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Abstract: To conserve building energy, optimal operation of a building’s energy systems, especially
heating, ventilation and air-conditioning (HVAC) systems, is important. This study focuses on the
optimization of the central chiller plant, which accounts for a large portion of the HVAC system’s
energy consumption. Classic optimal control methods for central chiller plants are mostly based on
system performance models which takes much effort and cost to establish. In addition, inevitable
model error could cause control risk to the applied system. To mitigate the model dependency of
HVAC optimal control, reinforcement learning (RL) algorithms have been drawing attention in the
HVAC control domain due to its model-free feature. Currently, the RL-based optimization of central
chiller plants faces several challenges: (1) existing model-free control methods based on RL typically
adopt single-agent scheme, which brings high training cost and long training period when optimizing
multiple controllable variables for large-scaled systems; (2) multi-agent scheme could overcome the
former problem, but it also requires a proper coordination mechanism to harmonize the potential
conflicts among all involved RL agents; (3) previous agent coordination frameworks (identified by
distributed control or decentralized control) are mainly designed for model-based control methods
instead of model-free controllers. To tackle the problems above, this article proposes a multi-agent,
model-free optimal control approach for central chiller plants. This approach utilizes game theory
and the RL algorithm SARSA for agent coordination and learning, respectively. A data-driven system
model is set up using measured field data of a real HVAC system for simulation. The simulation
case study results suggest that the energy saving performance (both short- and long-term) of the
proposed approach (over 10% in a cooling season compared to the rule-based baseline controller)
is close to the classic multi-agent reinforcement learning (MARL) algorithm WoLF-PHC; moreover,
the proposed approach’s nature of few pending parameters makes it more feasible and robust for
engineering practices than the WoLF-PHC algorithm.

Keywords: central chiller plant; game theory; model-free control; multi-agent reinforcement learning;
agent-based control; multi-agent system

1. Introduction

With the development of modern society, people are spending more time in buildings.
In 2022, the buildings and building construction sector accounted for 30% of global energy
consumption and 27% of total energy emissions [1]. Considering the urgency of environ-
ment protection, it is necessary to reduce the energy consumption and carbon emission
of the building sector. To realize that goal, appropriate operation of a building’s heating,
ventilation and air-conditioning (HVAC) is necessary since the HVAC system is one of the
major energy consumers in buildings [2].
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1.1. Optimal Control to Central Chiller Plants

The central chiller plant, as a critical sub-system in HVAC systems and accounts
for a substantial part of building energy consumption [3]. A typical central chiller plant
is comprised of chiller(s), condenser water pump(s), chilled water pump(s) and cooling
tower(s), and the chiller is the key component of this system [4].

In a central chiller plant, usually the controllable variables include chilled water
temperature, chiller running number, cooling tower running number, cooling tower fans’
working frequency, chilled/condenser water pump running number and frequency [4,5].
In order to conserve building energy, the optimal control/operation of central chiller plants
(especially the chillers) has been widely studied for decades [6–10].

Wang et al. [11] established the near-optimal performance map of case chillers by
mining the historical operational field data and other supplementary data of the case
system. The map is a refined database to describe the relationship between chillers’ near-
optimal coefficient of performance (COP, representing chillers’ energy efficiency) and the
working condition, which is comprised of two input arguments: chiller cooling load and
the temperature difference between evaporator inlet and condenser inlet. Moreover, the
performance map records the historical control plan corresponding to each near-optimal
point. Based on the established performance map, the near-optimal system energy efficiency
along with its control plan under a given working condition (i.e., system cooling load and
temperature difference) could be retrieved. Therefore, in the real-time control phase, their
proposed control logic could properly control the system under the current condition to
maximize the estimated overall energy efficiency.

Wang et al. [10] proposed an event-driven optimal control strategy using supervised
data-mining technology. In the offline preparation phase, their proposed strategy uses a
random forest regressor along with the system’s operational data, to identify the critical
variables which influence the building energy efficiency most. Then, in real-time con-
trol phase, when the critical variables change significantly (i.e., an “event” occurs), the
optimization controller would execute the pre-defined optimization protocol (based on
a system model) to adjust the setpoints of chilled water temperature, condenser water
supply temperature and supply air temperature. The simulation case study suggests that,
for their case system, part load ratio (PLR) and chilled water flowrate are closely related
to system’s overall energy efficiency. Moreover, their proposed event-driven optimal
control strategy outperforms the time-driven traditional control method by 0.9–4.6% of
energy conservation.

The abovementioned two studies both proposed an optimal control strategy on the
basis of sufficient historical system operational data because they do need historical data
to build a model/map to estimate the systems’ energy efficiency corresponding to each
potential control plan. In doing so, the optimal controller could adjust the controllable
variables with confidence. However, model-based optimal control strategies face some
common shortcomings such as model inaccuracy risk and a considerable cost of high-
quality data [12–14]. Hou et al. [12] reviewed previous studies on building optimal control
and pointed out that, although lots of effort has been devoted to improve model accuracy,
model errors exist universally and are impossible to eliminate. When model error exists,
the calculated output (optimization target) of the system model differs from the real value,
which could misguide the decision-making process of the optimization controller [14].

To tackle the universal problem of model-based control, some researchers adopted
reinforcement learning (RL) techniques to carry out model-free optimal control [13,15–17];
the details are address in Section 1.2.

1.2. Application of Reinforcement Learning (RL) Techniques in HVAC System Control

Since two decades ago, researchers have started to investigate the application value
of RL algorithms in the optimal control of building energy systems (especially HVAC
systems) [16–18]. Typically, utilizing RL techniques could be divided into three steps:
Step 1, formulate one or more RL agents (defining their action space, state space, reward
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function); Step 2, let the agent(s) interact with the virtual/real environment and update
agent(s)’ experience and policies with selected RL algorithms; Step 3, commission the
trained agent in the targeted system for optimal control. It should be noted that, in Step 3,
the agent(s) still learn to improve their decision-making policies when working. Hence,
Step 2 is not mandatory [13].

Esrafilian-Najafabadi and Haghighat [19] adopted double DQN (deep Q network)
to optimize the operation of a HVAC system. They defined the RL agent’s state with
outdoor and indoor air temperature, occupancy status and time. The setpoint of indoor
air temperature is chosen as the RL agent’s action; the reward function is composed of
heating energy and the temperature difference between indoor air and its setpoint. After
being formulated, the RL agent trained itself via double DQN algorithm within a virtual
black-box building model derived from EnergyPlus [20]. After training, the performance of
the RL agent was tested on a new black-box system model (set up with another test dataset),
and results indicate that the RL control method could outperform the model-predictive
controller (MPC) in maintaining the indoor thermal comfort.

Apart from simply saving the energy consumption of building HVAC systems, many
researchers have been investigating how to save energy costs by utilizing the time-of-
use electricity tariff, the thinking of which is also known as demand response or load
shifting [21]. To realize load shifting for building cooling systems, Schreiber et al. [22]
proposed an RL-based control method to adjust the set points of chilled water temperature,
chilled water flowrate and valve positions. They compared the performance of DQN and
DDPG (deep deterministic policy gradient) on this task. The simulation case study via
Modelica shows that DDPG could save about 14% energy cost compared to the baseline
(purely demand-oriented strategy). Moreover, DDPG performs slightly better than DQN
on this load shifting task.

Liu et al. [23] presented a multi-step RL control method based on DDPG algorithm
and predictive models. In that study, the time sequence of outdoor air temperatures and
the real-time electricity price compose the state variables; the output power of the case
HVAC system is taken as the agent’s action; and reward function is specified considering
energy consumption and user comfort. To acquire future outdoor air temperature for RL
agent’s state recognition, they modified the long short-term memory (LSTM) network
with generalized co-entropy loss to better forecast future outdoor temperature. Their
proposed method conserved over 10% more HVAC energy than on–off control conserved
in simulations.

RL-based control is also promising in its use to optimize large-scaled district cooling
systems. Wang et al. [24] adopted Q-learning to optimize the set points of chilled water
pressure of two cold sources. In that study, the RL controller observes valve positions,
hydraulic imbalance rate, real-time water pressure set point and system load ratio as state
variables, based on which, the controller would adjust the water pressure set point in a
stepwise way. Simulation results indicate that their succinct method could shorten the
control time-lag by five hours compared to the rule-based controller. Moreover, their
RL-based controller led to higher valve opening degrees, saving over 12% of pump energy
consumption compared to the rule-based controller.

Except for the simulation studies above, some researchers have implemented RL-based
controllers to control actual HVAC systems in the real world. Qiu et al. [13] proposed a
hybrid model-free chiller control method based on a RL algorithm and expert knowledge.
The outdoor air temperature and the system cooling load are regarded as system state
variables. The chilled water temperature is controlled by the agent’s action to achieve high
chiller utility, which is the reward of the RL agent. Their proposed method was successfully
implemented on a real HVAC system in Shanghai; application results suggest that the
method could reach the same energy saving performance as manual expert control does. In
addition, this team has applied the RL-based control method on another real system for the
optimization of chilled water pumps [25].
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All studies reviewed in this section optimize HVAC system operation with a single
RL agent because they only intend to control one signal (no matter the indoor temperature
setpoint or HVAC system’s output power). Nevertheless, as introduced in Section 1.1,
the operation of central chiller plants are influenced by multiple controllable variables,
in which scenario, single agent scheme may face challenges of high training cost, long
training period and poor initial performance due to the large jointed action spaces [5,26].
To coordinately optimize the whole central chiller plant, a multi-agent scheme is useful,
details of which are addressed in Section 1.3.

1.3. Coordinated Optimization Problem in HVAC Systems

As mentioned in the end of Section 1.2, when facing multiple controllable variables,
a single RL agent may be not suitable for the model-free optimization problem. If single
agent scheme is adopted, then its action space would be the jointed space of all controllable
variables’ solution space, and the size of the jointed space would increase with the geometric
series when more controllable variables become involved. This fact would lead to high
training cost and long training period of the RL agent for engineering practices [5,26].
Qiu et al. [5] quantitatively compared the energy-saving performance of the single-agent RL
scheme and the multi-agent RL scheme on the HVAC optimal control problem. Simulation
results show that for a discretized RL algorithm (policy hill climbing), multi-agent scheme
could outperform the single-agent scheme in both short-term (initial stage) and long-term
(post convergence) performance. Moreover, multi-agent scheme takes a shorter training
period to reach convergence than single-agent scheme does. Fu et al. [26] proposed a
multi-agent RL control method based on DQN for central chiller plant control. Simulation
results validate the faster converging speed of a multi-agent RL scheme. Hence, multi-agent
RL scheme is useful and meaningful for the coordinated optimization of central chiller
plants [5,26].

Although multi-agent scheme is suitable for the optimization of central chiller plants,
the coordination mechanism of agents (also known as distributed control or decentralized
control framework) is necessary but not easy to design [27,28]. Specifically, a central chiller
plant is usually composed of cooling towers, chillers, condenser water pumps and chilled
water pumps. The operational objectives of these appliances are generally consistent,
but not completely identical. Typically, the cooling tower and condenser water pump
are controlled for high energy efficiency of the whole system [5], chillers are designated
to operate at a high efficiency condition while providing sufficient cooling to the user
side [13] and the control objective of chilled water pumps are usually more inclined to the
user comfort because they are closer to the user side compared to other appliances [25].
Therefore, a potential problem of the multi-agent scheme is how to harmonize the conflict
of objectives among all control agents, coordinating their own sub-control procedures.

To tackle the coordination problem in multi-agent HVAC control field, some re-
searchers have designed different decentralized model-based optimization schemes.
Li et al. [29,30] proposed an event-driven, multi-agent optimization framework. Their pro-
posed framework categorizes the whole control system into one PAU (primary air-handling
unit) agent, one central coordinator and several room agents. They formulated the compre-
hensive optimization objective in a centralized way considering the indoor pollutant level
and the HVAC system’s energy consumption simultaneously. Then they decomposed the
original optimization problem into sub-problems via ADMM (alternating direction method
of multipliers); all sub-problems would be assigned to underlying agents. All agents
are designed to not only optimize the operation of its own region but also consider the
constraints. In real-time control, the PAU agent and the room agents solve their own local
optimization problems, reporting results to the central coordinator, and the coordinator
would update parameters for the next trial of local optimization. In every control time
step, iterations would be conducted between the coordinator and underlying agents until a
convergence is reached.
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Apart from the multi-agent scheme above (regarding individual rooms as agents),
some researchers take HVAC devices (especially central chiller plant devices) as agents.
Li et al. [31] designed a double-layer multi-agent system (MAS) to optimize the operation of
central chiller plants. In their scheme, the whole central chiller plant is divided into four sub-
systems: chillers, chilled water pumps, cooling towers and condenser water pumps. The
upper layer of the MAS is designed to coordinate the operation of these four sub-systems
(e.g., all sub-system agents would “negotiate” to determine a proper total chilled water
flowrate). Meanwhile, the underlying layer, which is composed of several device agents,
focuses on how to assign the operation task above to HVAC devices within each sub-system
(e.g., flowrate allocation among chilled water pumps). To realize the coordination among
sub-systems and allocation among devices, they proposed a communication topology for
agents to interact; game theory was adopted to deal with the conflicts of device agents
during the local optimization process; mathematical performance models of chillers and
pumps are required for local optimization.

Moreover, some studies expanded the scale of the MAS to the whole HVAC system
along with conditioned rooms. To optimize the operation of the whole HVAC system,
Wang et al. [28] proposed a hierarchical MAS composed of zone agents (controlling indoor
environment setpoints), component agents (controlling chillers, pumps, cooling towers,
air-handling units) and one central coordinator agent. In their proposed method, each
zone agent is intended to maximize the indoor comfort of its corresponding zone, and
a component agent would try to minimize the energy consumption of its corresponding
HVAC appliance. The iteration between component/zone agents and the coordinator agent
would result in an optimal solution for the whole MAS.

Studies reviewed above [28–31] tried to solve the multi-agent optimization problems
in HVAC systems with novel communication topology and coordination mechanisms.
However, they still depend on pre-defined device models to function, and only a few
studies investigated how to optimize HVAC operation using a multi-agent scheme without
models, which is also known as multi-agent reinforcement learning (MARL) [26,32].

Fu et al. [26] established a MAS composed of one chiller agent, several cooling tower
agents and condenser water pump agents to optimize the operation of the central chiller
plants with a MARL scheme. In their study, the chiller agent is intended to optimize
chiller loading of the case system while cooling tower agents and condenser water pump
agents are responsible for the optimization of device frequencies. They adopted DQN
as the basis learning algorithm for all agents. Agents share a common reward function
but do not communicate with each other, which means their agent coordination was
realized in a simple, implicit, autonomous way. According to Ref. [33], this “common
reward” mechanism could lead to global optimum. Simulation results indicate that the
control method proposed by Fu et al. reaches convergence much faster than the single RL
agent controller.

Let us summarize this section: (1) the multi-agent scheme has some advantages over
the single-agent scheme for model-free RL control of HVAC systems; (2) there are existing
studies investigating how to optimize HVAC systems with decentralized MAS, but they still
rely on device/system models to function [28–31]; (3) only a few preliminary studies based
on MARL tried to solve the multi-agent optimization problem of HVAC systems without
models [5,26], but they have not considered the issue of potential objective inconsistency
among agents.

1.4. Motivation of This Research

As abovementioned, the optimal operation of central chiller plants is important for
building energy conservation. To realize optimal control and avoid model inaccuracy risk,
RL techniques have been widely utilized to realize model-free optimal control for building
HVAC systems. Regarding the model-free optimization problem for the whole central
chiller plant, there are problems remaining: (1) the single RL agent scheme could cause a
high training cost and a long training period when optimizing multiple variables in the
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whole central chiller plant due to the large jointed action space; (2) multi-agent RL scheme
is more suitable to optimize multiple controlled variables simultaneously, but there are
potential objective conflicts among multiple appliances/agents that need reconciliation;
(3) current multi-agent coordination mechanisms are mostly designed for model-based
optimization frameworks. To tackle these problems, this study establishes the optimal
control framework of central chiller plants with a MAS; after that, this article proposes
an optimal control approach based on multi-agent reinforcement learning (MARL, for
model-free learning in MAS) and game theory given its abundant methods in solving
conflicts [34,35].

In this paper, Section 2 demonstrates the methodology of the proposed control ap-
proach; Section 3 introduces the establishment of the simulation environment for perfor-
mance verification; Section 4 analyzes and discusses the simulation case study results; and
Section 5 concludes the paper.

2. Methodology
2.1. Overview

Applicable system: Small-scaled central chiller plants composed of no more than three
identical chillers, identical parallel condenser water pumps and identical cooling towers
were used [36].

Algorithm basis: SARSA (a classic tabular RL algorithm) and Dominant strategy
underlining method (a simple method to solve the Nash equilibrium in bilateral matrix
games) were used. To apply the abovementioned algorithms, two RL agents are established
in Section 2.2: cooling agent (controlling condenser water pumps and cooling towers) and
chiller agent (controlling chillers).

Optimization objectives: For cooling agent, the objective is the comprehensive system
COP concerning chillers, condenser water pumps and cooling towers; for chiller agent,
the objective is composed of system COP and returned chilled water temperature (Tchwr)
because Tchwr could indicate if chillers-supplied cooling is enough to meet the user demand.
Details about objective function are addressed in Section 2.2.

Online and offline preconditions: A priori knowledge includes historical weather data
(ambient wet-bulb temperature), the layout of the case system, nominal characteristics of
all chillers, pumps and cooling towers. As for online system monitoring, real-time values of
the following variables are required: system cooling load CLs (kW), returned chilled water
temperature Tchwr (◦C), ambient wet-bulb temperature Twet (◦C), total electrical power of
the case system Ps (kW).

Control signals/actions: Condenser water pump frequency fpump (Hz), cooling tower
fan frequency ftower (Hz), setpoint of supplied chilled water temperature Tchws (◦C) were used.

Optimization interval: The proposed method should be executed every 15–30 min
because (1) frequent optimal control action could cause oscillation of appliances; (2) larger
interval leads to less timely optimization and less energy conservation [37]; (3) the proposed
method is based on RL algorithms, which takes environmental reward to update control
policy. Hence, the controller must wait for the system to stabilize after the former control
interference before its next learning. For small-scaled systems, for which this method
is designed, the stabilization could cost approximately 15 min; hence the appropriate
optimization interval should be 15–30 min [13].

Figure 1 shows the online workflow of the proposed method which is composed
of several steps: rule-based on–off control of all appliances (Section 2.1), optimization
of fpump, ftower, Tchws with Nash equilibrium solving (Section 2.3), agent value function
updating with SARSA (Section 2.4).
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In this study, on–off statuses of all appliances are determined with several simple rules:

(1) The whole central chiller plant only operates when CLs is over 20% of single chiller’s
cooling capacity [38–40].

(2) All cooling towers operate simultaneously when the system is on to maximize heat
exchange area [41].

(3) Increase chiller running number only when CLs is larger than current cooling capacity.
Shutdown chiller(s) if fewer chillers still meet user’s cooling demand [8].

(4) The number of running condenser and chilled water pumps is in accordance with
the number of working chillers. Chilled water pump frequency is not optimized in
this study.

2.2. RL Agent Formulation

In the proposed approach, two RL agents are defined: chiller agent which optimizes
Tchws and cooling agent which optimizes fpump, ftower. Critical variables of these two RL
agents are defined as following:

State: Two agents share the common state variable, which is composed of discretized
system cooling load CLs (kW) and rounded ambient wet-bulb temperature Twet (integer ◦C).
Note, measured real-time CLs need to be discretized according to single chiller’s cooling
capacity. The lower limit of the state space is 20% of single chiller’s cooling capacity, and
the upper limit is the rated cooling capacity of the whole case system. For instance, if single
chiller’s cooling capacity of the case system is 1000 kW and the case system consists of
three identical chillers, then CLs needs to be discretized to a space of (200, 300, 400, . . . ,
3000 kW). Moreover, the upper and lower limits of Twet in state space need to be specified
according to the historical weather data of the case system. For example, if Twet of the case
system varies within 20–30 ◦C over the last cooling season, then the upper and lower limits
of Twet in state space could be specified as 20/30 ◦C. An example of the state space is listed
in the first line of Table 1.

Table 1. Example of the value function based on the payoff matrix.

24 ◦C, 1060 kW 25 ◦C, 1060 kW 28 ◦C, 2120 kW

Payo f f
Matrix1

acooling\achiller 9 ◦C 10 ◦C 11 ◦C

Payo f f
Matrixn

30 Hz, 35 Hz 6.5, 0.8 6.8, 0.7 6.3, 0.6

. . . . . . . . . . . .

50 Hz, 50 Hz 6.2, 0.9 6.4, 0.6 6.6, 0.4

Action: For cooling agent, the combination of ftower and fpump are the action variable,
whose space is {(30 Hz, 35 Hz), (30 Hz, 40 Hz), (30 Hz, 45 Hz), (30 Hz, 50 Hz), (35 Hz,
35 Hz), . . . , (50 Hz, 50 Hz)}. In other words, the alternatives of ftower are (30, 35, 40, 45,
50 Hz), and the alternatives of fpump are (35, 40, 45, 50 Hz) for the safety of case systems [25].
For chiller agent, its action space should be defined according to its nominal Tchws value
with 1 ◦C tuning range. For example, if the nominal Tchws of the case chiller is 7 ◦C, then
the action space would be (6, 7, 8 ◦C).

Reward: The cooling agent takes the real-time system COP (COPs) as the reward,
which is calculated with Equation (1):

COPs = CLs ÷ Ps (1)

where Ps (kW) is the sum of real-time electrical power of all chillers, condenser water
pumps and cooling towers.

For chiller agent, besides the system COP, user side comfort is also worth concern
because chiller agent’s action Tchws directly influences user side comfort and chiller effi-
ciency simultaneously [13]. For an optimization problem with multiple objectives, typically
all sub-objectives would be combined with weights to one comprehensive optimization
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goal [42]. Hence, utility functions (Equations (2) and (3)) are set up herein to utilize the
comfort objective and efficiency objective [13]:

Ucom f ort =
1

1 + β1exp
[

β2

(
Tchwr − Tchwr, re f

)] (2)

Uchiller = Xcop(COPs ÷ COPs,nominal) +
(
1− Xcop

)
Ucom f ort (3)

where Ucom f ort is the comfort utility depending on returned chilled water temperature Tchwr
(◦C) and its reference value Tchwr, re f (◦C) (available on chiller manual), β1 = 0.25, β2 = 4.15;
they are coefficients determining the shape of comfort utility function curve (Figure 2).
Uchiller is chiller utility as the reward of chiller agent; COPs,nominal is the nominal value of
COPs (COPs,nominal is the quotient of rated system cooling capacity (kW) and rated system
electrical power (kW)); Xcop is the weight of efficiency objective in chiller utility, and it
should be specified within 0–1 according to the need of the applied building. A large
Xcop would make the chiller controller prefer to increase the Tchws set point for better
chiller efficiency, rendering a more aggressive control strategy; on the contrary, a small Xcop
generally leads to a conservative control strategy keeping Tchws at a low level to guarantee
user comfort. Quantitative analysis about this parameter can be found in Ref. [43]. In this
study, it is recommended to set Xcop to 0.5 referring to Ref. [13].
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𝑃𝑎𝑦𝑜𝑓𝑓  𝑀𝑎𝑡𝑟𝑖𝑥  

𝑎 \𝑎  9 °C 10 °C 11 °C 𝑃𝑎𝑦𝑜𝑓𝑓 𝑀𝑎𝑡𝑟𝑖𝑥  
30 Hz, 35 Hz 6.5, 0.8 6.8, 0.7 6.3, 0.6 

…… …… 
50 Hz, 50 Hz 6.2, 0.9 6.4, 0.6 6.6, 0.4 

Figure 2. Comfort utility function curve (β1 = 0.25, β2 = 4.15).

Value function: Since the target of the proposed approach is coordinated model-free
optimization of central chiller plants with multi-agents, the interference and competition
between multiple agents needs to be considered. Hence, the value function of each agent is
defined as Qi(s, ai, a−i), where footnote i suggests the ith agent, Qi is the value function of
the ith agent, s is the system state defined before, ai is the action of the ith agent, a−i is the
action of the other agent.

Specifically, the whole value function (including two agents’ own value functions) in
this study is designed as Table 1. The first row of Table 1 is its state space; each column
represents a certain system state and its corresponding payoff matrix. The payoff matrix
is comprised of chiller agent’s actions (which is also called strategies in game theory),
cooling agent’s actions and their payoffs under each action pair. For example, (6.5, 0.8)
means when the cooling agent’s action is (30 Hz for cooling towers, 35 Hz for condenser
water pumps) and the chiller agent’s action is 9 ◦C, their expected payoffs (i.e., the value
function values) are 6.5 and 0.8, respectively. This payoff matrix-based value function
form is proposed for the convenience of the next step—equilibrium solving. Section 2.3
demonstrates how to find out the optimal control actions (cooling agent action and chiller
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agent action) with the latest Table 1, and Section 2.4 demonstrates how to update this table
based on environmental feedback (i.e., system reward).

2.3. Equilibrium Solving

As introduced in Section 2.2, in this study, the cooling agent takes system COP as the
optimization objective, while the chiller agent optimizes both user comfort and system
COP simultaneously. Due to the discrepancy between the objectives of these two agents,
this study uses game theory approach to realize coordinated optimization. Specifically,
the coordinated optimization procedure is regarded as a static bilateral game of complete
information between two agents herein [34,35]. Each agent manages its own value function
Qi(s, ai, a−i) while both agents could observe the whole value function (the whole Table 1);
in other word, two agents update Table 1 together. This method lets two agents observe
each other’s value function because they are more cooperative than competitive to each
other. In other word, although their objectives are different, they do need to work together
for the energy efficiency of the whole system. Hence, it would be not necessary for them
to hide information from each other. Moreover, this complete information scheme could
ease the following equilibrium solving process. To solve the equilibrium for two agents,
the dominant strategy underlining method is adopted herein [34,35]:

(1) In the beginning of every optimization time step, the system state is observed, and
a certain matrix related to the current state (e.g., Table 2) can be extracted from the
whole value function table (i.e., Table 1). In Table 2, (6.5, 0.8) means at current state, if
cooling agent takes (30 Hz, 35 Hz) as the next action and chiller agent takes 9 ◦C as
the next action, then their expected payoff would be 6.5 and 0.8, respectively.

(2) Each agent underlines its optimal payoff for every potential action of the other agent.
For instance (let us ignore the “ . . . ” part for now for simplicity), cooling agent needs
to underline 6.5 in Table 2 because if chiller agent takes 9 ◦C at current time step,
the maximal payoff (i.e., value function value) for the cooling agent would be 6.5, in
accordance with its optimal action (30 Hz, 35 Hz). Similarly, cooling agent needs to
underline 6.8 and 6.6 in case that chiller agent takes 10 or 11 ◦C. On the other hand,
for the chiller agent, it needs to underline 0.8 and 0.9 in Table 2 because, according
to the current value function table (i.e., Table 2), no matter which action is taken by
cooling agent, chiller agent should take 9 ◦C to maximize its own payoff.

Table 2. Example of the bilateral payoff matrix under a certain state s.

acooling\achiller 9 ◦C 10 ◦C 11 ◦C
30 Hz, 35 Hz 6.5, 0.8 6.8, 0.7 6.3, 0.6

. . . . . . . . . . . .
50 Hz, 50 Hz 6.2, 0.9 6.4, 0.6 6.6, 0.4

(1) After underlining all optimal payoffs, find cells with two lines. In Table 2, there is one
cell corresponding to a strategy set of (30 Hz, 35 Hz, 9 ◦C), and this strategy set is a
Nash equilibrium solution. If there are more than one strategy set, take the next step;
otherwise the optimization of

(
ftower, fpump, Tchws

)
is competed with the only answer.

(2) For matrix games with large strategy space (i.e., large action space of RL agents),
there may be more than one Nash equilibrium solution. Under this circumstance,
the proposed approach uses Pareto domination principle to refine the solutions [44].
Concretely, the proposed approach would compare all equilibrium solutions’ payoffs;
if one solution’s payoff is dominated by anyone else, then this solution would be ex-
cluded. For instance, there are four solutions (i.e., four sets such as

(
ftower, fpump, Tchws

)
)

corresponding to four payoffs (6.6, 0.8), (6.6, 0.9), (6.8, 0.8) and (6.7, 0.9). In this case,
(6.6, 0.8) is dominated by the other three; (6.6, 0.9) is dominated by (6.7, 0.9); while
(6.8, 0.8) and (6.7, 0.9) do not dominate each other. Hence the two strategy sets of
payoffs, (6.6, 0.8) and (6.6, 0.9), would be excluded from the alternatives. After the
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comparison above, the other two solutions remain as alternatives, and the solution
with the maximal cooling agent payoff (which is (6.8, 0.8)) would be chosen as the
optimal control action set; then the optimization of

(
ftower, fpump, Tchws

)
is complete.

2.4. Value Function Update with SARSA

In every optimization time step, SARSA algorithm proposed by Rummery and Niran-
jan [45] is adopted herein to update agents’ value functions (i.e., to update the values such
as (6.5, 0.8) in Table 1 after solving the equilibrium of the matrix game:

Qi(s, ai, a−i)← Qi(s, ai, a−i) + α
[
ri + γQi

(
s′, a′i, a′−i

)
−Qi(s, ai, a−i)

]
(4)

where Qi(s, ai, a−i) is the ith agent’s value function value corresponding to the last state–
action pair (s, ai, a−i), s is the system state at the last time step, ai is the ith agent’s action
taken at the last time step, a−i refers to the last action taken by the other agent, ri is the
latest reward received by the ith agent, α is the learning rate, α = 0.7 in this study [13], γ
is the weight of expected future reward, γ = 0.01 according to Ref. [13]. Qi

(
s′, a′i, a′−i

)
is

the ith agent’s value function value corresponding to current state s′ and the action plan
(a′i, a′−i) solved in Section 2.3.

2.5. Hyperparameter Setting

This section addresses the setting of all static hyperparameters used in the pro-
posed approach (i.e., excluding the variables monitored in real-time). In Equations (2)
and (3), Tchwr, re f is the referenced Tchwr value (◦C), and it is available on chiller manual;
β1 = 0.25, β2 = 4.15, and they are coefficients determining the shape of comfort utility
function curve (Figure 2); COPs,nominal is the quotient of rated system cooling capacity (kW)
and rated system electrical power (kW); Xcop is the weight of efficiency objective in chiller
utility, which should be specified within 0–1 according to the need of the applied system,
and it is set to 0.5 in this study.

In Equation (4), α is the learning rate, and α = 0.7 in this study [13]; γ is the weight of
expected future reward, and γ = 0.01 herein according to Ref. [13].

3. Simulation Case Study
3.1. Virtual Environment Establishment

The control performance of the proposed method is evaluated via simulation. A real
HVAC system along with its field data is adopted to establish a virtual central chiller plant
for simulation. The layout of the case system is illustrated in Figure 3. System characteristics
are listed in Table 3.
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Table 3. Case system characteristics.

Equipment Number Characteristics (Single Appliance)

Screw chiller 2
Cooling capacity = 1060 kW, power = 159.7 kW

Chilled water temperature = 10/17 ◦C
Chilled water flow rate = 131 m3/h (36.39 kg/s)

Condenser water
pump

2 + 1
(one auxiliary)

Power = 14.7 kW, flowrate = 240 m3/h
Head: 20 m, variable speed

Cooling tower 2 Power = 7.5 kW, flowrate = 260 m3/h, variable speed

The central chiller plant model (Equations (5) and (6)) is established based on random
forest [46] and field data from one cooling season of the real case system (from 1st June
to 18th September 2019, with data sampling intervals of 10 min). Equation (5) models
the real-time system electrical power Ps (kW). Equation (6) models the temperature of
the chilled water returning from the user side. Along with Equations (1)–(3), this central
chiller plant model (i.e., Equations (5) and (6)) could provide environmental reward to RL
agents for learning. Involved variables are introduced in Table 4. It is worth noting that
the simulation based on the established system model is time-independent—the simulated
system operation at each simulation time step does not influence adjacent time steps. In
every time step, the system model receives the real-time environmental inputs (CLs, Twet)
and control signals ( fpump, npump, ftower, ntower, statuschiller, Tchws); then it models the Ps
and Tchwr, feeding them back to RL agents; then its work is complete.

Ps = Random f orest
(
CLs, Twet, fpump, npump, ftower, ntower, statuschiller, Tchws

)
(5)

Tchwr = Tchws + CLs/
(
npump × Fchw × Cp

)
(6)

Table 4. Nomenclature of involved variables.

Variable Description Unit

Ps
Real-time overall electrical power of chillers, condenser water
pumps and cooling towers kW

CLs System cooling load kW
Twet Ambient wet-bulb temperature ◦C
fpump Common frequency of running condenser water pump(s) Hz

npump
Current working number of condenser water pumps (equal to the
running number of chillers and chilled water pumps)

ftower Working frequency of running cooling tower(s) Hz
ntower Current working number of cooling towers
Tchws Temperature of supplied chilled water ◦C
Tchwr Temperature of returned chilled water ◦C
Fchw Nominal chilled water flowrate of single chiller kg/s
Cp Specific heat capacity of water kJ/(kg·K)

statuschiller

Current working status of chillers:
1–only Chiller 1 is running, 2–only Chiller 2 is running,
3–both chillers are running, 0–no chiller is running

Equation (6) is a simple physical process estimation equation while Equation (5) is
a black-box model based on regression. Hence, the accuracy of the trained Equation (5)
needs to be verified before we use it to model the operation of the case central chiller plant.
The accuracy of the trained Equation (5) has been evaluated and verified in Ref. [5] with
indicators including MAPE (mean absolute percentage error), CV-RMSE (coefficient of
variation of the root mean square error) and R2 (coefficient of determination). Details about
modelling could be found in Ref. [5].
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3.2. Compared Control Algorithms

In this study, the following control logics are adopted as comparative methods to
evaluate the performance of the proposed approach.

Basic control: This control logic keeps ftower, fpump, Tchws at 50 Hz, 50 Hz and 10 ◦C,
respectively (i.e., nominal values of these appliances).

WoLF-PHC (Win or Learn Fast-Policy Hill Climbing) control: It is a classic MARL
algorithm for the RL in non-fully cooperative multi-agent systems [47,48]. It was selected
as the comparative algorithm for the following reasons:

(1) Typically the learning task in a MARL field can be categorized into fully cooperative
task [49], fully competitive task [50] and non-fully cooperative (mixed) task. Among
them, the mixed task is the most general and complicated task form. Different MARL
algorithms could handle different types of tasks, WoLF-PHC is a universal algorithm
that is capable of dealing with a non-fully cooperative (mixed) task [51], which is also
the targeted problem in this study.

(2) WoLF-PHC can work feasibly in heterogeneous multi-agent systems. That is, even if
not all agents are embedded with the same learning algorithm, WoLF-PHC could still
work normally [51].

(3) WoLF-PHC does not require agent’s prior knowledge about the task, which is the
same as the approach proposed in this study [52].

(4) WoLF-PHC has been investigated for the multi-agent optimal control research in
buildings and power grids [5,48,53], which proves its feasibility and performance.

In brief, WoLF-PHC is a feasible, classic and well-performing algorithm adaptable
to the case problem in this study [51]. Hence, it is a suitable comparative algorithm to
better evaluate and reveal the performance of the approach proposed herein. In this study,
when applying WoLF-PHC, three agents are established: tower agent, pump agent and
chiller agent. For tower agent, its action space is (30, 35, 40, 45, 50 Hz) for ftower; the pump
agent’s action space is (35, 40, 45, 50 Hz) for fpump; the chiller agent’s action space is (9, 10,
11 ◦C) for Tchws. All agents share a common state space, which is the same as the proposed
approach in Section 2.2. Moreover, the pump agent and tower agent share a common
reward variable, system COP, as in Section 2.2; the chiller agent’s reward variable is chiller
utility, as in Section 2.2.

When applying WoLF-PHC, three functions need to be established for each agent:
value function Qi(s, ai), target policy πi(s, ai) and historical average policy πi(s, ai) (foot-
note i refers to the ith agent). For each agent, all Qi(s, ai) values are initialized to 0, all
πi(s, ai) values are initialized to 1

|Ai |
, all πi(s, ai) values are initialized to 1

|Ai |
where |Ai|

is the size of the ith agent’s action space (i.e., for pump agent, |Ai| = 4; for chiller agent,
|Ai| = 3). The number of each state’s occurrence is recorded by C(s), and it is initialized
to 0.

In the online control process, each agent updates its own Qi(s, ai), πi(s, ai), πi(s, ai)
with Equations (7)–(13), where Qi(s, ai) is the Q-value of the ith agent corresponding to the
last state s and its last action ai; α is agents’ learning rate, with α = 0.7 referring to Ref. [13];
ri is the reward value of the ith agent from the last time step; γ is the weight of the expected
future reward, γ = 0.01 [13]; max

ai
′

Qi(s′, ai
′) is the maximum Q-value of the ith agent at cur-

rent state s′; πi
(
s, ai,j

)
is the ith agent’s target policy function value corresponding to the last

state s and the jth action ai,j. Moreover, πi
(
s, ai,j

)
is the ith agent’s average policy function

value corresponding to the last state s, and the jth action ai,j; argmax
ai
′

Qi(s, ai
′) is the optimal

action of the ith agent at the last state s. δwin, δlose are special parameters of WoLF-PHC, influ-
encing how fast an agent adjusts its target policy. Referring to Refs. [52,53], δlose : δwin = 4
is recommended considering convergence speed. In this study, different pairs of δwin, δlose
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are used to investigate the influence and potential risk of these two critical parameters:
{(δwin = 0.01, δlose = 0.05), (δwin = 0.03, δlose = 0.15), (δwin = 0.05, δlose = 0.25)}.

Qi(s, ai)← Qi(s, ai) + α

[
ri + γmax

ai
′

Qi
(
s′, ai

′)−Qi(s, ai)

]
(7)

C(s) = C(s) + 1 (8)

πi
(
s, ai,j

)
← πi

(
s, ai,j

)
+

1
C(s)

[
πi
(
s, ai,j

)
− πi

(
s, ai,j

)]
f or ∀ai,j ∈ Ai (9)

πi
(
s, ai,j

)
← πi

(
s, ai,j

)
+ ∆s,ai,j f or ∀ai,j ∈ Ai (10)

where:

∆s,ai,j =


−δs,ai,j if ai,j 6= argmax

ai
′

Qi(s, ai
′)

∑
ai,c 6=ai,j

δs,ai,c else (11)

where:

δs,ai,j = min
(

πi
(
s, ai,j

)
,

δ

|Ai| − 1

)
(12)

δ =

 δwin if ∑
ai,j∈Ai

πi
(
s, ai,j

)
Qi
(
s, ai,j

)
> ∑

ai,j∈Ai

πi
(
s, ai,j

)
Qi
(
s, ai,j

)
δlose else

(13)

4. Results and Discussion

To verify the performance of the proposed control approach, simulations are conducted
via the virtual environment established before. The operation of the case system over
a cooling season (from 1 June to 18 September 2019) is simulated under five different
controllers (Table 5). In each step of simulations, one data point of the measured Twet, CLs
are utilized as environmental inputs to the controller and the system model; after receiving
the inputs, the controller would determine the forthcoming control plan to the system
model; based on environmental inputs and control signals, the system model could output
the modelled system power and Tchwr, which would be referred by the controller for
reinforcement learning [5].

Table 5. Simulation cases.

Case Controller
Algorithm

Cooling Tower
Action

Condenser Pump
Action

Chiller
Action Parameters State Reward

1 Baseline 50 Hz 50 Hz 10 ◦C / / /

2

WoLF-PHC
30, 35, 40, 45,

50 Hz 35, 40, 45, 50 Hz 9, 10, 11 ◦C

α = 0.7
γ = 0.01

δwin = 0.01
δlose = 0.05

Twet,
CLs

System COP,
chiller utility

3

α = 0.7
γ = 0.01

δwin = 0.03
δlose = 0.15

4

α = 0.7
γ = 0.01

δwin = 0.05
δlose = 0.25

5 Game theory
MARL

Jointed action-like (pump 50 Hz, tower
30 Hz) 9, 10, 11 ◦C α = 0.7

γ = 0.01
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As listed in Table 5, five controllers are generated for a comparative simulation case
study: one baseline controller which keeps ftower, fpump, Tchws at nominal values; three
WoLF-PHC controllers with different pairs of (δwin, δlose); one Game MARL controller in
accordance with our proposed approach. Moreover, due to the stochastic nature of RL
algorithms, Case 2–5 are all repeated for three times independently, and the averaged
results of each case are analyzed herein. In addition, Case 2–5 do not include pre-training,
which means all agents are initialized right before simulation. Table 5 suggests that the
proposed Game MARL controller has fewer pending parameters than WoLF-PHC does,
denoting its robustness in engineering applications.

4.1. First Cooling Season Performance

Simulation results over the first cooling season are addressed in Figure 4 and Table 6.
Figure 4 illustrates distributions of system COP, chiller utility and Tchwr in the first simulated
cooling season. In Figure 4, WoLF_0.01 corresponds to Case 2, WoLF_0.03 corresponds to
Case 3, WoLF_0.05 corresponds to Case 4.
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Table 6. Simulation results on the first episode (first cooling season).

Case Total energy Consumption (kWh) Cumulated Chiller Utility

1 549,101 11,511.58
2 486,865 13,055.17
3 490,685 13,052.78
4 505,180 12,474.10
5 491,623 12,579.88

Distributions of the system COP indicate that the central boxes of Game MARL con-
troller and WoLF_0.01 controller are higher than WoLF_0.05 and the baseline. Moreover,
median values (i.e., the line at the middle of the central box) show the same. Therefore,
generally, the Game MARL controller and WoLF_0.01 controller perform well on enhancing
system energy efficiency. To this fact, deduced reasons include the following: (1) the basic
controller keeps all appliances running at nominal operational values, wasting energy con-
servation potential; (2) the two critical parameters of WoLF-PHC (i.e., δwin, δlose) evidently
influence the learning effectiveness of the WoLF-PHC algorithm, and misspecification of
these two parameters (e.g., WoLF_0.05) weakened the performance of this algorithm in this
case study [52].

About the results of Tchwr, it is observed that the general Tchwr distribution of the
Game MARL controller is relatively higher than the others’, denoting its aggressive strategy
on adjusting the chillers’ Tchws set point (because tunning up Tchws could enhance chiller
efficiency but may sacrifice user comfort [54]). This fact (higher Tchwr of Game MARL)
is also corresponding to the chiller utility distribution, where Game MARL’s conditional
mean value (i.e., the rhombus point on the scatter swarm) is lower than those of WoLF_0.01
and WoLF_0.03 because Game MARL lost some comfort utility. Moreover, regarding the
chiller utility distribution, the conditional mean value of WoLF_0.05 is lower than Game
MARL’s although its Tchwr is lower (which is better for the comfort utility objective). That
is because WoLF_0.05′s advantage on user comfort does not neutralize its shortage on
system efficiency.

Table 6 lists the quantified results of each case. It suggests that WoLF_0.01 performs
the best on saving energy and maintaining user comfort; Game MARL’s performance is
close to WoLF_0.03, better than WoLF_0.05. Table 6 also verified the deduction before; mis-
specification of δwin, δlose weakens the performance of WoLF-PHC, which brings potential
risk to this algorithm.

It is also worth noting that the Case 1 energy consumption is not equal to the result in
Ref. [5] because the baseline controller herein adopts a constant 10 ◦C Tchws set point, while
it is 11 ◦C in Ref. [5]. Furthermore, Tchws influences the chillers’ energy consumption.

4.2. Performance Evolution in Five Cooling Seasons

For RL algorithms, the post-convergence performance is as important as the initial
short-term performance. In addition, the RL agent’s convergence speed is another critical
indicator for engineering application.

Figure 5 shows the long-term performance of the Game MARL controller and the
WoLF_0.01 controller in continuous five-episode simulations (no pre-training). Solid lines
are the energy saving rate of two controllers compared to the baseline controller. Solid
and dashed lines suggest that both RL-based controllers’ performance converge at the
second episode (i.e., the second cooling season); this time cost is acceptable for engineering
practices. WoLF_0.01 outperforms Game MARL in cumulated chiller utility value by about
4%, which proves that WoLF-PHC, with an appropriate hyper-parameter setting, is a mature
and feasible MARL algorithm for central chiller plants’ optimal control. Meanwhile, their
post-convergence energy saving rates are very close (gap less than 0.5%), which validates
the energy saving performance of the proposed Game MARL approach. Moreover, our
approach’s nature of fewer pending parameters implies its robust anticipated effectiveness
and feasibility for engineering application.
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5. Conclusions and Future Work
5.1. Conclusions

Optimal control of central chiller plants has been widely investigated due to its great
importance for building energy conservation and decarbonization. Model-free control
based on RL techniques is promising for engineering practices thanks to its avoidance
of model uncertainty risk [17]. However, the popular single RL agent scheme suffers
from a slow converging speed and a long training period when optimizing multiple
controlled variables for central chiller plants [5,26]. Multi-agent scheme is suitable for the
simultaneous optimization of multiple controllable variables, but it also faces the challenge
of how to coordinate multiple agents’ local optimization procedure. Moreover, previous
decentralized control frameworks for a multi-agent scheme are mostly designed for model-
based control algorithms. Therefore, it is necessary to develop a multi-agent model-free
optimal control approach for the optimization of central chiller plants.

To realize that goal, this paper proposes a multi-agent model-free optimization ap-
proach for central chiller plants using multi-agent reinforcement learning and game theory.
The proposed approach describes the coordinated problem as a bilateral matrix game
between cooling side appliances and chillers considering their inconsistent operational
objectives. Meanwhile, this approach adopts SARSA as the RL algorithm for agents’ learn-
ing. Different to previous research, the method proposed herein has the following features
simultaneously: model-free optimization; multi-agent optimization scheme; consideration
of the objective inconsistency of involved agents. The abovementioned characteristics
imply the considerable feasibility of the proposed method in engineering practices.

A data-driven system model is established with measured field data of a real HVAC
system. The system model is taken as the virtual environment for simulation case studies.
Five different controllers are generated to control the virtual system. Results indicate that,
at the initial stage (the first cooling season without pre-training), the proposed approach
could save over 10% of system energy compared to baseline, which is acceptable and close
to the classic MARL algorithm, WoLF-PHC. After the first cooling season, the performance
of the proposed controller nearly converged at a 12% energy savings rate. Simulation
results proved that compared to WoLF-PHC, the proposed approach’s nature of fewer
pending parameters implies its robust anticipated effectiveness, validating its feasibility for
engineering practices.
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5.2. Future Work

As addressed in Section 2.1, the proposed approach is designated to optimize the
operation of chillers, cooling towers and condenser water pumps. Chilled water pumps are
not included in the optimization herein. Hence, in the future, the coordinated model-free
optimization including all appliances above is worth investigation to better utilize the
energy saving potential of central chiller plants.

In addition, although the proposed approach is embedded with fewer parameters
than WoLF-PHC (which leads to less parameter tuning work), the calculation process of
the proposed method is more complicated for comprehension. It would be meaningful to
simplify its workflow for engineering practice in the future.

The proposed method adopts a tabular RL algorithm which requires discretization
of state and action variables, and the influence of the discretization granularity to control
performance is worth quantitative analysis in the future.
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