles
and other stakeholders in the smart grid domain. Third, we conduct and document more
experiments, and compare the performances of two different dynamic pricing mechanisms.

The rest of this paper is structured as follows. Section 2 presents the necessary back-
ground and discusses related work. Section 3 then puts forward our V2G/G2V-specific
MAS-based architecture and offers a detailed description of the roles of the various agents,
and a presentation of their interactions. Following that, in Section 4 we discuss our sys-
tem’s development process in detail. In particular, we present the IoT communications
infrastructure; the ASEME-based statechart description of the inter-agent protocols and
intra-agent control models dictating the agents’ interactions and behaviour respectively;
and the various V2G/G2V agent strategies currently incorporated in our framework. In
Section 5 we conduct a thorough experimental evaluation of our architectural framework,
verifying its applicability within realistic use-case scenarios of interest. In Section 6 we
discuss the benefits arising for various stakeholders from its potential adoption and real-
world integration, also focusing on the digital twin for the smart grid. Finally, Section 7
concludes this paper, and outlines directions for future work.

2. Background

In this section, we provide the necessary background for our work in this study. This
includes the concept of a smart grid and the V2G/G2V problem in particular, for which we
provide an overview of previous works and the motivations for our own. We then discuss
the simulators, the IoT technology, and the SYNAISTHISI platform that we employed.
Subsequently, we focus on the method used for engineering IoT-enabled MASs.

2.1. Smart Grids and the V2G/G2V Problem

As EVs further penetrate energy markets globally, electricity demand patterns are
subject to change at levels that might become disruptive to the stability and the reliability
of the current electricity grids [23]. A way to mitigate this risk is by introducing “smart
charging”, or grid-to-vehicle (G2V) capabilities, according to which the charging of EVs can
be delayed and can take place at later time intervals than immediately after connecting to a
charger [24], seeking, e.g., those with more renewable production, with less demand from
other EVs, or with better pricing. In the opposite direction to that of G2V, vehicle-to-Grid
(V2G) approaches can benefit from the capability of EV batteries to store energy, and thus
coordinate their discharging to support situations of energy supply shortage [25].

Since the smart grid consists of multiple individual and economically minded entities,
it is natural to model it as a MAS [26]. MASs provide a number of benefits in contrast to their
centralized counterparts, such as faster computation times and scalability, since processing
is performed in a decentralized fashion, and private data are not required to be shared.To
date, many simulation tools and prototypes have been proposed that put forward V2G
capabilities. Such approaches may either analyze low-level technical details regarding the
operation of EVs, or are integrated into environments that include the respective individual
stakeholders. We now proceed to briefly review several representative such systems.

The study presented in [27] introduced EVLibSim, a Java-based simulator of the oper-
ation of charging stations. This tool offers a user interface (UI) that can be used to manage
charging stations. Its capabilities include the creation, modification, and monitoring of
charging stations given the application of particular scheduling algorithms. In addition
to being used by domain experts to test potential scenarios of use, it focuses on charging
stations only, without incorporating different types of stakeholders.
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The work presented in [28] involved describing a MAS that supports the decision-
making of EV drivers in regard to locating charging stations and charging opportunities in
the city of Valencia. This system incorporates multimodal information from various sources,
such as traffic monitoring systems, social networks, and pricing, in order to optimize the
placement of charging stations. Such approaches are valuable during the design of charging
infrastructure, but do not help in deciding what will happen next, after the infrastructure is
deployed and becomes operational.

The survey presented in [8] involved a large-scale literature analysis of the MAS-
based control of smart grids, providing information regarding the related technologies and
standards, and the application of intelligent agents commercial projects. The authors in [29]
proposed coalition formation techniques for EVs, providing services related to V2G and
demand-side management. An MAS architecture was designed, and the implementation of
simulations was performed, using the Java Agent Development Framework (JADE [30] 1).
In that study, different kinds of intelligent agents were considered, i.e., EVs, aggregators that
form EV coalitions, and a transmission system operator that acts as a mediator and regulator.
Coalitions were formed with the objective of reaching minimum energy requirements for
participating in the regulation market. However, this approach did not allow for more
sophisticated selection processes, making it difficult to scale, and the presented evaluation
involved only five EVs.

Another approach based on the use of JADE for the coordination of EV battery charging
is that of [31]. In that study, individual EV driver preferences were taken into account, such
as their willingness for V2G participation and the vehicle’s charging availability. It was
shown via experiments that the proposed MAS managed to satisfy EV owners’ charging
preferences individually, even in emergency conditions.

2.2. Frameworks and IoT-Based Real-World Trials

In recent years, great progress has been achieved with respect to the delivery of real-
world trials that offer V2G/G2V and which might incorporate simulators as well. To begin,
XBOS-V [32] is a software-based open platform that can be utilized for controlling the
charging of EVs connected to small buildings. The implementation of the standardized
communication method for V2G, ISO 151182, provides the connection specifications for
chargers and EVs. Relevant approaches are the open charge point interface (OCPI), the
open charge point protocol (OCPP), and the open smart charging protocol (OSCP ) [33].
OpenV2G [34] provides the required modules to implement the V2G public key infras-
tructure, e.g., to guarantee security for the EV and charging station connections, and also
to allow for simulations to be executed. Another approach, the grid-integrated electric
mobility model (GEM) [35], simulates both electricity and mobility aspects. However, this
approach only allows for analysis to be conducted at a higher level, without referring to
charging station recommenders, for example, and other particular stakeholders. Another
tool that can be used to manage the charging of batteries is ACN-Sim [36], which can be
utilized by individual end-users but not by large-scale grid operators.

Regarding the IoT domain, SYNAISTHISI is a research-oriented platform composed of
open-source frameworks that can host dockerized services and can also act as a translator
between various application-layer protocols [16]. Service dockerization allows scalable
deployments to occur independently of the underlying operating systems of the hosts.
Furthermore, the platform’s support for multiple protocols enables the orchestration of
heterogeneous agents and services that may follow different implementation paths. Fur-
thermore, the platform offers user authentication and authorization and restricts access to
private and sensitive channels for the exchange of information, and also supports semantic
annotations of exchanged information and available services.

2.3. Engineering MASs

The fields of agent-oriented software engineering and multiagent systems engineering
have produced a wealth of abstractions, methods, and techniques for developing MASs. A
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survey of this field is outside of the scope of this paper; however, the motivation for our
choice of method was based on surveys in the field and in the selected platform (IoT).

In the development of our system, we followed the approach laid out by ASEME,
the Agent Systems Engineering MEthodology [18]. ASEME can be naturally used in the
design and modeling of IoT-based MAS systems, as well as in ambient intelligence applica-
tions [19–22]. It builds on statecharts and, more broadly, the unified modeling language
(UML [37]) in order to perform system analysis and design models. It is agent-architecture-
and agent-mental-model-independent, allowing the designer to select the architecture type
and the mental attributes of the agent, thus supporting heterogeneous agent architectures.
Moreover, ASEME puts forward a modular agent design approach and uses the so-called
intra-agent and inter-agent control concepts. The former is implemented to coordinate the
different modules that implement the agent’s capabilities, thus determining its behavior,
whereas the latter allows for the control of the society of agents by defining the protocols
that govern its coordination.

Importantly, in agent communication, there typically exist predefined message se-
quences that can be applied in several situations that share the same communication pattern
regardless of the application domain [30]. Such message sequences are defined as protocols.

ASEME uses two relatively common abstractions for modeling agents: capability
and functionality. Busetta et al. [38] view capability as “a cluster of plans, beliefs, events
and scoping rules over them”. Braubach et al. [39] extended this idea and proposed that
capabilities can contain sub-capabilities and have at most one parent capability. They
defined the agent concept as an extension of the capability concept, aggregating capabilities.
In the Prometheus methodology [40], each functionality identified in the analysis phase
ends up being mapped to a capability in the design phase. In the agent modeling language
(AML) [41], capability is a concept used to model an abstraction of a behavior in terms
of its inputs, outputs, pre-conditions, and post-conditions. The behavior is the software
component, and its capabilities are the signatures of the methods that the behavior realizes,
accompanied by the method’s pre-conditions and post-conditions. This approach is similar
to that of service-oriented architectures, and thus considers the agent as an aggregation of
services.

In ASEME, the agent coordinates its capabilities in the intra-agent control model.
Capabilities are themselves decomposed to simple activities. For instance, one capability
of a personal assistant agent is the ability to locate an appropriate charging station for its
user’s car. This task can be decomposed to specific activities, e.g., one activity is finding out
which charging stations are in the user’s vicinity, which charging sockets are available at
each of them, and their free slots. Another activity is ranking the available slots according
to the user’s preferences. After identifying the activities associated with a capability, the
next step is to connect them to a specific functionality , i.e., a specific method, algorithm,
technology, or technique. This is an important managerial task as each activity can be
connected to different functionalities. For example, the decision-making activity of ranking
the available charging slots may be connected to an argumentation theory, implying an
argumentation-based method, or to a utility function, implying a multi-criteria decision
analysis method.

The inter-agent control model defines the capability of an agent to participate as a role
in a specific protocol. ASEME allows the seamless integration of the inter-agent control
model in the intra-agent control model as they follow the same formalism—i.e., state-
charts [42]. The statecharts formalism does not exhibit the limitations (limited scalability,
explosion of states) posed by other formalisms such as Petri-nets [43]. Therefore, in this
study, we used the statechart formalism to define our open protocols and design patterns.
Finally, ASEME automatically generates portions of the agent code or provides guidelines
for the programmers to transform their design models into implementation models.
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3. System Architecture

In this section, we provide an overview of the architecture of our system. First, we
provide an overview of the application domain and identify the stakeholders. Then, we
perform an analysis of the problem domain and identify the agents. Finally, we focus on
defining their interactions. We use the ASEME System Actors Goals (SAG) model to depict
the agents and their goals.

3.1. Overview of the Application Domain

We are interested in the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) energy transfer
problem domain. The first activity proposed in the ASEME methodology is to identify
the stakeholders and their goals. After studying the related literature, we focused on the
following smart grid stakeholder types [44–46]:

• Electric vehicle (EV) owners, who are usually also the drivers of EVs. To effectively
use their EVs, they need to book a place for charging them at appropriate stations,
and they pay for such a service. They might even be interested in charging them at a
lower price if the charging station could discharge their EV batteries to contribute to
the network when prices are high, i.e., acting as prosumers. Here, we consider owners
of both battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV).

• Charging station owners buy energy from producers to charge electric vehicles. In
some cases they can utilize (partially) charged EVs by employing them as energy
producers when network prices are high and then recharge the EVs later at a better
rate.

• Electricity producers are typical (possibly renewable) energy producers. They sell
power to the network at rates that are usually based on supply and demand. To
compute the latter, they depend on electricity imbalance indicators, which are usually
monitored by the global network operator.

• Electricity consumers are typical households, industries, and other buildings and their
corresponding infrastructure.

• Station recommender service providers represent groups of stations and act as me-
diators between EVs and charging stations. EV owners depend on them to find
stations that suit their schedule and preferences, and stations use them to reach out to
customers. The represented groups of stations may belong at the same firm or may
operate in the same region.

• Electricity imbalance providers can be network operators or government agencies that
monitor the grid balance and calculate/predict the periods of electricity shortage and
surplus.

• Mechanism designers are intermediate trusted third parties responsible for calculating
dynamic prices and managing the various payments between the stakeholders listed
above.

3.2. The Agent-Based Approach

Since these diverse stakeholders have their own goals and business needs, they can all
be represented by software agents in a system aiming to automate their function, and this
system can be a digital twin, allowing for their simulation and study. Agents are a suitable
paradigm, as they have the following capabilities [47]:

• They are autonomous , meaning they can operate without the direct control of humans,
and with at least some control over their own actions, their internal state, and resource
consumption;

• social, They are able to interact with other agents—including humans—and can choose
their collaborators;

• They are reactive, perceiving and responding in a timely fashion to changes in the
environment, according to their goals; and

• They are proactive, exhibiting goal-directed behavior by taking the initiative, being
purposeful, and not simply acting in response to changes in the environment.
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Thus, autonomous agents can represent stakeholders without direct intervention, with
agents being able to locate their best collaborators and take initiative in constant pursuit of
their goals. This can be achieved by adopting different software implementations that put
forward heterogeneous strategies, for example, some charging stations may strive to charge
EVs as soon as they are connected, whereas others might behave in a different manner and
choose to manage demand congestion [48]. Note, however, that modeling the low-level
power grid details, such as feeders or distribution-line constraints, lies beyond the scope of
our work.

Special attention needs to be paid to the station recommender stakeholder, whose
main goal is to bring together charging stations and EV owners. Such tasks are typically
undertaken by “middle” agents. The “middle” agent can have different roles in a multiagent
system (MAS) [49], such as that of a matchmaker (who brings service providers in contact
with service requesters, who then communicate to make the transaction), a broker or
facilitator (who facilitates the transaction), or a mediator (a combination of the previous
two, who brokers the transaction but also brings the buyer in contact with the seller). In
our case, we use the latter approach, since the charging station agent may need to negotiate
the charging details directly with the EV agent.

Taking these into account, we present the specific cooperation protocols and the high-
level architecture that can be used to deliver a MAS V2G/G2V framework. Our approach
can be used to investigate and evaluate different implementations and strategies that agents
may incorporate in a real-world setting. The protocols we put forward are open, as they
can be easily extended and tailored to capture a plethora of real-world cases. In contrast to
previous studies, detailed descriptions and semantic schemes for each service are provided,
which enable the functionalities that agents would request in such settings.

By incorporating our framework, algorithms of the designers’ choosing can be tested
and compared, e.g., methods that generate recommendations for charging and that cal-
culate charging schedules for large numbers of EVs, or alternative pricing schemes that
might induce different effects in real-world use cases. The applicability of our approach
is illustrated below by implementing a functional prototype that adopts the proposed
architecture, and by using it to execute simulations of use-cases to demonstrate its overall
functionality. An important feature of our implementation is that agents come as modular
components, and thus can be easily augmented or even replaced with approaches that
nevertheless follow the protocols that we have defined.

Our architecture assumes that agents exist within a microgrid infrastructure that can
be linked to other segments of the smart grid via distribution and transmission networks.
A microgrid can import power when its local generation falls short, and can export surplus
energy to the grid for added producer profits, according to any energy market regulations
in effect [2]. Figure 1 provides an overview of the agents and their interactions.

Specifically, the types of agents considered in the system include multiple (a) electric
vehicle agents (EV), (b) charging station agents (CS), (c) electricity producing agents (EP),
and (d) electricity-consuming agents (EC). We also assume the existence of a regulatory
service, which may be for-profit private service, consisting of the following agents: a
service aggregator or (i) a station recommender (SR), (ii) an electricity imbalance (EI) for
load monitoring, and (iii) a mechanism design (MD) for the generation of electricity prices.

Figure 2 depicts these agents as actors with goals in the form of the System Actors Goals
(SAG) model of ASEME. The SAG model for the requirements analysis phase includes a
graph with actors and their goals. The goal of one actor (the owner of the goal) may depend
on another actor (collaborator) to be realized. In the figure, we can see the actors represented
as cyan circles and the goals as yellow rounded rectangles. The dependencies are shown as
arrows directed from the owner to the goal and from the goal to the collaborator(s). In the
analysis phase, the particular goals are analyzed and represented by capabilities.
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Figure 1. High-level overview of the V2G/G2V stakeholders and their interactions.

Figure 2. The System Actors Goals model of ASEME.

EV agents typically optimize utility functions that are set by the owner of each vehicle.
Examples of utility functions include ones that guarantee that the EV will constantly have
enough charge in the battery to perform its next trip, or to achieve this with the minimum
cost possible, etc. The EV agent can monitor driving behavior and extract the underlying
models to predict probable future activities and corresponding needs.

EVs may also communicate with a charging station to schedule a charging session
or seek profit by participating in V2G and engage in negotiations with charging stations.
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Such an agent might also consist of submodules, such as components for driver preference
elicitation that monitor the typical habits and behavior of the driver, and possibly even
forecast future preferences, or interoperable user interfaces, attainable either via a mobile
device or the dashboard of the vehicle, which can be utilized by humans to operate respec-
tive procedures and monitor their conduct, for example, payments and negotiations, or
simply to browse and select recommendations.

Furthermore, EV agents can adopt alternative tactics to automatically decide upon a
charging schedule based on the defined preferences of each driver, such as cost reductions,
faster access, preferred charging networks, location-based choices, and so on. An EV agent
typically communicates with a SR agent with the aim of acquiring recommendations and
with CS agents to reserve charging slots.

Subsequently, the CS Agents regulate the physical access points (e.g., connectors, park-
ing spaces) through which EVs can connect to the grid, and may also earn revenue by
charging their batteries. They communicate with EV agents regarding existing charging
agreements and modify certain parameters to accommodate the charging of extra vehicles,
in order to improve the utilization of the station infrastructure and generate increased prof-
its. A CS Agent may encompass a charging scheduling module responsible for scheduling
charging/discharging activities over a predetermined timeframe, a negotiation decision-
making module for negotiating, a pricing module that calculates costs and payments, and
a preference elicitation module that monitors the usage of charging slots and adjusts prices
based on the station owner’s needs. A CS Agent communicates with SR, MD, EI, and
EV agents.

The SR agent notifies EVs with recommendations regarding a subset of the available
CS and charging slots that match the most with their preferences, according to, e.g., the
charging duration and the driving distance. This agent can be also augmented to take into
account various grid constraints, for example, to help avoid herding effects. It consists of a
recommendations engine module that generates charging station recommendations, an EV
repository module that stores information about the past EV behavior in order to utilize
it for future recommendations, and a charging station repository of all the CSs that have
registered with the service. It communicates with the CS and EV agents.

The EI agent aggregates data from the EP, CS, and EC agents regarding their future
anticipated energy consumption/production profiles, and calculates the periods during
which electricity is in a state of shortage or surplus. In turn, it communicates the levels
of energy imbalance with every interested party, in order for them to plan and optimize
consumption and production. It includes a constraint extraction module that may incor-
porate different measures and methods relevant in such a scenario, e.g., monitoring any
technical or practical limitations of V2G applicability, power flows, etc. It also calculates
electricity imbalances over a planning horizon. Additional repositories may contain the
stations, producers, and consumers that participate in the scheme.

The MD agent corresponds to an intermediate trusted third-party entity, which under-
takes to calculate dynamic prices and to manage the payments of the various contributor
types. Its goal is to assign appropriate and perhaps even personalized rates for energy
consumption and production by CS, EC, and EP agents. It can put forward pricing mecha-
nisms in order to incentivize agents to be truthful regarding their statements of expected
values, as well as their actual behavior.

Finally, the EP and EC agents forecast and periodically report their expected produc-
tion and consumption levels, respectively, accompanied by confidence values for these
forecasts. EP and EC agents also exchange information with the EI and MD agents. User
interfaces can be considered important submodules, since they are required by every agent
type in order to provide monitoring capabilities to the operators if fully autonomous
operation is enabled, or to allow human intervention in other operation modes (e.g., semi-
automatic or manual).
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3.3. Agent Interactions

Figure 3 illustrates the agent types and the protocols that they use to enable cooper-
ation. Note that the high-level goals shown in Figure 2 have been elaborated to reflect
specific interactions, which are labeled with an identifier so that we can easily refer to them.
Briefly, the cooperation protocols dictating agent interactions are as follows:

CP1 Charging Recommendation: Initiated by an EV for the scheduling of a charging
session. The EV submits its preference and current location to the SR and receives a
list of recommended CSs, along with the available time slots.

CP2 Charging Station Reservation: Following CP1, the EV uses CP2 to reserve the selected
charging slot at the respective CS.

CP3 Negotiation: An optional protocol, which may be initiated after CP2, whenever either
the CS or the EV, for whatever reason, needs to reschedule a charging session that has
been reserved.

CP4 Charging Station Registration: This interaction is used to register new CSs into the
system. According to it, the CS informs the MD, EI, and SR agents about the required
specifications.

CP5 Authenticate Recommendation: After CP2, the CS asks the SR for validation that in
fact the SR was the one that proposed the particular matchmaking between the EV
and the CS.

CP6 Electricity Prices: This follows CP7 and involves the MD calculating updated prices
and submit the new values to every CS.

CP7 Electricity Imbalance: This immediately follows CP10 or CP8. In the case that the
expected production or consumption levels change, the EI must broadcast the updated
values to the MD and every CS.

CP8 Charging Station Update Schedule: After CP5, the CS makes a reservation of the
requested time slot and notifies the EI and the MD accordingly.

CP9 Producer Consumer Registration: Registers new producers and consumers. New
stakeholders must inform EI and MD about their types.

CP10 Update Expected Production/Consumption: This is initiated periodically (e.g., at the
beginning of each day). In this step, every producer and consumer agent informs the
EI and MD agents regarding the coming day’s expected production and consumption
levels.

CP11 Update Energy Profile Confidence: This is initiated periodically (e.g., at the beginning
of each day). In this step, every producer and consumer agent informs the EI and MD
agents regarding the confidence that accompanies the forecasts described in CP10.

CP12 Update Station Availability: Following CP2, this interaction is used by the CSs to
update their information for the SR regarding available charging slots after new
reservations.



Systems 2023, 11, 157 11 of 28

Charging Station Agent* Electric Vehicle Agent*

Mechanism Design Agent Electricity Imbalance Agent Station Recommender Agent

Electricity Producer Agent* Electricity Consumer  Agent*

CP9
CP10
CP11

CP9
CP10
CP11 CP9

CP10
CP11

CP4
CP5

CP12

CP4
CP8

CP11

CP3

CP1

CP7

CP4
CP8

CP11

CP9
CP10
CP11

CP2

CP6 CP7

• CP1  Charging 
Recommendation Protocol
• CP2  Charging Station 
Reservation Protocol
• CP3  Negotiation Protocol
• CP4  Charging Station 
Registration Protocol
• CP5  Authenticate 
Recommendation Protocol
• CP6  Electricity Prices Protocol
• CP7  Electricity Imbalance 
Protocol
• CP8  Charging Station Update 
Schedule Protocol
• CP9  Producer Consumer 
Registration Protocol
• CP10 Update Expected 
Production/Consumption 
Protocol
• CP11 Update Energy Profile 
Confidence Protocol
• CP12 Update Station 
Availability Protocol

Figure 3. The proposed architecture. (*) denotes agent types with multiple instances. Arrows start
from the agent that initiates the interaction and point to the receiver agents.

4. System Development

In the following, we first discuss the communications and deployment infrastructure.
This enables the reader to understand the terminology behind the agent communication
protocol definitions that are subsequently presented, using the language of statecharts.
Then, we discuss the development of the agent models. We give an example in each case.
Finally, we briefly describe the implemented strategies for the mechanism design agent
and for the charging schedulers.

4.1. Communication Using the IoT Platform

Here, we describe the IoT platform that is used for agent communications and the
incorporated cooperation protocols. Our implementation is based on the SYNAISTHISI
platform [16], but any other solution that would offer the desirable features that we analyze
below could be incorporated as well. We chose this particular platform for a number of
reasons. First, it is offered with a non-commercial license and is mainly oriented towards
research. By design, end-users are allowed to onboard new software services of their
own and can be combined into more complex application designs. Furthermore, from
a technical perspective, the platform supports widely used application-layer protocols
(MQTT3, HTTP/REST4, etc.), along with translations of messages from one protocol to
another. Importantly, the platform is deployed in docker containers, making it portable,
interoperable with other software, as well as being scalable for large-scale deployments.
Finally, to secure real-world deployments, user authentication and authorization processes
are integrated in order to prevent unauthorized access to private information, such as
locations, schedules, or other personal data that might be required to be shared for the
purposes of V2G/G2V operations.

According to the modular service design paradigm, the interconnection among ser-
vices is performed via an exchange of messages, for which we utilize the MQTT publish/-
subscribe application-layer protocol in our design. A service can subscribe to topics to
receive messages or publish to topics that other services have subscribed to in order to send
information and commands. To access or transmit data through specific topics, however,
the service owner must possess the necessary privileges, which can be managed through
the platform’s graphical user interface (GUI). The same applies to the deployment and the
execution monitoring of deployed services.

Mobile assets such as EVs that need to exchange messages are required to have wireless
internet connections. For immobile objects, such as charging stations, supervisory control
and data acquisition (SCADA) systems, etc., appropriate connectors can be interfaced with
the platform, using either wireless or wired internet connections. The platform’s broker is
responsible for notifying subscribers when a message is published.
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4.2. Agent Interaction Protocols

The MAS cooperation protocols are defined here using the ASEME inter-agent control
(EAC) model. To illustrate the process, we present the charging recommendation protocol
(denoted as CP1 in Figure 3) defining the relevant interaction between an electric vehicle
agent (EV) and a station recommender agent (SR) in Figure 4. The protocol is defined
as a statechart (following the semantics of Harel [42] and the graphical model syntax of
the ASEME statechart editor [19,50]) with the AND-state CP1_ChargingRecommendation as
the root.

AND-states (depicted with a light blue color in the figure) contain OR states, and being
in an AND-state entails being in all its OR-states simultaneously, implying that the latter
are executed in parallel. OR-states (with yellow-colored labels) contain other sub-states,
only one of which can be entered at any time. Basic states (shown in green) are where agent
activities are executed. START-states show the beginning of the execution (black dots) and
END-states show where execution ends (black dots within a circle). Transitions among
states occur (i) when the activity of the source state is finalized and there is no event on the
arrow, or (ii) when the event on the arrow takes place.

Returning to Figure 4, the two OR-states in the AND-state represent the participating
agents—i.e., EV and SR. According to this protocol, the EV first enters the SendRecom-
mendationRequest state and the SR enters the ReceiveRecommendationRequest state. The EV
prepares its request by filling in the preferences and location data structures and publishes
it to the broker. Via the latter action, the publish (“EV/+/RequestChargingRecommendations”,
[preferences, location]) event takes place and the EV transitions to the ReceiveRecommendations
state to wait for the SR’s results. The ‘+’ sign is replaced by the agent’s ID, as each agent
has its own topic for publishing requests.

Figure 4. The charging recommendation protocol (CP1).

The broker receives the event and generates the relevant notification for the SR. The
SR receives the event and enters the CalculateRecommendations state to find the best options
for the EV. As soon as it completes this process, it enters the SendRecommendations state,
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where it sends its reply by publishing a message to the appropriate topic. The EV is notified
and the protocol is finished for both agents.

All the protocols shown in Figure 3 are defined using the ASEME EAC model. This
allows the development of the protocols independently of the agents’ development. The
protocols are reusable modules and the agent developers can use them in order to ensure
the agent’s flawless participation in the open MAS.

4.3. Agent Model

The agent’s are modeled using the intra-agent control (IAC) model in ASEME, which
is represented by a statechart as well. Thus, it is very easy for an agent to integrate into its
model the capability of participating in an interaction protocol. The orthogonal component
of the assumed role in the EAC model is inserted as in the IAC model.

To illustrate this process, we depict the IAC model for the EV agent in Figure 5 (we do
not provide the transition expressions so as not to visually clutter the diagram). Note that
to simplify representation, we show the protocol roles that the agent realizes as basic states.
These can be expanded to the relevant OR-states in the respective protocols. For example,
the CP1_ChargingRecommendation:EV BASIC-state must be replaced by the EV OR-state of
Figure 45.

At the beginning of its operation, the agent enters the Init state and is initialized. Then,
the Negotiate and Reserve orthogonal components follow (Figure 5). Arriving at the Reserve
component, it then transitions to the DecideNextAction basic state. There, the agent decides
the charging preferences and the desired location.

Figure 5. The intra-agent model of the electric vehicle agent.
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Then, the EV agent has three different choices to make: (a) it monitors and predicts the
battery state and driver preferences so as to autonomously decide if and how the charging
will be arranged; (b) it receives required information from predefined datasets6; and (c) it
may prompt the user via a GUI for charging preferences and manual protocol initiation.
These three possibilities correspond to different implementations of the DecideNextAction
state activity.

Whenever the agent decides to arrange a forthcoming charging process, it enters the
CP1_ ChargingRecommendation:EV state, then the RecommendationSelection state (to select the
best offer), and finally the CP2_ChargingStationReservation:EV to reserve the selected slot.
Then, it returns to the DecideNextAction state, from which it will have to transit in order
to make a new reservation or to negotiate a change in an existing arrangement using the
CP3_Negotiation:Init state.

As the negotiation protocol (CP3) can be initiated by both parties (EV or CS), the roles
it defines are that of the initiator (Init) and that of the responder (Resp). As the reader
can see, the EV can act either as an initiator (entering the CP3_Negotiation:Init state) or as
responder (entering the CP3_Negotiation:Resp state). The latter merely sends a proposal,
and if the CS agent replies, the rest of the negotiation process will be taken care of by
the NegotiationProtocol:resp state (using the responder role of the respective protocol) at the
Negotiate component. This is always executed in parallel to the Reserve component, as a CS
agent could itself initiate a negotiation at any time.

4.4. Scenario Demonstration

Herein we present one system use-case scenario. In this scenario, an EV makes a
reservation at a CS after receiving recommendations from the SR. In more detail, the agent
interactions required for an EV to reserve a charging slot are depicted in the UML sequence
diagram shown in Figure 6, which has been slightly simplified for ease of exposition. Note
that these interactions require the execution of several protocols (in particular, CP1, CP2,
CP5, CP6, CP7, CP8, and CP12), which are already provided in our implementation.

EVEV CSCSSRSR

CP1  Charging Recommendation

CP5 Authenticate Recommendation

recommendation authenticated

reservation outcome

EIEI MDMD

electricity prices

electricity imbalance electricity imbalance

updated schedule

CP8 Charging Station Update Schedule

updated schedule

CP7 Electricity Imbalance

CP12 Update Station Availability CP6 Electricity Prices

charging recommendations

CP2 Charging Station Reservation

Figure 6. Agent interactions involved in reserving a charging slot.
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The execution of this scenario is initiated when the EV agent sends a CP1 Charging
Recommendation message, with its preferences and its location, to the SR. Then, the SR
responds with the charging recommendations, which contain a list of the best-matched
charging stations that are available for charging and that match the EV’s preferences. The
EV agent selects one charging station from the recommendations list and informs the CS of
its selection by sending a tuple with the recommendation that was chosen and information
about its battery state and the desired preferences, using CP2 Charging Station Reservation.

Once the CS agent has this information, it submits a CP5 Authenticate Recommendation
to the SR in order to validate that the recommendation the EV selected is genuine. The SR
checks the recommendations that it provided and responds accordingly to the CS agent;
if the recommendation is valid, it notifies the CS agent that the recommendation has been
authenticated.

Then, the CS calculates its new energy needs by performing a CP8 Charging Station Up-
date Schedule, and sends the updated schedule to the EI and MD. Simultaneously, a reservation
outcome is sent from the CS to the EV agent with the reservation information, the charging
schedule, and the buy and sell prices for each time interval of the charging session.

The new reservation induces changes in the CS energy needs; thus, it sends a Charging
Station Update Schedule to the EI and MD with the new consumption and production
information. Then, the EI and MD respond with a schedule update outcome regarding their
ability to record that CS’s change.

The SR responds to the CS with an acknowledgment availability update outcome. After-
wards, the EI calculates the CP7 Electricity Imbalance for the time intervals that changed,
and broadcasts an electricity imbalance with the updates to all CSs and the MD.

In turn, the CS informs the SR with a CP12 Update Station Availability about its new
availability for charging slots. Finally, the MD executes the CP6 Electricity Prices protocol
to calculate prices by taking into account the updated imbalance, and announces them to
all CSs.

4.5. Implemented Agent Strategies

To validate the applicability of our framework, it was necessary to test the incorpora-
tion of different agent strategies and compare their effects on the ecosystem’s behavior via
simulations. For this purpose, we implemented two pricing algorithms that could have
been used by an MD agent in the real world in order to test if and how they affected the
stability of the grid, i.e., whether they led to more balanced production and consumption.
We also implemented three charging scheduling approaches that were able to determine
when and how much energy was exchanged between the CS and EV agents.

4.5.1. Electricity Price Calculation Algorithms Implemented by the Mechanism
Design Agent

(A) NRG-Coin pricing algorithm: A mechanism inspired by [51], which aims to
incentivize the participants to balance supply and demand. For its implementation, we
used the parameter values as presented in [52]. In more detail, let the aggregate supply and
demand at each time interval t be St, and Dt and the individual agent i’s desirable amounts
of energy for selling and buying be si

t and di
t. The closer Dt and St are, the better prices are

offered for buying and selling. The price for selling energy is:

Psell
t (si

t, St, Dt) = (0.1 · si
t) +

0.2 · si
t

e(
St−Dt

Dt
)2

and the price for buying energy is:

Pbuy
t (di

t, St, Dt) =
(0.65 · Dt) · di

t
Dt + St
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(B) Adaptive pricing algorithm: This is a pricing mechanism proposed by [53]. Ac-
cording to this mechanism, one estimates the evaluation of energy with respect to the cost
induced by the EV agents by calculating an α̂ value:

α̂ =
∑N

t=2
Pbuy

1 −Pbuy
t

2·(di′
1−di′

t )

N − 1

where N is the number of time intervals in the planning horizon, and di′
t is the demand

of EV agent i during the interval t. The mechanism can adjust prices to motivate agents
to charge their EVs when there is an energy surplus on the grid. Buying prices for the
intervals t ∈ {1, . . . , T} are given by:

P̂buy
1 − 2 · α̂ · (S1 − D1) = . . . = P̂buy

T − 2 · α̂ · (ST − DT)

Note that adaptive pricing does not determine prices for selling energy back to the
grid—i.e., it does not support V2G activities.

4.5.2. Charging Scheduling Approaches

We now shift our focus to agent (EV) charging scheduling strategies, i.e., strategies
tofordeciding the time intervals at which to charge the vehicles’ batteries7. Specifically,
the different charging scheduling methods that we tested in our simulations were the
following:

(A) First slot: According to this method, EVs choose to charge their batteries immedi-
ately after they connect to a charger, regardless of how cheap or expensive electricity is at
that particular time instant.

(B) Lowest Prices: In this case, EVs attempt to reduce overall costs by taking into
account prices during the whole period that they are connected to a charger and end up
selecting the intervals for which energy prices are the lowest.

(C) V2G : According to this approach, EVs are allowed to discharge their batteries and
provide energy back to the grid considering high price time intervals, and select to charge
it back at intervals with lower prices within the period of their connection to a charger.
For this purpose and inspired by [26,57], we used linear programming to minimize an
objective function representing charging costs in the presence of constraints regarding the
EV preferences and charging specifications.

The cost function that is minimized is:

min
T

∑
t

CG2V
t + Cdeg

t − IV2G
t (1)

subject to:
CG2V

t = dG2V
t ∗ PG2V

max ∗ pbuy
t ∗ dt (2)

Cdeg
t = f deg ∗ dV2G

t ∗ PV2G
max ∗ dt (3)

IV2G
t = dV2G

t ∗ PV2G
max ∗ psell

t ∗ dt (4)

dG2V
t + dV2G

t ≤ 1, dG2V
t , dV2G

t ∈ [0, 1] (5)

T

∑
t

dG2V
t ∗ PG2V

max ∗ dt− dV2G
t ∗ PV2G

max ∗ dt = Eneed (6)
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k

∑
t

dG2V
t ∗ PG2V

max ∗ dt− dV2G
t ∗ PV2G

max ∗ dt + Einit ≤ cmax, k ∈ [1, T] (7)

k

∑
t
(dG2V

t ∗ PG2V
max ∗ dt− dV2G

t ∗ PV2G
max ∗ dt) + Einit ≥ cmin, k ∈ [1, T] (8)

where t is the charging interval of the charging period, CG2V
t is the cost of charging, Cdeg

t is
the battery degradation cost, and IV2G

t is the profit earned by selling energy to the grid. dG2V
t

and dV2G
t are decision variables for G2V and V2G in our optimization problem and they can

take values between zero and one, and intermediate values are assigned when it is optimal
to charge or discharge at a fraction of the max charging (PG2V

max ) or discharging (PV2G
max ) power;

pbuy
t and psell

t are the buying and selling prices of energy. f deg is a degradation factor, based
on the method presented in [58], which is used to evaluate the degradation cost Cdeg

t , and
dt is the duration of each time interval.

The constraints in expressions (5)–(8) must be satisfied during the EV scheduling
optimization process. In (5), it is guaranteed that an EV will charge, discharge, or stay
idle in each time interval. It can charge and then discharge in the same interval but this
is unusual, because there must be a selling price greater than the buying price within
the same interval. Constraint (6) states that at the end of the charging session the EV
battery must be charged at the desired capacity Eneed that the owner has set as a target.
In constraints (7) and (8), we limit the allowable range of the battery charging state to be
between the minimum (cmin) and the maximum (cmax) capacity by adding the net energy
that has been received up to the end of each time interval, plus the initial amount of energy
already stored in the battery.

5. Experimental Evaluation

In this section, we present four use-cases that showcase the real-world applicability
of our solution. Through these use-cases, we evaluate and compare the implemented
strategies that we discussed previously. The programming language that we chose to use
was Python, and the datasets we utilized originated from a collection of real data from
a number of publicly available online resources8; The simulation time horizon for each
use-case was ten days The experiments were executed on a PC with an AMD Ryzen 5 1500X
@ 3.5 GHz processor and 8 GB of RAM.

Overall, agents were implemented as different programs that were deployed in inde-
pendent docker containers. Such containers could either be hosted on cloud infrastructure
executed locally on the stakeholder’s premises. Furthermore, to investigate the effects of
different strategies, we set up simulations to test and evaluate particular desired algorithms.
This was made possible via additional orchestrator scripts that utilized the API of the IoT
platform to register, deploy, and configure services in batches. Moreover, the agent actions
and final outcomes in the simuations were logged so that we could perform a post-hoc
analysis of the results. For the purposes of the simulations, we also define the duration of
a simulated hour in actual time, which in our experiments was set to two seconds. In an
actual system deployment, the required data would be obtained in real-time via sensor
measurements or user input forms. In our simulations, however, this information was
retrieved from the datasets indicated above.

Our first use-case served the purpose of comparing the various EV charging scheduling
methods, using the two pricing mechanisms that we described above. As explained above,
(i) the first slot charging scheduling method involves charging the EV during the first slot
when it is connected to a charger; (ii) the lowest prices method involves charging the EV
during intervals with the lowest consumption price; and (iii) the V2G charging scheduling
method allows an EV to also sell back to the grid some of its energy and recharge later,
as long as it is ensured that it is profitable to do so (given the price difference between
discharge and recharge intervals). Figure 7 depicts the average cumulative EV costs
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for the entire planning horizon when the MD agent implemented the NRG-Coin pricing
mechanism; whereas Figure 8 depicts these costs in the case in which the adaptive pricing
mechanism was adopted. It is clear that, regardless of the pricing mechanism in use, the
first slot method resulted in the highest costs for the EV. This was expected since, in this
case, the EV agent chooses to charge their vehicle immediately, without taking into account
the energy price. At the same time, by adopting the lowest prices method, the total cost
of EV charging dropped by about 33% by the end of the time horizon for both pricing
mechanisms examined. Regardless of the difference in the magnitude of the prices for
the two mechanisms, for (adaptive responses to higher electricity prices), the drop in costs
was relatively the same, and it was accrued via the better utilization of cheaply produced
energy (e.g., from renewable sources). The difference in the absolute price values between
the two mechanisms was not so important in our simulations since the two runs were
independent from one another, and were subject to change according to the parametrization
of the pricing functions that would have been adopted by real-world businesses. What
is of interest is the relative difference between the prices of the time intervals for each
mechanism, which, as we show in our third use-case below, ultimately affects the decisions
of the EV agents in a similar manner. Finally, by allowing V2G operations, the charging
costs dropped even more, being 15% lower than those of the lowest prices method, and 43%
lower than those of the first slot method. This was not tested in the case of the adaptive
pricing mechanism, since this mechanism was originally designed for smart charging and
does not support V2G.
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Figure 7. Average cumulative cost per EV for different charging scheduling methods (NRG-Coin
pricing).

We then studied the impact of the charging scheduling methods on the aggregate
energy imbalance. Our baseline was a grid imbalance without EV demand. We calculated
the sum of the absolute imbalance values among the intervals, the sum of only the positive
imbalance intervals (i.e., the total exported or “wasted” energy), and the sum of only the
negative intervals (i.e., the total energy imports).

As seen in Table 1 we observed significant and differing impacts of different EV
charging strategies on the energy imbalance. The employment of the first slot method by
the EVs clearly affected the system negatively: the total imbalance was increased by 7%,
and the imported energy increased by 104.2%, meaning that more than double the energy
had to be produced to meet demand. At the same time, however, the EVs absorbed energy
that would otherwise be wasted; thus, the corresponding amount dropped by 21.8%.
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Figure 8. Average cumulative cost per EV for different charging scheduling methods (adaptive pricing).

In contrast, the use of the lowest prices method demonstrated a tangible positive effect
on the system: there was a drop of 31.44% in the energy imbalance, whereas the amount
of wasted energy was reduced by 45.6%. However, “imported” energy increased as well,
albeit by a much smaller value, i.e., by 16.4%. This is because the (one hundred) EVs did
introduce a significant demand that had to be met, whereas their charging strategy did not
take the potential high energy prices into full account, nor did they contribute energy to
tackle grid shortages.

Table 1. Energy differences in charging scheduling methods compared to the “no EV” baseline. The
MAPE of the original imbalance curve was 63.9%.

Method Imbalance Wasted Imported MAPE

First Slot +7.0% −21.8% +104.2% −12.4%
Lowest Prices −31.4% −45.6% +16.4% −44.5%
V2G −37.3% −49.1% +2.5% −55.7%

An even more positive impact on the system imbalance was obtained when using
the more “intelligent” V2G charging strategy. The EVs now optimized their charging/dis-
charging plans, taking energy prices into full account and also contributing energy back
to the grid. As a result, there was an even greater reduction in the grid imbalance of
37.3%. Moreover, the wasted energy was now reduced by 49.1% and there was only a slight
increase of 2.5% in “imported” energy. Furthermore, this method demonstrated a reduction
in the mean absolute percentage error (MAPE) that was significantly larger than those of the
previous two methods. MAPE measures the difference between the induced imbalance
and a totally flat curve with a value of zero, which resembles perfect matching between
supply and demand. This is clear when plotting the imbalance across the time horizon for
each method, as we have shown in Figure 9. Indeed, it is clearly visible there that the V2G
strategy resulted in much lower induced peaks in the imbalance curve than those induced
by First Slot or Lowest Prices methods.
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Figure 9. Tackling the energy imbalance using different charging scheduling methods.

In the second use-case, we measured the total cumulative costs of EVs when increasing
the duration of their connection to chargers up to 12 h compared to the original data (i.e.,
without performing any charging rescheduling), following the three different charging
scheduling methods as in the first use-case.

The results shown in Figures 10 and 11 demonstrate that by increasing the duration of
connection, the lowest prices and V2G methods managed to gradually reduce the battery
charging costs. This occurred since the longer an EV is connected to a charger, the greater
the probability that it will be able to find the most advantageous intervals at which to buy
energy from the grid—and also to sell it back to the grid in the case of V2G. As anticipated,
again, the V2G method led to lower charging costs than the other two methods, and the
difference (mirroring V2G’s advantages) increased as the duration of the connection to a
charger became longer.
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Figure 10. Cost comparison of varying time periods for which EVs were connected to chargers
(NRG-Coin pricing).
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Figure 11. Cost comparison of varying time periods for which EVs were connected to chargers
(adaptive pricing).

In our third use-case, we compare the performance of different pricing strategies for
the MD agent. Specifically, we tested the NRG-Coin pricing and the adaptive pricing methods
described in Section 4.5. Both algorithms aim to balance supply and demand by setting
higher consumption prices during intervals in which there is a negative imbalance and
lower consumption prices for intervals in which the imbalance is positive. In this use
case, we assumed that EVs were charged following the lowest prices scheduling approach9.
Assuming that EV agents were rational and aimed to reduce their expenses, the application
of the two pricing algorithms resulted in demand being shifted to utilize the generated
energy more effectively, thus leading to smaller peaks in the imbalance curve. Figure 12
shows that the algorithms had similar effects on the stability of the grid. In Table 2, we
can observe similar behavior, namely, reducing the wasted energy, with this mechanism
slightly outperforming the NRG-Coin pricing mechanism in terms of imported energy and
MAPE reductions.

Table 2. Pricing Algorithms: energy differences compared to the “no EVs” baseline.

Method Imbalance Wasted Imported MAPE

NRG-Coin −31.4% −45.6% +16.4% −44.5%
Adaptive Pricing −31.3% −45.6% +17.1% −42.7%
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Figure 12. Comparison of adaptive pricing and NRG-Coin pricing mechanisms.
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Finally, the fourth use-case was conducted to examined the scalability of our frame-
work in terms of communication complexity as the supported EV population increased. To
this end, we plotted in Figure 13 the total number of exchanged messages required for the
scheduling of EV charging using our proposed cooperation protocols over a 10 day period,
against increasing numbers of supported EVs. It is clear from Figure 13 that there was a
linear increase in the number of messages exchanged (over 10 days) as the number of EVs
increased. As such, this result attests to the scalability of our approach.
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Figure 13. Message count for 10 days vs. the number of EVs.

6. Discussion: Enabling Digital Twins and Real-World Integration

In this study, we have taken several steps towards enabling the use of digital twins
for V2G/G2V, and more generally for the smart grid domain, as well as enabling their
real-world deployment. We know that currently there are a number of limitations in regard
to the real-world application of V2G , e.g., the relatively small number of EVs, the existence
of cheaper and better alternatives, high cost and complexity, consumer resistance, etc. [60].
The work presented in this study constitutes a step towards delivering V2G scenarios in
the real world since it helps to reduce administration complexity and end-user costs, as we
showed in our analysis.

First, we presented the inter-agent and intra-agent control models of ASEME that can
be used for different development goals:

• The inter-agent control model (EAC): This can be shared with third parties. It contains
both the activities (the basic states) and the topics that must be used by the agents to
effectively participate in a protocol.

• The intra-agent control model (IAC): This is used for modeling the agent. It reuses
parts of the EAC to ensure that the developed agents can be seamlessly integrated into
the open MAS.

• Note that an EAC implementation can also be reused “as-is” by developers, who can
use the same platform (e.g., Python) for developing their agents.

In energy markets, stakeholders develop their own business models and can have
diverse goals in negotiating with regard to their consumption and offers, and can join
and leave the system at any time. All these characteristics point to the relevance of open
multiagent systems and agent technology in general [5,6]. These open interactions call
for common ontologies, communication protocols, and suitable broker and coordination
infrastructures to enable interoperability [61].

We have used existing standards (i.e., MQTT) to propose an architecture that is truly
open, allowing players to reuse existing agents or build their own. The MAS V2G/G2V
framework that we presented in Section 3.3 defines specific communication protocols
among the stakeholders and is the basis of an implementation approach that allows for
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the evaluation and comparison of different functionalities that could be offered by the
various modules in such a setting. By focusing on openness, we allow the extension
and customization of such protocols so that they comply with the diversity of real-world
approaches. In contrast to previous studies, the semantic schemes of the services offered
to agents have been described here in detail. Using our framework as a basis, designers
may evaluate their own algorithms, e.g., for generating charging recommendations, for the
scheduling of EV charging on a large scale, or for analyzing the effects of alternative pricing
strategies. Taken together, the openness and extendability of our proposed architecture,
along with its experimental evaluation in simulated settings, as presentred in this paper,
verify its appropriateness and potential for real-world integration.

We can also provide some guidelines for the deployment of the system. The first step
is to determine the entity that will deploy, manage, and maintain the system’s backbone,
that is, the IoT platform. This entity can be any independent service provider, a power
grid regulator, or a government agency, which will also be responsible for giving access
to new users. Potential users include all the stakeholders that we have identified in our
architecture (see Section 3). Each stakeholder may purchase or develop (or outsource) an
application incorporating an agent that will represent them to the platform.

For example, car owners may download an appropriate application in which they
can create a profile and connect to the platform. The complexity of the application can be
determined based on their needs. A simple application, for example, would reserve a place
after a user request. A more sophisticated application could also employ machine-learning
techniques to learn the user’s habits and automatically reserve a place when needed by
informing its user.

Moreover, additional sensors and actuators must be interfaced with the IoT platform,
allowing agents to receive measurements and submit actions. Examples include the sensory
equipment of EV batteries, the charger controllers, and the various smart meters installed
in the buildings. The EV agent could be deployed in an owner-controlled machine, e.g.,
inside the EV, and appropriate encryption could be established with regard to the messages
exchanged in order to ensure the protection of private information. Privacy is also a concern
for the other stakeholders in the ecosystem as they too exchange private data, for example,
the buying and selling prices of each charging station, buildings’ consumption profiles, and
so on.

Therefore, our approach is readily deployable and can support real-world trials, thus
enabling the use of digital twins in the smart grid domain [12,13]. The engineering approach
that we followed possesses the following capabilities that are important in regard to digital
twins [62]:

• It allows for synchronization between the physical world and the cyber domain.
The design of our system is such that it can incorporate real-time updates even in
simulation mode, which reflect the changes in the real world. For example, if a new
charging station emerges, then a new CS agent appears in the system and starts
pursuing its goals.

• It allows the co-simulaton and modeling of subsystems. This V2G/G2V system could
be considered as a subsystem for the overall smart grid, or as an instance of many
interconnected smart grids. These grids could be hierarchical, i.e., the available power
could be determined by a producer or by a higher authority that manages grids.
Moreover, one of the participating agents, e.g., a charging station, could itself be a
multi-agent system of charging connectors participating in the V2G/G2V system, in
the form of one station that can accommodate many vehicles.

• The simulation mode can be used to test and compare various agent strategies, e.g.,
for coordinated charging/discharging [48,63] or for dealing with battery degrada-
tion issues [64,65], and in general for any approach that must be tested before it is
finally deployed.
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• Each resource is modeled as an agent, thus allowing the system to be scaled regardless
of the complexity of interactions. The system scales linearly, as we demonstrated in
our experimental evaluation (Figure 13).

Altogether, in comparison with the state of the art, in this study we have put forward
a functional system that (a) enables large-scale V2G/G2V, (b) is supported by the use of a
digital twin for simulations, (c) uses open protocols for easy adoption and realization by
business stakeholders, and (d) allows each participant to adopt their own strategies and
algorithms.

7. Conclusions and Future Work

In this paper we have demonstrate how to engineer an open system for the V2G/G2V
energy transfer problem domain, and provided its architecture and the implementations of
agents as flexible microservices that are interconnected by means of an IoT platform.

We illustrated the development process, starting by capturing the requirements of such
a system by reviewing the stakeholders of the application domain and their goals. Then,
using the ASEME methodology for IoT-enabled multiagent systems development [18,19],
we proceeded to analyze the requirements, proposing the architecture, and then developing
the prototype with the innovation of enabling the support of large-scale deployments using
IoT technology.

We achieved our objective of proposing an open architecture [7] and od covering
diverse business models via the definition of a number of key agent types and the develop-
ment of open protocols.These types and protocols can be easily extended by any interested
stakeholder, according to their needs. Our simulation experiments verify the applicability
of our approach, and we have outlined the steps to be taken for its effective integration in
the real world, along with the benefits arising from such an integration.

As the first item of our future work, we intend to populate the agents’ components with
actual machine-learning and recommender algorithms, in order to support the decision-
making of agents in relation to various activities and tasks. Furthermore, the deployment
and comparison (in simulation mode) of heterogeneous agent behaviors would be of
significance, e.g., comparing various strategies for charging/discharging, or comparing
different pricing mechanisms adopted by different charging networks. The choice of which
behaviors to simulate could be performed according to the corresponding cultural and
social values that are prevalent at different deployment sites [60,66].

Another interesting line of work would be to augment our solution with specialized
graphical user interfaces. Such interfaces would be quite different for each agent role. For
example, the interface for EVs would focus on usability for the elicitation of preferences,
whereas that of the MD would focus on data and market analytics, and there could be
different versions for the same agent type, as long as they all followed the protocols we
defined via their back-end functionality.

Moreover, the openness of our architecture allows for the creation of alternative or
additional protocols—e.g., protocols to serve the specific needs of various real-world
stakeholders, and to help conceptualize and realize digital twins of actual real-world
systems, of which the systematic analysis and the recognition of related opportunities and
shortcomings are left as future works. Indeed, it is our aim to conduct a pilot, real-world
study of our architectural framework. This will allow us to better evaluate its applicability
and to identify interesting business models and necessary extensions of the framework.

The architecture can be extended to allow the incorporation of service-level agreements
(SLAs) in the form of smart contracts between the different stakeholders. Smart contracts
can define the obligations of the contracting parties, as well as issues related to the quality of
service, such as performance, availability, and security [67]. The stakeholders’ functionality,
modeled using statecharts, allows for the automatic monitoring of the execution of SLAs
and the handling of possible violations, e.g., with property statecharts [68] or Symboleo [69].

Finally, it would be interesting to employ our generic engineering approach to different
application domains. For instance, this approach could be utilized within the domain of
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digital twins for manufacturing, in which agent-based modeling with the use of statecharts
has recently been proposed [62]. More generally, we believe that the ideas presented in this
paper can be of use and tested in any domain that calls for the engineering of IoT-based
open MAS architectural frameworks. In this direction, it would be interesting to develop a
code generator for an IoT platform for ASEME models, similarly to the research conducted
on an automatic code generator for the JADE framework [70].
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Notes
1 https://jade.tilab.com/ (accessed on 18 March 2023)
2 https://github.com/SwitchEV/RISE-V2G (accessed on 18 March 2023).
3 The message queue transport telemetry (MQTT) protocol is an OASIS standard messaging protocol for the Internet of Things,

mqtt.org https://mqtt.org/ (accessed on 18 March 2023).
4 REpresentational State Transfer (REST) over Hypertext Transfer Protocol (HTTP).
5 More detailed descriptions of the inter- and intra-agent controls and a detailed description of the protocols, including the message

syntax and semantics, can be found in our online repository: https://github.com/iatrakis/IoT-V2G-G2V (accessed on 18 March
2023).

6 This is very useful for experimentation with large agent populations.
7 Several battery charging models have been introduced in the past, considering load transfer constraints and mobility patterns

(see, e.g., [54–56]). In our study, we do not require any particular models for calculating travel duration and battery SOC, since
such values are acquired directly as sensor measurements. Of course, any of the battery charging models proposed to date could
be incorporated in each individual agent implementation if deemed necessary by the strategy.

8 Specifically, consumption and production data originated from a synthetic dataset generator [59], which was trained on in-
formation from the ENTSOE https://transparency.entsoe.eu (accessed on 18 March 2023) platform, and on EV data from the
MyElectricAvenue https://eatechnology.com/resources/projects/my-electric-avenue/ (accessed on 18 March 2023) project.

9 This was selected because the lowest prices was shown in the first use-case to perform better than the first slot method. Note that
using the top-scoring V2G scheduling method was not an available option, since one of the pricing methods we intended to
evaluate in this third use-case, adaptive pricing, does not support V2G activities (cf. Section 4.5).

References
1. Burke, M.J.; Stephens, J.C. Energy democracy: Goals and policy instruments for sociotechnical transitions. Energy Res. Soc. Sci.

2017, 33, 35–48. [CrossRef]
2. Ketter, W.; Collins, J.; Reddy, P. Power TAC: A competitive economic simulation of the smart grid. Energy Econ. 2013, 39, 262–270.

[CrossRef]
3. Ghasempour, A. Internet of things in smart grid: Architecture, applications, services, key technologies, and challenges. Inventions

2019, 4, 22. [CrossRef]
4. Espe, E.; Potdar, V.; Chang, E. Prosumer Communities and Relationships in Smart Grids: A Literature Review, Evolution and

Future Directions. Energies 2018, 11, 2528. [CrossRef]
5. Wooldridge, M.; Jennings, N.R. Intelligent Agents: Theory and Practice. Knowl. Eng. Rev. 1995, 10, 115–152. [CrossRef]
6. Huynh, T.D.; Jennings, N.R.; Shadbolt, N.R. An integrated trust and reputation model for open multi-agent systems. Auton.

Agents-Multi-Agent Syst. 2006, 13, 119–154. [CrossRef]

https://github.com/iatrakis/IoT-V2G-G2V
https://github.com/iatrakis/IoT-V2G-G2V
https://jade.tilab.com/
https://github.com/SwitchEV/RISE-V2G
https://mqtt.org/
https://github.com/iatrakis/IoT-V2G-G2V
https://transparency.entsoe.eu
https://eatechnology.com/resources/projects/my-electric-avenue/
http://doi.org/10.1016/j.erss.2017.09.024
http://dx.doi.org/10.1016/j.eneco.2013.04.015
http://dx.doi.org/10.3390/inventions4010022
http://dx.doi.org/10.3390/en11102528
http://dx.doi.org/10.1017/S0269888900008122
http://dx.doi.org/10.1007/s10458-005-6825-4


Systems 2023, 11, 157 26 of 28

7. Hattab, S.; Chaari, W.L. A generic model for representing openness in multi-agent systems. Knowl. Eng. Rev. 2021, 36, e3.
[CrossRef]

8. Mahela, O.P.; Khosravy, M.; Gupta, N.; Khan, B.; Alhelou, H.H.; Mahla, R.; Patel, N.; Siano, P. Comprehensive overview of
multi-agent systems for controlling smart grids. CSEE J. Power Energy Syst. 2020, 8, 115–131.

9. Chalkiadakis, G.; Elkind, E.; Wooldridge, M. Computational Aspects of Cooperative Game Theory; Synthesis Lectures on Artificial
Intelligence and Machine Learning; Morgan & Claypool Publishers: San Rafael, CA, USA, 2011.

10. Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the energy sector. Energies 2020,
13, 494. [CrossRef]

11. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in internet of things: Taxonomies and open challenges. Mob. Netw.
Appl. 2019, 24, 796–809. [CrossRef]

12. Brosinsky, C.; Westermann, D.; Krebs, R. Recent and prospective developments in power system control centers: Adapting the
digital twin technology for application in power system control centers. In Proceedings of the 2018 IEEE International Energy
Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6.

13. Zhou, M.; Yan, J.; Feng, D. Digital twin framework and its application to power grid online analysis. CSEE J. Power Energy Syst.
2019, 5, 391–398. [CrossRef]

14. Shahinzadeh, H.; Moradi, J.; Gharehpetian, G.B.; Nafisi, H.; Abedi, M. IoT architecture for smart grids. In Proceedings of the
2019 International Conference on Protection and Automation of Power System (IPAPS), Tehran, Iran, 8–9 January 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 22–30.

15. Nisan, N. Introduction to Mechanism Design (for Computer Scientists). In Algorithmic Game Theory; Nisan, N., Roughgarden, T.,
Tardos, E., Vazirani, V., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 209–242.

16. Akasiadis, C.; Pitsilis, V.; Spyropoulos, C.D. A Multi-Protocol IoT Platform Based on Open-Source Frameworks. Sensors 2019,
19, 4217. [CrossRef]

17. Akasiadis, C.; Iatrakis, G.; Spanoudakis, N.; Chalkiadakis, G. An Open MAS/IoT-Based Architecture for Large-Scale V2G/G2V.
In The PAAMS Collection, Proceedings of the Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems
Simulation, L’Aquila, Italy, 13–15 July 2022; Dignum, F., Mathieu, P., Corchado, J.M., De La Prieta, F., Eds.; Springer International
Publishing: Cham, Switzerland, 2022; pp. 3–14.

18. Spanoudakis, N.I.; Moraitis, P. The ASEME Methodology. Int. J.-Agent-Oriented Softw. Eng. 2022, 7, 79–107. [CrossRef]
19. Spanoudakis, N.; Moraitis, P. Engineering Ambient Intelligence Systems Using Agent Technology. IEEE Intell. Syst. 2015,

30, 60–67. [CrossRef]
20. Zambonelli, F. Key Abstractions for IoT-Oriented Software Engineering. IEEE Softw. 2017, 34, 38–45. [CrossRef]
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