
Citation: Almazroi, A.A.; Ayub, N.

Enhancing Smart IoT Malware

Detection: A GhostNet‑based Hybrid

Approach. Systems 2023, 11, 547.

https://doi.org/10.3390/systems11110547

Academic Editors: Tetiana

Hovorushchenko, Ivan Izonin and

Hakan Kutucu

Received: 18 September 2023

Revised: 3 November 2023

Accepted: 8 November 2023

Published: 11 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Enhancing Smart IoT Malware Detection: A GhostNet‑based
Hybrid Approach
Abdulwahab Ali Almazroi 1,* and Nasir Ayub 2

1 Department of Information Technology, College of Computing and Information Technology at Khulais,
University of Jeddah, Jeddah 21959, Saudi Arabia

2 Department of Creative Technologies, Air University Islamabad, Islamabad 44000, Pakistan;
nasir.ayubse@gmail.com

* Correspondence: aalmazroi@uj.edu.sa

Abstract: The Internet of Things (IoT) constitutes the foundation of a deeply interconnected society
in which objects communicate through the Internet. This innovation, coupled with 5G and artifi‑
cial intelligence (AI), finds application in diverse sectors like smart cities and advanced manufac‑
turing. With increasing IoT adoption comes heightened vulnerabilities, prompting research into
identifying IoT malware. While existing models excel at spotting known malicious code, detecting
new and modified malware presents challenges. This paper presents a novel six‑step framework.
It begins with eight malware attack datasets as input, followed by insights from Exploratory Data
Analysis (EDA). Feature engineering includes scaling, One‑Hot Encoding, target variable analysis,
feature importance using MDI and XGBoost, and clustering with K‑Means and PCA. Our Ghost‑
Net ensemble, combined with the Gated Recurrent Unit Ensembler (GNGRUE), is trained on these
datasets and fine‑tuned using the Jaya Algorithm (JA) to identify and categorizemalware. The tuned
GNGRUE‑JA is tested on malware datasets. A comprehensive comparison with existing models en‑
compasses performance, evaluation criteria, time complexity, and statistical analysis. Our proposed
model demonstrates superior performance through extensive simulations, outperforming existing
methods by around 15% across metrics like AUC, accuracy, recall, and hamming loss, with a 10%
reduction in time complexity. These results emphasize the significance of our study’s outcomes,
particularly in achieving cost‑effective solutions for detecting eight malware strains.

Keywords: Internet of Things; deep learning; malware detection; optimization methods; classification;
GhostNet; Jaya Algorithm

1. Introduction
Presently, advanced technologies like massive data analytics, Artificial Intelligence

(AI), Immersive Virtual Environments (IVE), and the Internet of Things (IoT) have evolved
into integral elements of the Fourth Industrial Revolution. These technologies are now in‑
tegrated into various fields, and they have had a significant impact [1]. As the IoT market
expands, the devices, systems, and applications within it influence industries and reshape
our daily lives. In the Internet of Things (IoT) realm, devices connect and share information,
enhancing convenience in our lives. Nonetheless, this high degree of interconnectedness
also increases cybersecurity risks, such as Distributed Denial of Service (DDoS) assaults
that flood networks and malevolent crypto‑mining that seizes resources for digital cur‑
rency. These threats have been increasing rapidly [1–4].

Adding to the challenge, some manufacturers quickly produce and distribute IoT
devices without strong security measures. This can lead to vulnerable devices entering
the market, catching the interest of malware creators. When these devices are compro‑
mised, they can expose personal data and spreadmalware tomore extensive networks [5,6].

Systems 2023, 11, 547. https://doi.org/10.3390/systems11110547 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems11110547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0001-7181-2100
https://orcid.org/0000-0002-1153-5401
https://doi.org/10.3390/systems11110547
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems11110547?type=check_update&version=1

Systems 2023, 11, 547 2 of 26

Kaspersky Lab, a cybersecurity company, reported that in 2018, they found 121,588 dif‑
ferent types of IoT malware, more than three times the 32,614 they found in 2021. They
discovered over 120,000 variations of intelligent malware [7].

The convenience of IoT comes with security concerns. Malware, a type of harmful
software, can infiltrate computer systems, networks, and devices, causing significant dam‑
age. As these attacks becomemore advanced, they become harder to stop using traditional
securitymethods. IoT devices, in particular, are at risk due to their limited ability to defend
against attacks [8]. Such attacks can compromise device security, leading to data breaches,
financial losses, and other serious consequences. Given these challenges, researchers are
focusing on finding ways to detect and classify malware in IoT systems. One approach is
using signatures, where known malicious code patterns are compared to what is happen‑
ing in the system. Another way is by observing the behavior of programs and identifying
anything unusual. Finding the optimal solution to safeguard IoT devices is essential since
both approaches have advantages and disadvantages.

The expansion of the Internet of Things (IoT) has enabled the connectivity of devices,
but it has also sparked an increase in DDoS assaults and cryptocurrency mining [9]. Some
IoT devices lack proper security, making them easy targets for malware [10,11]. Kasper‑
sky Lab found over 121,000 types of IoT malware in 2018, a sharp increase from 2017 [12].
Researchers are using machine learning to combat this. By training models on malware
and safe programs, machine learning can identify both known and unknown malware,
adapting to evolving threats. However, challenges include the need for diverse malware
samples and susceptibility to manipulation. Deep learning techniques, like convolutional
and recurrent neural networks, show promise in recognizing patterns in malware but re‑
quire substantial resources [9,12].

To detect and categorize IoTmalware, researchers conduct studies using feature learn‑
ing and classification [3,13]. Analysis phases are divided into static, dynamic, hybrid, and
memory analyses [10,14]. Detectionmethods include specification‑based, signature‑based,
cloud‑based techniques and heuristic‑based [15,16]. These techniques can prevent mal‑
ware from spreading to other IoT devices. Nevertheless, IoT devices often feature con‑
strained hardware resources, making promptly identifying emergingmalware threats chal‑
lenging. Researchers are nowdeveloping novelmodels by applyingmachine learning tech‑
niques and enhancing their capabilities. A complete approach to malware detection is pro‑
vided by hybrid models that utilize signature‑driven and behavior‑based techniques [17].
These models integrate machine learning with other techniques and employ feature selec‑
tion to enhance efficiency. IoT devices face evolvingmalware threats; researchers continue
to explore methods to protect these devices.

This research paper introduces an ensembler model designed to detect and classify
malware on Internet of Things (IoT) devices. The proposed model combines the capabil‑
ities of GhostNet Gated Recurrent Unit (GRU) and an optimization technique, Jaya Algo‑
rithm (JA), resulting in a more efficient and accurate malware detection and classification
process. Themodel’s methodology involves extracting crucial features frommalware sam‑
ples using theMean Decrease Impurity (MDI) sequences. These derived features are input
into the machine learning models to enable additional feature extraction and examination.
The JA is employed to optimize the model’s performance when dealing with a huge size of
data. This algorithm aids in pinpointing the optimal parameter settings, thereby elevating
the model’s effectiveness by reducing computational intricacy.

The primary achievements of this study include the following:
1. We investigate eight big datasets encompassing malware and benign instances, es‑

sential insights to train our model effectively: Gagfyt, Hide and Seek, Kenjiro, Linux
Hajime, Mirai, Muhstik, Okiru, and Tori.

2. By adeptly utilizing feature engineering techniques like precise feature scaling, exten‑
sive one‑hot encoding, and insightful feature importance analysis employing MDI
and XGBoost, we empower our model to outperform in identifying intricate mal‑
ware behaviors.

Systems 2023, 11, 547 3 of 26

3. We proposed a pioneering deep learning ensemble named GNGRUE, designed to
effectively process and classify large datasets, thereby enhancing the efficiency of
our approach.

4. The proposed approach, GNGRUE, enhances classification performance accuracy by 15%,
accompanied by a 10% reduction in time complexity compared to existing approaches.

5. By tuning the parameters of GNGRUE through JA, our model can easily handle large
amounts of data with the same accuracy and execution time.

6. Real‑world Applicability: By successfully identifying and countering eight distinct mal‑
ware strains, our research provides a valuable contribution to securing IoT systems. This
impact resonates particularly in sectors like smart cities and advanced manufacturing.
The structure of this study is as follows: Section 2 provides a concise overview of pre‑

vious studies in themalware identification and categorization field. Section 3 elaborates on
the intended refined hybridmodel, providing further insight into its essential elements and
operational mechanisms. Moreover, Section 4 delineates the outcomes obtained from ex‑
periments and assesses the efficacy of the proposed ensembler. Finally, Section 5 presents
the conclusion, summarizing the central findings and suggesting potential enhancements
for future research.

2. Literature Review
Many researchers have devoted their efforts to categorizing and detecting malicious

software, employing methods that cover dynamic, static, and approaches driven by arti‑
ficial intelligence. This section offers an overview of diverse techniques utilized in clas‑
sifying malicious software. Static evaluation methods are used to extract unchanging at‑
tributes like byte sequences, textual elements, and opcode sequences [16,17], as well as
factors such as function length allocation [17], functional call graphs [18], and attributes of
PE files [19]. A study by the investigator [20] involved the evaluation of various machine
learning approaches utilizing static characteristics derived from binary files. Similarly, the
author of [21] also implemented an indirect random forest technique based on stationary
features to categorize malicious software. The identification of signature‑based malware
commonly entails procedures that involve analyzing malicious code, creating signatures,
and storing them in databases. However, these strategies prove ineffective when dealing
with zero‑day malware frequently generated by malicious actors. Both automated pro‑
cessing and code obfuscation are susceptible to scrutiny through static analysis. Dynamic
assessment methodologies capture behavioral components, such as system calls, network
interactions, and sequences of instructions [22].

The author proposed a similarity‑based approach in [23], which involves classify‑
ing malicious software. Moreover, Hidden Markov Models (HMMs) are employed to re‑
trieve sequences of API calls, and similarity scores were computed to aid in categorizing
malicious software. Their approach has prominent computational overhead and demon‑
strates heightened effectiveness when applied to a smaller dataset. Dynamic analysis is
limited by the potential for changing malware behavior within virtual environments. Hy‑
brid approaches have been developed to categorize malicious software, amalgamating at‑
tributes from unchanging and ever‑changing assessment techniques and computational
intelligence methods.

In [24], the author utilized a hybrid Support VectorMachine (SVM) to extract dynamic
attributes associated with API calls and detect malicious software. Additionally, the study
suggests that this hybrid approach outperforms the sole reliance on static or dynamic iso‑
lation techniques. More recently, visual‑based techniques have gained considerable atten‑
tion in research on analyzing malicious software [25]. For instance, researchers have rep‑
resented sequences of opcodes and system calls as visual images [26]. Furthermore, [27]
proposed an effectivemethod for distinguishing packed and encryptedmalicious software,
generating graphical representations of malicious software binaries to categorize them.

Visual methodologies have proven instrumental in enhancing the precision of cate‑
gorizing binary files and broadening the scope of extensively utilized techniques, as ex‑

Systems 2023, 11, 547 4 of 26

emplified by the pioneering investigation in [28]. By harnessing visualizations grounded
in bytes, researchers swiftly discern pivotal file components. The work detailed in [29]
applied GIST texture attributes extracted from grayscale visual depictions, leveraging the
K Nearest Neighbors (KNN) algorithm with Euclidean distance to classify malicious soft‑
ware. This methodology boasts lower computational overhead compared to the n‑gram
malware classification method. The author in [30] introduced an automated analytical ap‑
proach that generates entropy graphs from grayscale images.

Nonetheless, their technique contends with elevated entropy measures and lacks pat‑
tern visualization, diminishing its efficacy in identifying packed malware. In the context
of [31], the author extracted intensity, Gabor, and wavelet attributes from binary images
through a technique impervious to code obfuscation. Furthermore, the author advocated
using grayscale images and applying the local mean method to reduce image dimensions,
enhancing ensembling capabilities.

A unique approach to studyingmalware activitywas discovered during the investiga‑
tion by [32]. This approach involves using API hooking to retrieve data from applications
that use API calls and parameters. This technique decodes unique malware activities from
the sequence of calls to the API and data that are collected. Incorporating machine learn‑
ing approaches like SVM, EnsembleMethods (RandomForest) algorithms, and Tree‑based
Models to classify malware using inferred behaviors was one way to tackle the problem
of precisely detecting malware. This challenge was attributed to the subjectivity between
analysts and the behaviors they interpreted.

A novel method using treemaps and thread graphs to graphically summarize a large
number of behavior reports from CWSandbox was presented by the author in [33]. Data
visualization is made easier by treemaps, which provide insights into the frequency of
executed processes and API requests. Conversely, the thread graph translates behavior
data into sequential images, enumerating individual thread operations within processes
over time.

Examining alterations in malware quality relative to legitimate software of specific
categories, the investigation detailed in [34] applies conventional software quality mea‑
surements to extract diverse elements and uncover prevailing trends. Meanwhile, the au‑
thor introduces a rapid technique for identifying variant malicious code, employing im‑
age processing technology to represent malware visually. In the initial stage, the binary
malware file is transformed into a grayscale image, capitalizing on Convolutional Neu‑
ral Networks (CNN) for autonomously deriving features from this visual representation.
Furthermore, by employing the bat algorithm, a data equalization method is implemented
on the malware image, effectively addressing overfitting concerns stemming from distinct
malware families. This approach to detecting malware mainly boasts swift performance
and a remarkable accuracy rate of 94.5%. Tackling the intricate task of identifying novel
variations stands at the core of evolution detection, and this study harnesses the power of
semi‑supervised learning while embracing a wide variety of features. Table 1 shows the
malware classification comparison study and the method used.

In response to the limits of signature‑based techniques, researchers have moved their
attention to behavior analysis and anomaly detection methods [9,35]. The necessity of uti‑
lizing machine learning in malware identification and intrusion detection is demonstrated
by this alteration in strategy, which has resulted in the integration of machine learning al‑
gorithms into various network‑level anomaly detection systems. These techniques include
methodically evaluating network traffic data and collecting discriminative characteristics
that discriminate between genuine and malicious traffic. After that, these traits are used
to train classification algorithms to detect prospective assaults.

These classification models’ outputs are frequently shown in binary form, classifying
each instance of data as either normal or anomalous. Similar to this, a study [36] used fea‑
ture selection sets derived from earlier studies in Android malware traffic identification to
test five supervised machine learning techniques. RF, MLP, KNN, Naive Bayes (NB), and
Decision Tree (J48) were the algorithms employed. Furthermore, utilizing feature selec‑

Systems 2023, 11, 547 5 of 26

tion sets from the stated approach, the experimental results showed that the Multi‑Layer
Perceptron (MLP) classifier outperformed all other classifiers, with an 83% accuracy rate,
a 90% True Positive (TP) rate, and a 23% False Positive (FP) rate.

Table 1. Comparative Study of Malware Classification and Detection Methods.

Ref Method Key Characteristics Differences Limitations Dataset

[14,15] Malware Analysis and
Detection

Static, Dynamic, Machine
Learning Based Strategies

Varied approaches
for malware

categorization explored

Only specific malware
is considered muhstik, kenjiro

[16–19] Static
Assessment Techniques

Extracts byte, text, opcode
sequences, function length
distribution, functional call
graph, PE file features

Focuses on static
attributes for

malware classification

Limited assessment of
dynamic behaviors MIRAI, okiru

[20,21] Machine
Learning Approaches

Utilizes static attributes for
malware classification;

Introduces oblique random
forest technique

May face challenges in
accurately detecting

complex
malware variants

Dependent on analysts’
interpretation of behaviors Binary file datasets

[22] Dynamic
Assessment Methods

Extracts behavioral elements
(system calls, network

interactions,
instruction sequences)

Captures malware
behavior in

dynamic environments

Limited applicability to
heavily obfuscated malware

Behavioral traces,
system call datasets

[23] Similarity‑Based
Classification

Uses Hidden Markov
Models (HMMs) to retrieve

API call sequences

This entails
computational

overhead, particularly
with reduced data

Efficacy may decrease with
highly polymorphic malware

API call
sequence datasets

[24] Hybrid Methodologies
Combines static and

dynamic attributes with
machine learning

Offers an integrated
approach

combining diverse
analysis techniques

Resource‑intensive due to
combined methodologies

Various
malware datasets

[25,26] Support Vector Machine
(SVM) Approach

Extracts dynamic API call
attributes for identification;
Utilizes hybrid approach for

improved results

The hybrid approach
may outperform

standalone techniques

Requires substantial labeled
data for training

Dynamic behavior
traces, labeled datasets

[27–31] Visual‑Based
Techniques

Represents opcodes and
system calls as visual images

Utilizes visual
representations for
malware analysis

Limited capability for
handling dynamic behaviors

Image datasets,
malware binaries

[32] Treemaps,
Thread Graphs

Visualizes malware
behaviors from behavior
records; Condenses
significant behavior

record reports

Offers visual
summarization of
behavior data

Complexity may increase
with a large volume of

behavior records
Behavior

[33,34] Variant Malicious
Code Detection

Utilizes image processing for
rapid detection; Applies

grayscale image conversion
CNN features extraction

Rapid detection
approach with
high accuracy

May struggle with highly
encrypted or

packed malware

Image datasets,
malware binaries

Recurrent neural networks (RNNs) have been shown to be useful in identifying net‑
work traffic behavior by other researchers [37] who modeled the traffic as a series of evolv‑
ing states over time. This method converted network traffic features into character se‑
quences, allowing RNNs to learn their temporal characteristics. However, the study’s
findings suggested that RNN detection models found difficulties in dealing with traffic
behaviors that required more clearly identifiable information and some occurrences of un‑
balanced network traffic.

Sevenmachine learning techniqueswere applied to the 24 attributes of thewell‑known
Kyoto 2006+ dataset in a recent study [38]. Among these were NB, SVM, K‑Means, Fuzzy
C‑Means (FCM), KNN, Radial Basis Function (RBF), and an ensemble methodology that
included the six previously mentioned techniques. The results of the tests indicated that
the majority of these learning algorithms generated very high accuracy rates, consistently
above the 90% threshold.

In addition, a self‑learning anomaly detection system based on Discriminative Re‑
stricted BoltzmannMachine (DRBM) neural networks was described in [39]. In its training
model, this technique was unusual because it only used normal traffic data to dynamically
generate the knowledge necessary for identifying anomalous traffic with amazing accu‑
racy. Three experiments were conducted: one with the popular KDD’99 public dataset,
one with compromised network host, and one utilizing real traffic traces from a healthy
network host. The initial studies produced the most accurate findings, with 92% and 96%
accuracy rates, respectively.

Systems 2023, 11, 547 6 of 26

Another significant study [40] focused on anomaly identification in complicated net‑
work settings by decreasing noisy data associated with irrelevant attributes. A mix of ma‑
chine learning techniques for feature selection was used. To discover feature clusters, the
investigation began with the unsupervised k‑means clustering approach. Subsequently,
features were ranked using the Naive Bayes algorithm and the Kruskal‑Wallis test, lead‑
ing to the selection of the most pertinent qualities based on their rankings. In the last
stage, the C4.5 selection tree algorithm looked at a few chosen attributes from the first
phase. The findings of the experiment showed that a significant reduction in the number
of characteristics improved the speed and accuracy of anomaly identification by lowering
processing overhead.

After a comprehensive literature review, we propose an optimized solution for mal‑
ware detection. The details of this proposed framework are expounded upon in Section 3.

3. Motivation and Problem Statement
Constant and dynamic assessment, machine learning, ensemble approaches, and the in‑

tegration ofmassive datamethodologies have historically been the focus ofmalware detection
research [14–19]. However, with the increasing importance of artificial intelligence‑driven
malware detection, there is a need for fresh and innovative solutions. One promising ap‑
proach is ensemble learning, where multiple classifiers are trained and selectively employed
to enhance detection capabilities. Despite its widespread use, signature‑based detection re‑
mains limited to known malware variations, while combining passive and active analysis
methods requires significant time and effort. Addressing the class imbalance between benign
and malicious instances, a well‑established challenge in the literature [24–26], has proven to
be an effective strategy.

This research introduces a pioneeringmethodology that combines static and dynamic
analyses to evaluate malware’s runtime behavior. Ensemble learning with the GhostNet
classifier and the JA optimization technique substantially improves the efficiency and ef‑
fectiveness of malware detection.

4. Proposed SystemModel
This study uses a range of eight malware datasets to provide a hybrid deep learn‑

ing method for malware identification. The initial stage involves loading the dataset into
DataFrames and consolidating all datasets with the target column (malicious or benign)
to determine outcomes. Further data pattern investigations are conducted through Explo‑
ration Data Analysis (EDA).

Recognizing the potential overfitting issues associated with unbalanced datasets, we
address them by considering the distribution of the target variable. Subsequently, the in‑
put data are transformed into a format suitable for deep learning processing, utilizing
one‑hot encoding feature engineering. Feature scaling is applied to normalize the data,
aligning the range of data characteristics or independent variables. Crucial features are
identified using Mean Decrease in Impurity (MDI) and XGBoost algorithms before incor‑
porating them into the Zeek Analysis Tool (ZAT) DataFrame, facilitating the management
of extensive data volumes. K‑means and PCA algorithms are employed for data cluster‑
ing, and the effectiveness of these clustering techniques is evaluated using the silhouette
score metric. After clustering, the isolation forest method is utilized to identify anomalies
or deviations in the dataset.

The dataset becomes suitable formachine learning analysis after completing these pre‑
processing steps. It is then divided into 25% training and 75% test data. Optimal GNGRU
parameters, enhancing classification, are determined using the JA optimization technique.
For a comprehensive overview of the proposed model’s workflow, refer to Figure 1.

Systems 2023, 11, 547 7 of 26

Systems 2023, 11, x FOR PEER REVIEW 7 of 26

Recognizing the potential overfitting issues associated with unbalanced datasets, we

address them by considering the distribution of the target variable. Subsequently, the in-

put data are transformed into a format suitable for deep learning processing, utilizing one-

hot encoding feature engineering. Feature scaling is applied to normalize the data, align-

ing the range of data characteristics or independent variables. Crucial features are identi-

fied using Mean Decrease in Impurity (MDI) and XGBoost algorithms before incorporat-

ing them into the Zeek Analysis Tool (ZAT) DataFrame, facilitating the management of

extensive data volumes. K-means and PCA algorithms are employed for data clustering,

and the effectiveness of these clustering techniques is evaluated using the silhouette score

metric. After clustering, the isolation forest method is utilized to identify anomalies or

deviations in the dataset.

The dataset becomes suitable for machine learning analysis after completing these

preprocessing steps. It is then divided into 25% training and 75% test data. Optimal

GNGRU parameters, enhancing classification, are determined using the JA optimization

technique. For a comprehensive overview of the proposed model’s workflow, refer to Fig-

ure 1.

Performance Evaluation

Malware Datasets Proposed Model – GhostNet-GRU

Gagfyt

Hide and

Seek

Kenjiro

Linux Hajime

Df

Mirai

Muhstik

Okiru

Labeled IoT

Concatenate all

Datasets with the

target column

Importing time and

timedelta module

Exploration Data

Analysis

Target Variable

Distribution

Feature Engineering

(One Hot Encoding)

Feature

Scaling

zat Dataframe

To Matrix

Silhouette

Scoring

Isolation

Forest model

KMeans and

PCA Clusters

D
a

ta
 S

p
littin

g
 T

r
a

in
 7

5
%

 a
n

d
 T

e
s
t 2

5
%

Matthews

corrcoef

Confusion Matrix

Accuracy

Precision

Fscore

ROC

Time

Complexity

Feature Score

Parameter Tuning using Jaya

Optimization Algorithm

classification of benign and malignant

Hamming

Loss

Figure 1. Detailed Flowchart of the Proposed System Model.

4.1. Dataset

The dataset utilized in this study is the IoT 23 dataset, which contains network traffic

originating from IoT devices. This dataset comprises twenty distinct scenarios, each show-

casing a variety of network traffic situations. These scenarios encompass both benign traf-

fic from IoT devices and instances involving IoT devices infected with malware [41]. The

dataset can be categorized into three subsets: authentic network traffic from typical IoT

devices and network captures (in pcap files) depicting infected devices. Due to the dy-

namic nature of malware activities and the substantial traffic generated during infections,

the pcap files are rotated every 24 h. However, in some cases, specific pcap files had to be

extended beyond 24 h due to their extensive growth, resulting in variations in capture

durations.

Figure 1. Detailed Flowchart of the Proposed System Model.

4.1. Dataset
The dataset utilized in this study is the IoT 23 dataset, which contains network traffic

originating from IoT devices. This dataset comprises twenty distinct scenarios, each show‑
casing a variety of network traffic situations. These scenarios encompass both benign traffic
from IoT devices and instances involving IoT devices infected withmalware [41]. The dataset
can be categorized into three subsets: authentic network traffic from typical IoT devices and
network captures (in pcap files) depicting infected devices. Due to the dynamic nature of
malware activities and the substantial traffic generated during infections, the pcap files are
rotated every 24 h. However, in some cases, specific pcap files had to be extended beyond
24 h due to their extensive growth, resulting in variations in capture durations.

Table 2 shows additional situations in the IoT 23 dataset. It contains the scenario ID,
dataset name, packet count, duration (in hours), Zeek ID flows, pcap file size, andmalware
sample names utilized to infect the devices. This knowledge is critical for comprehending
the many circumstances inside the dataset and its benign and harmful properties. Due
to the wide collection of network traffic events, the IoT 23 dataset is a great resource for
academics, educators, and developers trying to improve machine learning algorithms and
threat detection models.

Table 2. Summary of IoT 23 Dataset Scenarios and Associated Malware Samples.

SNo Name Packets Duration
(h) Zeek Flows Pcap Size Name of Dataset

1 Gagfyt 217,000 12 35810 2. 8 MB CTU‑IOT 60‑1
2 Hide and Seek 1,786,000 112 1008749 173 MB CTU‑IOT 1‑1
3 Kenjiro 50,000 24 54659 433 MB CTU‑IOT 17‑1
4 Linux Hajime 637,000 24 6378294 8.33 MB CTU‑IOT 9‑1
5 Mirai 130,000 24 3394346 1.34 MB CTU‑IOT 48‑1
6 Muhstik 496,000 36 156104 50 MB CTU‑IOT 3‑1
7 Okiru 1,300,000 24 1364513 20 MB CTU‑IOT 3‑1
8 Tori 50,000 24 3288 3.9 MB CTU‑IOT 3‑2

Systems 2023, 11, 547 8 of 26

4.2. PreProcessing
We used several data analysis and preparation techniques before applying classifica‑

tion methods. First, we combined the target column with the entire dataset in a single
DataFrame. The preprocessing processes were completed in the following order, which
we will review in more detail and are shown visually in Figure 2.

Systems 2023, 11, x FOR PEER REVIEW 8 of 26

Table 2 shows additional situations in the IoT 23 dataset. It contains the scenario ID,

dataset name, packet count, duration (in hours), Zeek ID flows, pcap file size, and mal-

ware sample names utilized to infect the devices. This knowledge is critical for compre-

hending the many circumstances inside the dataset and its benign and harmful properties.

Due to the wide collection of network traffic events, the IoT 23 dataset is a great resource

for academics, educators, and developers trying to improve machine learning algorithms

and threat detection models.

Table 2. Summary of IoT 23 Dataset Scenarios and Associated Malware Samples.

SNo Name Packets
Duration

(h)
Zeek Flows Pcap Size Name of Dataset

1 Gagfyt 217,000 12 35810 2. 8 MB CTU-IOT 60-1

2 Hide and Seek 1,786,000 112 1008749 173 MB CTU-IOT 1-1

3 Kenjiro 50,000 24 54659 433 MB CTU-IOT 17-1

4 Linux Hajime 637,000 24 6378294 8.33 MB CTU-IOT 9-1

5 Mirai 130,000 24 3394346 1.34 MB CTU-IOT 48-1

6 Muhstik 496,000 36 156104 50 MB CTU-IOT 3-1

7 Okiru 1,300,000 24 1364513 20 MB CTU-IOT 3-1

8 Tori 50,000 24 3288 3.9 MB CTU-IOT 3-2

4.2. PreProcessing

We used several data analysis and preparation techniques before applying classifica-

tion methods. First, we combined the target column with the entire dataset in a single

DataFrame. The preprocessing processes were completed in the following order, which

we will review in more detail and are shown visually in Figure 2.

Figure 2. Preprocessing workflow. Figure 2. Preprocessing workflow.

Distribution of the target variable: Abinary variable that indicates whether a sample
is malicious (1) or benign (0) is commonly used as the target variable in malware detection.
The distribution of the target variable may have a major impact on how well the machine
learning model used for detection performs [42].

A model trained on such data may be biased towards the majority class if the distri‑
bution of the target variable is noticeably unbalanced, with many benign instances and a
few malicious ones (or vice versa). For instance, a simple model that consistently predicts
benign would attain a 95% accuracy rate if 95% of the samples are benign and only 5% are
malicious. However, it will not reveal any potentially harmful materials.

Several statistics, such as the proportion ofmalicious samples, the number of instances
within every class, and the average and variance of the variable of interest, can be used to
quantify the distribution of the target variable. The following mathematical formulation
of this is found in Equation (1):

Systems 2023, 11, 547 9 of 26

p = n_malicious/(n_malicious+ n_benign) (1)

n malicious and n benign are the number of malicious and benign samples, respectively, if
p is the fraction of harmful samples. As an alternative, the mean and variance of the target
variable can be determined using Equations (2) and (3) as follows [42]:

mean = (n_malicious × 1 + n_benign × 0)/(n_malicious + n_benign) (2)

variance = (n_malicious × (1 −mean)2 + n_benign × (0 −mean)2)/(n_malicious + n_benign) (3)

Knowing the target variable’s mean and variance is crucial to identifying malware.
The mean, corresponding to the fraction of malicious samples, shows the target variable’s
average value. Conversely, the variance gauges how much the target variable is spread
out from the mean value. These data may be used to assess how well machine learning
models identify malware and to better understand the distribution of the target variable.

Feature Engineering using One‑Hot Encoding: Each malware sample in our dataset
is assigned to one of severalmalware classes. An 8‑bit vectorwith one‑hot encoding, where
each location corresponds to a potential malware kind, is one approach to represent each
form of malware [43]. The virus types Gagfyt and Hide and Seek, for instance, can be
expressed as [1, 0, 0, 0, 0, 0] and [0, 1, 0, 0, 0, 0, 0], respectively.

Using this method, each sample in our dataset may be represented by a one‑hot en‑
coded vector that shows the type of malware corresponding to. A sample known as Muh‑
stik, for example, can be described as [0, 0, 0, 0, 1, 0, 0].

We can represent the additional samples in our dataset using the same method. After
one‑hot encoding of the malware labels, these vectors are put into predictive algorithms
for malware identification and classification. These algorithms may then analyze the one‑
hot encoded vectors to find patterns and connections across malware strains. These data
allow new malware samples to be categorized according to their kind.

Feature Scaling: Themalware dataset includes samples classified byGagfyt andHide
and Seek and tagged with one of the above‑mentioned malware kinds. These characteris‑
tics can fall into various ranges, making comparing and analyzing them challenging. Fea‑
ture scalingmakes it possible formachine learning techniques to obtain additional informa‑
tion from the data by standardizing the range of values for certain features [43]. We applied
a normalization approach to scale the feature values to fall between 0 and 1 to standardize
the feature values. By performing the following procedures, this approach can used to an‑
alyze each feature in the dataset: We start by calculating the lowest and maximum values
for each attribute across all malware samples. Then, for each dataset sample, we apply the
normalization equation to each feature value as [43] provides in Equation (4):

x′ =
x − xmin

xmax − xmin (4)

Let x symbolize the initial value of an attribute, xmin represents the dataset’s mini‑
mum value for that attribute, xmax denotes the dataset’s maximum value for the attribute,
and x’ signifies the standardized value of the attribute. We can use feature scaling to en‑
sure all features are placed on a comparable scale, facilitating more precise comparisons
and analyses. This, in turn, can result in enhanced performance and increased accuracy
when employing machine learning algorithms on the dataset.

Consider an instance involving the malware type Gagfyt, where the properties are
Gagfyt = 100 and Hide and Seek = 50. The normalization equation can be independently
applied to each value if the dataset’sminimumandmaximumvalues for theGagfyt feature
are 50 and 500 and for the Hide and Seek feature are 20 and 200, respectively.

Normalized Gagfyt value: Gag f yt′ = 100−50
500−50 , the output is 0.1875. This means that

this sample’s normalized value of the Gagfyt feature is 0.1875.

Systems 2023, 11, 547 10 of 26

Normalized Hide and Seek score: 〖Hide and Seek〗^’ = (50‑20)/(200‑20), resulting
in an output of 0.325. This signifies that this sample’s normalized Hide and Seek feature
value is 0.325.

Implementing feature normalization on our dataset of malicious samples can improve
the effectiveness of machine learning models for identifying and categorizing malware. This
technique ensures that diverse characteristics are harmonized onto a consistent scale. As a
result, using feature scaling to the dataset aligns each feature’s value, improving the effective‑
ness of algorithms that use machine learning for malware detection and classification.

Feature Importance: Comprehending feature significance is crucial to understanding
how machine learning models make decisions. It lets us pinpoint the features or variables
that substantially influence the model’s predictions. In malware detection, grasping fea‑
ture importance aids in recognizing and classifying crucial traits or indicators that con‑
tribute to identifying malware.

XGBoost, a prevalent machine learning algorithm renowned for its precision in con‑
structing models for malware detection, employs the Mean Decrease Impurity (MDI) tech‑
nique [44]. This technique assesses feature relevance by quantifying the overall reduction
in impurities, such as entropy or the Gini index, achieved through data partitioning based
on a specific feature. We explore the essential attributes for efficient malware identification
and categorization by examining the MDI ratings assigned to each attribute.

The process of calculating feature significance throughMDI in the development of an
XGBoost model for malware detection involves the following steps:
• Train an XGBoost model using the training data.
• Access the feature_importance attribute of the trained model to obtain an array of

feature importance scores.
• Rank the feature significance ratings in descending order to identify the most

critical characteristics.
By analyzing the feature significance scores, we can pinpoint the paramount traits or

indicators of malware that are pivotal for successful malware detection. With this informa‑
tion, we can refine our machine learningmodel to amplify its precision in recognizingmal‑
ware. Prioritizing these critical malware indicators can significantly enhance the model’s
detection efficacy [44].

Furthermore, utilizing our model and enhancing efficiency becomes achievable by
identifying and removing redundant or superfluous elements. This effective method im‑
proves the model’s performance while lowering its complexity. Better outcomes are pro‑
duced by a malware detection and classification framework that is more effective.

DataFrame‑to‑Matrix using ZAT: The Zero Access Tool (ZAT) is a Python package
employing tools for analyzing and visualizing malware data. It supports a wide range of
file formats and sources and is made to manage massive amounts of data. One of its char‑
acteristics is the DataFrame‑to‑Matrix methodology, which converts a DataFrame holding
information about malware into amatrix representation [45]. Before transforming the data
from a DataFrame to a matrix representation, data must first be transformed into a two‑
dimensional array of numerical values. Numerical characteristics can be scaled to ensure
that their range and distribution are equivalent, and categorical data can be encoded using
one‑hot or label encoding techniques. Once the data are organized into a matrix, they may
be fed into various machine learning algorithms for classification.

A DataFrame can be mathematically transformed into a matrix representation using
Equation (4). Every column in Equation (4) denotes a feature, and every row is a sample.
Let X be the initial DataFrame with n rows and m columns [45].

Y = [x1, x2, …, xn] (5)

Systems 2023, 11, 547 11 of 26

Let fi be the i‑th feature in x and let x’ be a matrix representation of y, with each row
being a sample and each column representing a feature [28] in Equation (6).

y′ = [f1(e1), f2(e1), …, fk(e_1); f1(e2), f2(e2), …, fk(e2); … f1(ek), f2(ek), …, fm(ek)] (6)

In this case, the value given to the i‑th feature for the jth sample is denoted by fi(yk).
Depending on the characteristics of the features in the original DataFrame, several techniques
may be used for encoding and scaling the data before they become a matrix representation.

Creating Clusters using PCA and K‑Means: Malware detection techniques that em‑
ploy clustering using KMeans and PCAmay gather samples of malware with comparable
traits. This method makes it easier to recognize patterns in the data. It can help identify
several malware strains, including Gagfyt, Hide and Seek, Kenjiro, Linux Hajime, Mirai,
Muhstik, Okiru, and Tori.

To employ KMeans clustering and PCA [46] for malware detection, a dataset of mal‑
ware samplesmust first be preprocessed and feature‑engineered to identify essential quali‑
ties that discriminate between various forms ofmalware. The dimensionality of the feature
space is decreased by using PCA to isolate a smaller group of orthogonal axes that best cap‑
ture the range of the data. The malware samples are then clustered based on their reduced
feature representations using KMeans clustering.

With KMeans clustering, a dataset X containing nmalware samples withm features is
divided into k clusters C1, C2, …, Ck. Reducing the total squared distances between every
malware sample and its designated centroid is how Equation (7) accomplishes this [46].

Minimize∑k
i=1= ∑k

x=0 xj ∈ ci |
∣∣∣X j − µi

∣∣∣|2 (7)

where ci is the collection of malware samples allocated to the cluster node’s centroid, and
PCA is demonstrated by the following:

A PCA, which aims to capture the most variability in the data, attempts to transform
a dataset X of n malware samples with m characteristics into a new collection of k features.
Equation (8) is what brings about the transition:

Y = XW (8)

W is a matrix whose k most significant eigenvalues are identical to the k orthogonal
eigenvectors of X’s covariance matrix.

Gagfyt, Hide and Seek, Kenjiro, Linux Hajime, Mirai, Muhstik, Okiru, and Tori are a
few examples of the variousmalware kinds that may be recognized once the malware sam‑
ples have been clustered using KMeans and PCA. Threat intelligence, malware detection,
and cybersecurity can all gain from it.

Silhouette Score: Aclustering assessmentmethod called Silhouette Scoring rates how
well instances inside a cluster are categorized and how well clusters are generated. Using
this method, the resulting clusters’ quality may be evaluated. With a high Silhouette Score,
linked malware samples have been effectively categorized, and the resulting clusters are
distinctive [47]. The output quality of a clustering method is assessed in malware detec‑
tion using Silhouette Scoring. Combining malware samples with similar characteristics
or behavior simplifies spotting newly emerging malware strains. By grouping malware
based on traits like Gagfyt, Hide and Seek, Kenjiro, Linux Hajime, Mirai, Muhstik, Okiru,
and Tori, one may better understand the larger malware environment and identify upcom‑
ing risks.

In the context of malware detection, let X be a collection of feature vectors that act
as samples of malware. Let c(i) represent the cluster to which instance i belongs, and let
C represent the collection of clusters created as a consequence of applying a clustering

Systems 2023, 11, 547 12 of 26

procedure to the data in X. The silhouette coefficient, indicated as follows in Equation (9),
can be determined for each instance i in X [47].

sc(k) = (v(k) − g(k))/maxg((k), v(k)) (9)

The Silhouette Scoring tool measures how well instances are grouped inside a cluster
and how well clusters are separated to assess the created clusters’ quality. A high Silhou‑
ette Score denotes the effective grouping of relevant malware samples that produce dis‑
tinctive clusters. Malware samples are classified by similarity using a clustering approach
called Silhouette Scoring to detect new malware strains quickly.

Consider a set X of feature vectors representingmalware samples to better understand
the mathematical formula underlying the Silhouette Score in malware detection. Each in‑
stance i belongs to a particular cluster c(i) after the clustering method applied on X yields
a set of clusters represented by C. Several distance metrics, including cosine similarity and
Euclidean distance, may be used to calculate the Silhouette coefficient for each instance in
X. The ratio between the average dissimilarity to all examples in other clusters, represented
by b(i), and the average dissimilarity to all instances in the same cluster, represented by
a(i), is used to calculate the Silhouette coefficient, for instance, i.

When an instance has a score of−1, it means that it is badly matched to its cluster and
favorably matched to nearby clusters; a score of 0 shows that it is equally comparable to
instances in both its own and surrounding clusters. The range of the silhouette coefficient
is −1 to 1. As in Equation (10), the effectiveness of the clustering process is assessed using
the average Silhouette coefficient of all instances in X [48].

S = (1/|X|) × sum(s(i)) (10)

where |X| represents the number of occurrences included in X.
When the silhouette score is high, the clusters are well separated, and the instances

within each cluster are relatively similar. This demonstrates that the clustering method
effectively combined similar malware samples into clusters and that the resulting clusters
are distinctive for malware detection.

Isolation Forest Model: The isolation forest model is a machine learning technique
that spotsmalware and anomalies across applications. Constructing randomdecision trees
pinpoints abnormal data points, like virus samples. For malware detection, it is trained on
feature sets like Gagfyt, Hide and Seek, Kenjiro, Linux Hajime, Mirai, Muhstik, Okiru, and
Tori to unveil similar unusual behavior. To create the isolation forest model for malware
detection [49], we define split points and randomly pick a feature subset from X. We select
a feature and a random split point within its range for each split. Data are divided based
on split points, repeating until each leaf node holds only one data point. The count of
splits isolating a data point (h(x)) signifies its anomaly. Uncommon attributes in malware,
needing fewer splits for isolation, result in lower h(x). The anomaly score can be computed
using the equation [49] in Equation (11).

s(x) = 2(−E(h(x))/c(n)) (11)

The isolation forest model employs key parameters: n for total data points, c(n) nor‑
malization, and E(h(x)) for average path length. Anomaly score, s(x), ranges from 0 to 1,
with higher values indicating more irregularity. Once trained, the isolation forest identi‑
fies new, unusual behavior in malware samples. If a new sample significantly differs from
known ones, it can be flagged as abnormal, indicating a potential new and severe threat.

4.3. Ensemble Classification Model
This article employs GNGRUE as the primary classifier and ensemble with the opti‑

mization method. Additionally, ML and DL state‑of‑the‑art methods have been utilized

Systems 2023, 11, 547 13 of 26

to validate the ensemble method. Figure 3 describes the graphical representation of the
optimized ensembler. A comprehensive description of the models is discussed below.

Systems 2023, 11, x FOR PEER REVIEW 13 of 26

The isolation forest model employs key parameters: n for total data points, c(n) nor-

malization, and E(h(x)) for average path length. Anomaly score, s(x), ranges from 0 to 1,

with higher values indicating more irregularity. Once trained, the isolation forest identi-

fies new, unusual behavior in malware samples. If a new sample significantly differs from

known ones, it can be flagged as abnormal, indicating a potential new and severe threat.

4.3. Ensemble Classification Model

This article employs GNGRUE as the primary classifier and ensemble with the opti-

mization method. Additionally, ML and DL state-of-the-art methods have been utilized

to validate the ensemble method. Figure 3 describes the graphical representation of the

optimized ensembler. A comprehensive description of the models is discussed below.

Figure 3. Optimized ensembler graphical representation.

4.3.1. GNGRUE

GNGRUE contains two distinct yet complementary neural network components,

each contributing unique capabilities to enhance the field of malware detection. GhostNet

is a deep CNN framework that has been specifically designed to be efficient and accurate

in classifying jobs. Designed with resource-constrained environments in mind [50], Ghost-

Net achieves its compact size and excellent performance through an ingenious innovation

known as the ghost module. This module introduces a parallel path alongside the primary

convolutional layer, enabling more efficient feature extraction. By doing so, GhostNet op-

timizes computational complexity while preserving model accuracy, making it an ideal

choice for scenarios with limited computing resources. However, GRUs belongs the re-

current neural network (RNN) family and are particularly good at processing sequential

input, which is a critical need for malware detection. GRUs are highly effective at identi-

fying complex patterns and temporal connections within sequences, which makes them

Figure 3. Optimized ensembler graphical representation.

4.3.1. GNGRUE
GNGRUE contains two distinct yet complementary neural network components, each

contributing unique capabilities to enhance the field of malware detection. GhostNet is a
deep CNN framework that has been specifically designed to be efficient and accurate in
classifying jobs. Designed with resource‑constrained environments in mind [50], Ghost‑
Net achieves its compact size and excellent performance through an ingenious innovation
known as the ghost module. This module introduces a parallel path alongside the primary
convolutional layer, enabling more efficient feature extraction. By doing so, GhostNet op‑
timizes computational complexity while preserving model accuracy, making it an ideal
choice for scenarios with limited computing resources. However, GRUs belongs the re‑
current neural network (RNN) family and are particularly good at processing sequential
input, which is a critical need for malware detection. GRUs are highly effective at iden‑
tifying complex patterns and temporal connections within sequences, which makes them
indispensable for analyzing the subtle behaviors of software programs over time. In mal‑
ware detection, this temporal understanding is pivotal in identifying malicious activities.

A combined approach combines the strengths of both GhostNet and GRUs to pursue
robust malware detection. GhostNet is leveraged for its proficiency in malware feature
extraction, efficiently processing the data of malware samples. The extracted features en‑
code essential information about themalware characteristics that is then passed to theGRU
component. The GRU component takes over, analyzing the sequential nature of malware

Systems 2023, 11, 547 14 of 26

behavior. It examines the temporal aspects, tracking how malware actions evolve. This
is critical in identifying any abnormal or malicious patterns that might emerge during the
execution of the software.

Our ensemble strategy involves harmonizingGhostNet’s feature extraction with GRU’s
sequence analysis. To achieve this fusion of capabilities, we employ weighted averaging.
We ensure a balanced contribution from both models by assigning weights wG and wR to
the GhostNet and GRU predictions. The final combined prediction C(x) for a given input
x is determined using the Equation (12) [50]:

C(x) = wG·G(x) + wR·R(x) (12)

This combined probability score, C(x), offers a comprehensive perspective on the like‑
lihood of x being malicious.

Optimization and Decision Making: To decide the nature of the input (malicious
or benign), a decision threshold θ is set. If C(x) is greater than or equal to θ, the input
x is classified as malicious; otherwise, it is deemed benign. The weights wG and wR are
fine‑tuned during the training phase to optimize the ensemble’s performance, ensuring a
balance between GhostNet’s feature extraction and GRU’s sequence analysis capabilities.

4.3.2. Jaya Algorithm
The Jaya technique is a population‑based optimization technique that was first pre‑

sented by Dr. R. V. Rao [51]. Its primary purpose is to solve complicated optimization
issues. The Jaya Algorithm is essential for adjusting the weights wG and wR in order
to optimize the GNGRUE ensemble weights for malware detection and to maximize the
ensemble’s performance. We turn to the Jaya Algorithm for optimization to enhance the
GNGRUE GhostNet‑GRU ensemble’s capabilities. The Jaya Algorithm operates on the
principles of improvement and exploration.

Objective Function (Performance Metric): In optimizing the GNGRUE ensemble, we
have an objective function, denoted as f(wG,wR), which quantifies the ensemble’s perfor‑
mance. This function could represent metrics like accuracy, F1‑score, or any other suit‑
able measure.

Population Initialization: The algorithm starts with initializing a population of candi‑
date solutions, each represented by weights (wG,wR).

Evaluation: Each candidate solution is evaluated using the objective function:
Objective function: f(wG,wR): This function measures how well the ensemble per‑

forms with the current weight combination.
Improvement and Exploration: The Jaya Algorithm classifies solutions into two cate‑

gories. Improvement: A solution (wG′,wR′) is considered an improvement if it results in
a lower objective function value, indicating better performance in Equation (13) [51]:

f(wG′,wR′) < f(wG,wR) (13)

Exploration: A solution (wG′,wR′) is categorized as an exploration if it does not lead
to an improvement as in Equation (14):

f(wG′,wR′) ≥ f(wG,wR) (14)

Population Update: The population is updated based on the principles of improve‑
ment and exploration. Specifically, solutions that lead to improvements are retained in
Equation (15) [51]:

(wG,wR) = (wG′,wR′)if f(wG′,wR′) < f(wG,wR) (15)

Solutions resulting in explorations are replaced with new solutions in Equation (16):

(wG,wR) = GenerateNewSolution()if f(wG′,wR′) ≥ f(wG,wR) (16)

Systems 2023, 11, 547 15 of 26

The algorithm continues to iterate through these update steps to explore the solution
space and refine the weight combinations.

Termination Criteria: These phases are repeated by the Jaya Algorithm until a termination
criterion—such as a maximum number of iterations or an improvement threshold—is satisfied.

Optimal Weights: Once the algorithm terminates, the weights wG and wR associated
with the best‑performing solution in the population are considered optimal in Equation (17):

Optimal Weights: (wG∗,wR∗) (17)

Ensemble Configuration: Finally, the GNGRUE is configured with the optimal weights
(wG∗,wR∗), enabling it to accurately predict whether a given software sample is malicious
or benign.

Figure 4 provides an overview of the iterative process by which the Jaya Algorithm fine‑
tunes theweights of theGNGRUEensemble, seeking tomaximize its performance indetecting
malicious software. The algorithm combines principles of improvement and exploration to
achieve optimal weight configurations for enhanced malware detection capabilities.

Systems 2023, 11, x FOR PEER REVIEW 15 of 26

(wG,wR) = (wG′,wR′)if f(wG′,wR′) < f(wG,wR) (15)

Solutions resulting in explorations are replaced with new solutions in Equation (16):

(wG,wR) = GenerateNewSolution()if f(wG′,wR′) ≥ f(wG,wR) (16)

The algorithm continues to iterate through these update steps to explore the solution

space and refine the weight combinations.

Termination Criteria: These phases are repeated by the Jaya Algorithm until a termi-

nation criterion—such as a maximum number of iterations or an improvement thresh-

old—is satisfied.

Optimal Weights: Once the algorithm terminates, the weights wG and wR associated

with the best-performing solution in the population are considered optimal in Equation

(17):

Optimal Weights: (wG∗,wR∗) (17)

Ensemble Configuration: Finally, the GNGRUE is configured with the optimal

weights (wG∗,wR∗), enabling it to accurately predict whether a given software sample is

malicious or benign.

Figure 4 provides an overview of the iterative process by which the Jaya Algorithm

fine-tunes the weights of the GNGRUE ensemble, seeking to maximize its performance in

detecting malicious software. The algorithm combines principles of improvement and ex-

ploration to achieve optimal weight configurations for enhanced malware detection capa-

bilities.

Figure 4. Jaya Algorithm in terms of optimizing the GNGRUE weights (flowchart).

5. Experimental Results

We used TensorFlow within the Google Colab environment in this part, utilizing its

outstanding GPU resources for our malware detection system. Google Colab gives access

Figure 4. Jaya Algorithm in terms of optimizing the GNGRUE weights (flowchart).

5. Experimental Results
We used TensorFlow within the Google Colab environment in this part, utilizing its

outstanding GPU resources for our malware detection system. Google Colab gives ac‑
cess to high‑performance computing equipment: a multi‑core CPU (Intel Xeon E5‑2673 v4,
16 cores), 25 GB of systemmemory, a high‑end GPU (NVIDIA Tesla T4with 16 GBGDDR6
memory), and network connectivity of up to 50 Mbps. These criteria ensure we have the
computational resources to conduct our study efficiently. Our process begins by collecting
important details from incoming packet data and categorizing them based on established
attack types. We used feature selection approaches to improve system performance and

Systems 2023, 11, 547 16 of 26

decrease computational complexity. These relevant characteristics were retrieved from in‑
coming traffic patterns during the preprocessing stage. The availability of this complex
computing equipment and GPU capabilities within Google Colab greatly helped the effi‑
ciency and efficacy of our feature selection and analysis operations.

Our framework’s core consists of attack detection sub‑engines, the backbone of our
experiment. These sub‑engines possess the versatility to identify various attack types, their
number aligning with the variety in our training database.

Toprepare for our experiments, we loaded thedataset intoDataFrames. Subsequently,
we labeled entries in the Traffic column as malicious for attack‑related traffic and benign
for non‑malicious traffic, as shown in Table 3. This preprocessing step served as the foun‑
dation for our subsequent experiments. Moreover, we eliminate redundant columns and
trim leading and trailing spaces from strings in preprocessing. We next filter out pack‑
ets related to port scans, okiru malware, and other harmful packets, such as those con‑
nected to command‑and‑control (C&C) and distributed denial‑of‑service (DDOS) assaults,
as Table 3 illustrates.

Table 3. Combining, Loading, and Filtering Malware Datasets (Datasets 1–3).

Column Non‑Null Count Dtype

0 ts 8008 non‑null object

1 uid 8008 non‑null object

2 id.orig_h 8008 non‑null object

3 id.orig_p 8008 non‑null int64

4 id.resp_h 8008 non‑null object

5 id.resp_p 8008 non‑null int64

6 proto 8008 non‑null object

7 service 196 non‑null object

8 duration 3213 non‑null object

9 orig_bytes 3213 non‑null float64

10 resp_bytes 3213 non‑null float64

11 conn_state 8008 non‑null object

12 local_orig 0 non‑null float64

13 local_resp 0 non‑null float64

14 missed_bytes 8008 non‑null int64

15 history 7481 non‑null object

16 orig_pkts 8008 non‑null int64

17 orig_ip_bytes 8008 non‑null int64

18 resp_pkts 8008 non‑null int64

19 resp_ip_bytes 8008 non‑null int64

20 TrafficLabeled 8008 non‑null object

Subsequently, we implement the distribution of the target variable to specific columns
to visually analyze the distribution of malicious and benign data, as illustrated in Table 4.

Figure 5 provides insights into examining the malicious attribute in conjunction with
various services, presented through a box plot. This graphical representation showcases
the distribution of malicious and benign data and highlights the presence of outliers for
further examination.

Systems 2023, 11, 547 17 of 26

Table 4. Combining, Loading, and Filtering Malware Datasets (Datasets 4–6).

Column Non‑Null Count Dtype

0 ts 8008 non‑null object

1 id.orig_h 8008 non‑null object

2 id.orig_p 8008 non‑null object

3 id. resp_h 8008 non‑null object

4 id.resp_p 8008 non‑null object

5 proto 8008 non‑null object

6 service 8008 non‑null object

7 duration 8008 non‑null float 64

8 orig_bytes 8008 non‑null float64

9 resp_bytes 8008 non‑null float64

10 conn_state 8008 non‑null object

11 missed bytes 8008 non‑null int64

12 history 8008 non‑null object

13 orig_pkts 8008 non‑null int64

14 orig_ip_bytes 8008 non‑null int64

15 resp_pkts 8008 non‑null int64

16 resp_ip_bytes 8008 non‑null int64

17 Traffic_Labeled 8008 non‑null object

18 Malicioūs 8008 non‑null loat6

Systems 2023, 11, x FOR PEER REVIEW 17 of 26

Column Non-Null Count Dtype

0 ts 8008 non-null object

1 id.orig_h 8008 non-null object

2 id.orig_p 8008 non-null object

3 id. resp_h 8008 non-null object

4 id.resp_p 8008 non-null object

5 proto 8008 non-null object

6 service 8008 non-null object

7 duration 8008 non-null float 64

8 orig_bytes 8008 non-null float64

9 resp_bytes 8008 non-null float64

10 conn_state 8008 non-null object

11 missed bytes 8008 non-null int64

12 history 8008 non-null object

13 orig_pkts 8008 non-null int64

14 orig_ip_bytes 8008 non-null int64

15 resp_pkts 8008 non-null int64

16 resp_ip_bytes 8008 non-null int64

17 Traffic_Labeled 8008 non-null object

18 Malicioūs 8008 non-null loat6

Figure 5 provides insights into examining the malicious attribute in conjunction with

various services, presented through a box plot. This graphical representation showcases

the distribution of malicious and benign data and highlights the presence of outliers for

further examination.

(a) (b)

Figure 5. Exploring the Distribution of Malicious Features with Other Dependent Features: (a) Fea-

ture orig_byes distribution. (b) Feature duration.

Figure 6 provides an insightful representation of the distribution of malicious data

across individual variables. It highlights data points that deviate significantly from the

main distribution, identifying them as outliers within the dataset. This figure further fa-

cilitates a comprehensive analysis of these outlier data points, shedding light on their im-

pact on the dataset’s overall correlation. While most data records exhibit strong relevance,

it is essential to recognize and investigate records that deviate substantially from the

norm, thereby classifying them as outliers.

Figure 5. Exploring the Distribution of Malicious Features with Other Dependent Features: (a) Fea‑
ture orig_byes distribution. (b) Feature duration.

Figure 6 provides an insightful representation of the distribution of malicious data
across individual variables. It highlights data points that deviate significantly from the
main distribution, identifying them as outliers within the dataset. This figure further facil‑
itates a comprehensive analysis of these outlier data points, shedding light on their impact
on the dataset’s overall correlation. While most data records exhibit strong relevance, it
is essential to recognize and investigate records that deviate substantially from the norm,
thereby classifying them as outliers.

Systems 2023, 11, 547 18 of 26
Systems 2023, 11, x FOR PEER REVIEW 18 of 26

Figure 6. Analyzing Outliers and Packet Counts Across Various Protocols.

Additionally, when contrasting the packet reception counts originating from diverse

protocols, we note a higher influx of packets for TCP than UDP and ICMP. This discovery

underscores the necessity for heightened scrutiny before classification.

Figure 7 presents a custom diverging color map pattern showcasing feature relevancy

through a heatmap visualization. Feature selection is crucial, and we utilize the MDI

method in conjunction with XGBoost, a widely adopted technique. This method gauges

feature importance by assessing the reduction in impurity when the feature is integrated

into the decision tree-building process. The MDI approach quantifies how much a feature

influences the decision-making within the tree. The importance of each feature is typically

expressed as a percentage, with the most significant feature assigned a value of 100%.

Subsequent features are ranked in order of importance, represented by the percentage

decrease in impurity upon removal. Figure 7 includes additional details such as feature

names, corresponding importance values, and graphical representations, such as bar

charts or heatmaps, for a comprehensive view of feature importance.

Figure 7. Analyzing Feature Dependency with a Heat Map Correlation.

Figure 8 effectively recognizes that a higher importance score signifies the feature’s

greater significance in influencing the model’s predictions. Therefore, features with ele-

vated importance scores should be deemed more pertinent and valuable in elucidating

Figure 6. Analyzing Outliers and Packet Counts Across Various Protocols.

Additionally, when contrasting the packet reception counts originating from diverse
protocols, we note a higher influx of packets for TCP than UDP and ICMP. This discovery
underscores the necessity for heightened scrutiny before classification.

Figure 7 presents a custom diverging color map pattern showcasing feature relevancy
through a heatmap visualization. Feature selection is crucial, and we utilize the MDI
method in conjunction with XGBoost, a widely adopted technique. This method gauges
feature importance by assessing the reduction in impurity when the feature is integrated
into the decision tree‑building process. The MDI approach quantifies how much a fea‑
ture influences the decision‑making within the tree. The importance of each feature is
typically expressed as a percentage, with the most significant feature assigned a value of
100%. Subsequent features are ranked in order of importance, represented by the per‑
centage decrease in impurity upon removal. Figure 7 includes additional details such as
feature names, corresponding importance values, and graphical representations, such as
bar charts or heatmaps, for a comprehensive view of feature importance.

Systems 2023, 11, x FOR PEER REVIEW 18 of 26

Figure 6. Analyzing Outliers and Packet Counts Across Various Protocols.

Additionally, when contrasting the packet reception counts originating from diverse

protocols, we note a higher influx of packets for TCP than UDP and ICMP. This discovery

underscores the necessity for heightened scrutiny before classification.

Figure 7 presents a custom diverging color map pattern showcasing feature relevancy

through a heatmap visualization. Feature selection is crucial, and we utilize the MDI

method in conjunction with XGBoost, a widely adopted technique. This method gauges

feature importance by assessing the reduction in impurity when the feature is integrated

into the decision tree-building process. The MDI approach quantifies how much a feature

influences the decision-making within the tree. The importance of each feature is typically

expressed as a percentage, with the most significant feature assigned a value of 100%.

Subsequent features are ranked in order of importance, represented by the percentage

decrease in impurity upon removal. Figure 7 includes additional details such as feature

names, corresponding importance values, and graphical representations, such as bar

charts or heatmaps, for a comprehensive view of feature importance.

Figure 7. Analyzing Feature Dependency with a Heat Map Correlation.

Figure 8 effectively recognizes that a higher importance score signifies the feature’s

greater significance in influencing the model’s predictions. Therefore, features with ele-

vated importance scores should be deemed more pertinent and valuable in elucidating

Figure 7. Analyzing Feature Dependency with a Heat Map Correlation.

Systems 2023, 11, 547 19 of 26

Figure 8 effectively recognizes that a higher importance score signifies the feature’s
greater significance in influencing the model’s predictions. Therefore, features with ele‑
vated importance scores should be deemedmore pertinent and valuable in elucidating the
target variable’s behavior. Furthermore, further investigation is warranted in cases where
multiple features share identical relevance ratings. This may include conducting correla‑
tion analysis or employing feature selection algorithms to identify the most informative
subset of data for the model.

Systems 2023, 11, x FOR PEER REVIEW 19 of 26

the target variable’s behavior. Furthermore, further investigation is warranted in cases

where multiple features share identical relevance ratings. This may include conducting

correlation analysis or employing feature selection algorithms to identify the most in-

formative subset of data for the model.

Figure 8. Relative Importance of Each Feature towards Target using MDI and XGBoost.

We employed the ZAT DataFrame-To-Matrix class to handle categorical data effec-

tively. This class uses a heuristic approach to detect categorical data and ensures explicit

conversion before data transformation. In our analysis and clustering of malware samples,

we applied two well-established techniques: K-means and PCA clustering.

The clustering of malware using K-means and PCA is shown in Table 5. This process

involves reducing the data to two or three dimensions using PCA and applying K-means

clustering to group similar samples. In the resulting plot, each data point is represented

as a colored dot, indicating its cluster membership. Additionally, centroids may be dis-

played, signifying the average values within each cluster.

Clustering is mostly used to find unique subgroups within the dataset and group

malware samples that are similar to each other. Table 5 serves as a valuable tool for un-

covering patterns and trends within the data, complementing the insights gained during

exploratory data analysis (EDA). Consequently, Table 5 aids in understanding the da-

taset’s behavior, highlighting potential relationships and similarities among the samples.

Table 5. Identifying Distinct Groups Through Clustering of Malware Attacks.

C
lu

st
er

 0

ts 1d.orig p 1d.resp_p duration orig_bytes
resp_byte

s

orig_ip_byte

s

resp_ip_byt

es
proto-icnp proto-tcp proto-udp …

00:29.6 123 123 0.102094 48 48 76 76 e theta 1 …

01:15.4 123 123 0.051969 48.6 48 76 76 8 8 1 …

01:43.0 123 123 0.008233 96.6 96 152 152 0 theta 1 …

02:22.8 123 123 0.008248 96 96 152 152 e e 1 …

03:48.0 29930 47659 0.044972 103 289 131 317 e 0 1 …

… … … … … … … … … … … …

55:55.4 123 123 0.037777 48.6 48 76 76 e B 1 …

56:10.4 123 123 72.025952 384.8 384 698 698 8 theta 1 …

56:48.0 49094 53 0.010745 39.6 55 67 83 8 8 1 …

57:08.0 123 123 0.017637 48.6 48 76 76 0 theta 1 …

57:08.0 123 123 0.017637 48.6 48 76 76 8 B 1 …

C
lu

st
er

 1

ts 1d.orig p 1d.resp_p duration orig_bytes resp_bytes
orig_ip_byte

s

resp_1p_byt

es
proto-icnp proto-tcp proto-udp …

00:10.4 123 123 0.00809 0 0 76 0 8 theta 1 …

00:10.4 123 123 0.00009 0 B. 0 76 theta theta B 1 …

08:32.2 29930 6889 0 0 0 95 theta 0 e 1 …

08:36.0 29930 1844 31.982511 318 0 492 theta a e 1 …

09:40.4 123 123 0.809090 0 0 76 theta e 0 1 …

… … … … … … … … … … … …

Figure 8. Relative Importance of Each Feature towards Target using MDI and XGBoost.

We employed the ZAT DataFrame‑To‑Matrix class to handle categorical data effec‑
tively. This class uses a heuristic approach to detect categorical data and ensures explicit
conversion before data transformation. In our analysis and clustering of malware samples,
we applied two well‑established techniques: K‑means and PCA clustering.

The clustering of malware using K‑means and PCA is shown in Table 5. This process
involves reducing the data to two or three dimensions using PCA and applying K‑means
clustering to group similar samples. In the resulting plot, each data point is represented as
a colored dot, indicating its clustermembership. Additionally, centroidsmay be displayed,
signifying the average values within each cluster.

Clustering is mostly used to find unique subgroups within the dataset and group
malware samples that are similar to each other. Table 5 serves as a valuable tool for un‑
covering patterns and trends within the data, complementing the insights gained during
exploratory data analysis (EDA). Consequently, Table 5 aids in understanding the dataset’s
behavior, highlighting potential relationships and similarities among the samples.

Based on our observations, it is clear that the clusters exhibit distinct separation, in‑
dicating significant dissimilarities in the behavior or characteristics of malware samples
within each cluster. To assess the quality of our clustering, we employed the Silhouette
Scoring technique, a standard method for evaluating clustering efficiency. By calculating
the average distance between a data point and other points in its cluster, cohesiveness is
represented. It also calculates, by average their distances, the spacing between the partic‑
ular point and the points in the closest nearby cluster.

Silhouette Scores, which range from −1 to 1, serve as indicators of clustering quality.
Higher values on this scale suggest more favorable clustering results. A Silhouette Score
of 1 signifies that a data point is correctly assigned to its cluster and distinctly separated
from surrounding clusters, while a score of −1 implies the opposite. Figure 9 presents a
clustering representation using Silhouette Scores to evaluate the precision of our clustering
outcomes. Each data point is depicted as a dot in this visual representation, and its vertical
position corresponds to its Silhouette Score. Dot colors indicate the cluster to which each
point is assigned, while the width of each bar illustrates the number of points allocated to
each cluster. Clustering figures that exhibit well‑defined and separate clusters and high
average Silhouette Scores indicate effective clustering.

Systems 2023, 11, 547 20 of 26

Table 5. Identifying Distinct Groups Through Clustering of Malware Attacks.

ts 1d.orig p 1d.resp_p duration orig_bytes resp_bytes orig_ip_bytes resp_ip_bytes proto‑icnp proto‑tcp proto‑udp …

C
lu
st
er
0

00:29.6 123 123 0.102094 48 48 76 76 e theta 1 …

01:15.4 123 123 0.051969 48.6 48 76 76 8 8 1 …

01:43.0 123 123 0.008233 96.6 96 152 152 0 theta 1 …

02:22.8 123 123 0.008248 96 96 152 152 e e 1 …

03:48.0 29930 47659 0.044972 103 289 131 317 e 0 1 …

… … … … … … … … … … … …

55:55.4 123 123 0.037777 48.6 48 76 76 e B 1 …

56:10.4 123 123 72.025952 384.8 384 698 698 8 theta 1 …

56:48.0 49094 53 0.010745 39.6 55 67 83 8 8 1 …

57:08.0 123 123 0.017637 48.6 48 76 76 0 theta 1 …

57:08.0 123 123 0.017637 48.6 48 76 76 8 B 1 …

C
lu
st
er
1

ts 1d.orig p 1d.resp_p duration orig_bytes resp_bytes orig_ip_bytes resp_1p_bytes proto‑icnp proto‑tcp proto‑udp …

00:10.4 123 123 0.00809 0 0 76 0 8 theta 1 …

00:10.4 123 123 0.00009 0 B. 0 76 theta theta B 1 …

08:32.2 29930 6889 0 0 0 95 theta 0 e 1 …

08:36.0 29930 1844 31.982511 318 0 492 theta a e 1 …

09:40.4 123 123 0.809090 0 0 76 theta e 0 1 …

… … … … … … … … … … … …

59:30.6 43763 39392 0.00009 0 0 40 theta 8 B 1 …

59:39.8 43763 20473 0 0 0 40 theta theta theta 1 …

59:39.0 43763 20473 0 0 0 40 theta 8 B 1 …

59:44.8 43763 9376 0 0 0 40 theta 0 theta 1 …

59:59.6 43763 50352 0.00809 0 0 40 a e 1 …

C
lu
st
er
2

ts id.orig_p 1d.resp_p duration or1g_bytes resp_bytes orig_ip_bytes resp_1p_bytes proto‑icnp proto‑tcp proto‑udp …

00:38.5 24159 8981 0.000254 0 0 168 theta 0 1 0 …

09:46.6 35874 2323 2.998558 0 0 189 0 theta 1 theta …

00:46.0 35874 2323 2.998558 0 0 180 theta 8 1 theta …

69:51,0 49894 23 2.998788 0 189 theta theta 1 8 …

01:00,6 52469 22 2.996594 0 0 189 6 a 1 8 …

… … … … … … … … … … … …

58:29.6 49989 23 2.998792 0 e.0 189 6 a 1 theta …

58:29.6 49989 23 2.998792 0 e.e 189 theta 0 1 0 …

59:34.6 24159 8881 0.000255 0 e.e 160 theta theta 1 theta …

59:39.0 60379 8880 2.998789 0 0 189 0 8 1 0 …

59:39.0 69379 8880 2.998789 0 0 189 e theta 1 a …

… … … … … … … … … … … … …

Systems 2023, 11, x FOR PEER REVIEW 20 of 26

59:30.6 43763 39392 0.00009 0 0 40 theta 8 B 1 …

59:39.8 43763 20473 0 0 0 40 theta theta theta 1 …

59:39.0 43763 20473 0 0 0 40 theta 8 B 1 …

59:44.8 43763 9376 0 0 0 40 theta 0 theta 1 …

59:59.6 43763 50352 0.00809 0 0 40 a e 1 …

C
lu

st
er

 2

ts id.orig_p 1d.resp_p duration
or1g_byte

s
resp_bytes

orig_ip_byte

s

resp_1p_byt

es
proto-icnp proto-tcp proto-udp …

00:38.5 24159 8981 0.000254 0 0 168 theta 0 1 0 …

09:46.6 35874 2323 2.998558 0 0 189 0 theta 1 theta …

00:46.0 35874 2323 2.998558 0 0 180 theta 8 1 theta …

69:51,0 49894 23 2.998788 0 189 theta theta 1 8 …

01:00,6 52469 22 2.996594 0 0 189 6 a 1 8 …

… … … … … … … … … … … …

58:29.6 49989 23 2.998792 0 e.0 189 6 a 1 theta …

58:29.6 49989 23 2.998792 0 e.e 189 theta 0 1 0 …

59:34.6 24159 8881 0.000255 0 e.e 160 theta theta 1 theta …

59:39.0 60379 8880 2.998789 0 0 189 0 8 1 0 …

59:39.0 69379 8880 2.998789 0 0 189 e theta 1 a …

… … … … … … … … … … … … …

Based on our observations, it is clear that the clusters exhibit distinct separation, in-

dicating significant dissimilarities in the behavior or characteristics of malware samples

within each cluster. To assess the quality of our clustering, we employed the Silhouette

Scoring technique, a standard method for evaluating clustering efficiency. By calculating

the average distance between a data point and other points in its cluster, cohesiveness is

represented. It also calculates, by average their distances, the spacing between the partic-

ular point and the points in the closest nearby cluster.

Silhouette Scores, which range from −1 to 1, serve as indicators of clustering quality.

Higher values on this scale suggest more favorable clustering results. A Silhouette Score

of 1 signifies that a data point is correctly assigned to its cluster and distinctly separated

from surrounding clusters, while a score of −1 implies the opposite. Figure 9 presents a

clustering representation using Silhouette Scores to evaluate the precision of our cluster-

ing outcomes. Each data point is depicted as a dot in this visual representation, and its

vertical position corresponds to its Silhouette Score. Dot colors indicate the cluster to

which each point is assigned, while the width of each bar illustrates the number of points

allocated to each cluster. Clustering figures that exhibit well-defined and separate clusters

and high average Silhouette Scores indicate effective clustering.

Figure 9. Utilizing Silhouette Scores for Distinct Group Identification through Clustering.

Subsequently, we proceeded with the classification phase. Our approach commenced

with fine-tuning hyperparameters and weights within the GNGRUE, achieved through

Figure 9. Utilizing Silhouette Scores for Distinct Group Identification through Clustering.

Systems 2023, 11, 547 21 of 26

Subsequently, we proceededwith the classification phase. Our approach commenced
with fine‑tuning hyperparameters andweights within the GNGRUE, achieved through ap‑
plying the JayaAlgorithm (JA). The optimizedweightswere passed through the ensembler,
and the model underwent training and evaluation for each weight combination.

Optimization methods played a crucial role in effectively handling extensive mal‑
ware data. Our comprehensive experimentation identified the most advantageous param‑
eter combination, as determined by JA, resulting in optimal weights: w_G = 0.5742 and
w_R = 0.3121. These weights represent the solution that best enhances our malware detec‑
tion capabilities.

To evaluate our model, we assessed the performance of GNGRUE by passing the
hyperparameters through the optimization method JA. Additionally, we evaluated our
model by computing their True Positive and True Negative values, plotted for the pro‑
posed and existing methodologies in Figure 10.

Systems 2023, 11, x FOR PEER REVIEW 21 of 26

applying the Jaya Algorithm (JA). The optimized weights were passed through the en-

sembler, and the model underwent training and evaluation for each weight combination.

Optimization methods played a crucial role in effectively handling extensive mal-

ware data. Our comprehensive experimentation identified the most advantageous param-

eter combination, as determined by JA, resulting in optimal weights: w_G = 0.5742 and

w_R = 0.3121. These weights represent the solution that best enhances our malware detec-

tion capabilities.

To evaluate our model, we assessed the performance of GNGRUE by passing the

hyperparameters through the optimization method JA. Additionally, we evaluated our

model by computing their True Positive and True Negative values, plotted for the pro-

posed and existing methodologies in Figure 10.

Figure 10. ROC Curve and Mapping True Positive as well as True Negative Values.

The main contribution of this article is GNGRUE, which demonstrated superior per-

formance in handling large volumes of data while achieving high accuracy scores and

ROC curve values. The accuracy values of the proposed model are depicted in Figure 11,

ranging from 0 to 1. Higher accuracy is indicated by numbers that are closer to one, and

lesser accuracy is shown by values that are closer to zero.

Figure 11. Accuracy Values between the Existing and Proposed Methods.

Figure 10. ROC Curve and Mapping True Positive as well as True Negative Values.

The main contribution of this article is GNGRUE, which demonstrated superior per‑
formance in handling large volumes of datawhile achieving high accuracy scores andROC
curve values. The accuracy values of the proposed model are depicted in Figure 11, rang‑
ing from 0 to 1. Higher accuracy is indicated by numbers that are closer to one, and lesser
accuracy is shown by values that are closer to zero.

Using the assessment metrics given in Table 6, we evaluated the performance of our
suggested ensemble strategy and contrasted it with the existing techniques. Notably, GN‑
GRUE outperformed the existing methods. Our proposed methods displayed the ability
to adjust their parameter values optimally, even with an expanded input dataset, resulting
in enhanced performance.

The accuracy of binary classifications was assessed using the Matthews correlation
coefficient (MCC) measure in Figure 12. The MCC value reflects the degree of correlation
between the predicted and actual labels for malware samples. A higher MCC value in‑
dicates superior performance in correctly identifying malware samples. Figure 12 shows
that the model correctly predicts all malware samples as positive and all benign samples
as negative if a technique displays an MCC value close to one. Conversely, an MCC value

Systems 2023, 11, 547 22 of 26

closer to 0 or −1 suggests that the model is making incorrect predictions and performing
the opposite of its intended purpose.

Systems 2023, 11, x FOR PEER REVIEW 21 of 26

applying the Jaya Algorithm (JA). The optimized weights were passed through the en-

sembler, and the model underwent training and evaluation for each weight combination.

Optimization methods played a crucial role in effectively handling extensive mal-

ware data. Our comprehensive experimentation identified the most advantageous param-

eter combination, as determined by JA, resulting in optimal weights: w_G = 0.5742 and

w_R = 0.3121. These weights represent the solution that best enhances our malware detec-

tion capabilities.

To evaluate our model, we assessed the performance of GNGRUE by passing the

hyperparameters through the optimization method JA. Additionally, we evaluated our

model by computing their True Positive and True Negative values, plotted for the pro-

posed and existing methodologies in Figure 10.

Figure 10. ROC Curve and Mapping True Positive as well as True Negative Values.

The main contribution of this article is GNGRUE, which demonstrated superior per-

formance in handling large volumes of data while achieving high accuracy scores and

ROC curve values. The accuracy values of the proposed model are depicted in Figure 11,

ranging from 0 to 1. Higher accuracy is indicated by numbers that are closer to one, and

lesser accuracy is shown by values that are closer to zero.

Figure 11. Accuracy Values between the Existing and Proposed Methods.

Figure 11. Accuracy Values between the Existing and Proposed Methods.

Table 6. Comparison of Performance Evaluation Metrics Values of Proposed vs. Existing.

Techniques F1‑Score Accuracy Precision Recall ROC‑AUC MCC Fowlkes–Mallows Index Cohen’s Kappa

ADA [20] 0.78 0.89 0.81 0.76 0.88 0.67 0.79 0.65
DTC [21] 0.72 0.83 0.75 0.69 0.84 0.59 0.73 0.57
LDA [22] 0.68 0.82 0.72 0.65 0.8 0.55 0.7 0.52
CNN [27] 0.85 0.9 0.88 0.82 0.92 0.71 0.86 0.69

DenseNet121 [28] 0.82 0.87 0.85 0.79 0.92 0.74 0.82 0.71
LG [29] 0.73 0.85 0.76 0.7 0.87 0.63 0.75 0.61

ResNet [35] 0.89 0.91 0.92 0.87 0.94 0.79 0.88 0.78
GNGRUE 0.97 0.98 0.96 0.98 0.99 0.94 0.95 0.93

Systems 2023, 11, x FOR PEER REVIEW 22 of 26

Using the assessment metrics given in Table 6, we evaluated the performance of our

suggested ensemble strategy and contrasted it with the existing techniques. Notably,

GNGRUE outperformed the existing methods. Our proposed methods displayed the abil-

ity to adjust their parameter values optimally, even with an expanded input dataset, re-

sulting in enhanced performance.

Table 6. Comparison of Performance Evaluation Metrics Values of Proposed vs. Existing.

Techniques F1-Score Accuracy Precision Recall
ROC-

AUC
MCC

Fowlkes–
Mallows

Index

Cohen’s

Kappa

ADA [20] 0.78 0.89 0.81 0.76 0.88 0.67 0.79 0.65

DTC [21] 0.72 0.83 0.75 0.69 0.84 0.59 0.73 0.57

LDA [22] 0.68 0.82 0.72 0.65 0.8 0.55 0.7 0.52

CNN [27] 0.85 0.9 0.88 0.82 0.92 0.71 0.86 0.69

DenseNet121

[28]
0.82 0.87 0.85 0.79 0.92 0.74 0.82 0.71

LG [29] 0.73 0.85 0.76 0.7 0.87 0.63 0.75 0.61

ResNet [35] 0.89 0.91 0.92 0.87 0.94 0.79 0.88 0.78

GNGRUE 0.97 0.98 0.96 0.98 0.99 0.94 0.95 0.93

The accuracy of binary classifications was assessed using the Matthews correlation

coefficient (MCC) measure in Figure 12. The MCC value reflects the degree of correlation

between the predicted and actual labels for malware samples. A higher MCC value indi-

cates superior performance in correctly identifying malware samples. Figure 12 shows

that the model correctly predicts all malware samples as positive and all benign samples

as negative if a technique displays an MCC value close to one. Conversely, an MCC value

closer to 0 or −1 suggests that the model is making incorrect predictions and performing

the opposite of its intended purpose.

Figure 12. Comparison of MCC Values Between Existing and Proposed GNGRUE.

The suggested system is composed of a model selector module that chooses classifi-

ers based on processing speeds and accuracy for specific sub-engines, and a feature selec-

tion module that minimizes the original feature set. Compared to conventional detection

architectures, our novel hybrid categorization technique produces a system that is more

accurate and efficient. Figure 13 displays the temporal complexity of both our suggested

and cutting-edge techniques.

Figure 12. Comparison of MCC Values Between Existing and Proposed GNGRUE.

Systems 2023, 11, 547 23 of 26

The suggested system is composed of amodel selector module that chooses classifiers
based on processing speeds and accuracy for specific sub‑engines, and a feature selection
module that minimizes the original feature set. Compared to conventional detection archi‑
tectures, our novel hybrid categorization technique produces a system that is more accu‑
rate and efficient. Figure 13 displays the temporal complexity of both our suggested and
cutting‑edge techniques.

Systems 2023, 11, x FOR PEER REVIEW 23 of 26

Figure 13. Time Complexity/Execution time of proposed and existing methods.

Furthermore, we conducted concurrent tests on the attack detector and model trainer

modules. It was observed that the model trainer module’s processing speed improved

significantly, being three times faster during parallel training compared to serial training.

The attack detection module also exhibited enhanced processing speed compared to serial

classification, although it may require a multithreading architecture or a more powerful

GPU for optimal performance, as shown in Figure 14. The experimental results highlight

that our sequential design improves the accuracy of IoT malware attack detection and

maintains a lightweight.

Figure 14. Time Complexity of different modules.

6. Discussion on Adaptability to New Types of Malware

In the context of malware detection, it is critical to evaluate the proposed method’s

adaptability to new types of malware that may not be included in the previously deter-

mined datasets utilized in our studies. While our strategy performed well on the eight

particular datasets, the ever-changing malware landscape must thoroughly examine the

capabilities to deal with upcoming threats.

Our approach’s architecture is designed to tolerate new varieties of malware, even if

they were not included in the training data. The feature selection approaches, and ma-

chine learning models used in our method, contribute to the system’s versatility. These

Figure 13. Time Complexity/Execution time of proposed and existing methods.

Furthermore, we conducted concurrent tests on the attack detector and model trainer
modules. It was observed that the model trainer module’s processing speed improved sig‑
nificantly, being three times faster during parallel training compared to serial training. The
attack detectionmodule also exhibited enhanced processing speed compared to serial clas‑
sification, although it may require a multithreading architecture or a more powerful GPU
for optimal performance, as shown in Figure 14. The experimental results highlight that
our sequential design improves the accuracy of IoT malware attack detection and main‑
tains a lightweight.

Systems 2023, 11, x FOR PEER REVIEW 23 of 26

Figure 13. Time Complexity/Execution time of proposed and existing methods.

Furthermore, we conducted concurrent tests on the attack detector and model trainer

modules. It was observed that the model trainer module’s processing speed improved

significantly, being three times faster during parallel training compared to serial training.

The attack detection module also exhibited enhanced processing speed compared to serial

classification, although it may require a multithreading architecture or a more powerful

GPU for optimal performance, as shown in Figure 14. The experimental results highlight

that our sequential design improves the accuracy of IoT malware attack detection and

maintains a lightweight.

Figure 14. Time Complexity of different modules.

6. Discussion on Adaptability to New Types of Malware

In the context of malware detection, it is critical to evaluate the proposed method’s

adaptability to new types of malware that may not be included in the previously deter-

mined datasets utilized in our studies. While our strategy performed well on the eight

particular datasets, the ever-changing malware landscape must thoroughly examine the

capabilities to deal with upcoming threats.

Our approach’s architecture is designed to tolerate new varieties of malware, even if

they were not included in the training data. The feature selection approaches, and ma-

chine learning models used in our method, contribute to the system’s versatility. These

Figure 14. Time Complexity of different modules.

Systems 2023, 11, 547 24 of 26

6. Discussion on Adaptability to New Types of Malware
In the context of malware detection, it is critical to evaluate the proposed method’s

adaptability to new types of malware that may not be included in the previously deter‑
mined datasets utilized in our studies. While our strategy performed well on the eight
particular datasets, the ever‑changing malware landscape must thoroughly examine the
capabilities to deal with upcoming threats.

Our approach’s architecture is designed to tolerate new varieties of malware, even if
theywere not included in the training data. The feature selection approaches, andmachine
learning models used in our method, contribute to the system’s versatility. These compo‑
nents are not limited to the eight datasets but are intended to generalize and extract useful
information from various data sources. This versatility allows us to extend our strategy to
previously unknown malware varieties.

As we highlight the significance of practicality and real‑world applicability, it is ac‑
knowledged that the cybersecurity profession needs solutions that can effectively address
new threats. As a result, our method’s flexibility to new malware types matches the dy‑
namic nature of the cybersecurity field. Our strategy is intended to serve as a basis for
malware detection, with the understanding that continual research and development are
required to improve its flexibility.

While our study offers findings using predefined datasets, we encourage further re‑
search into expanding and improving our technique to deal with new and diverse forms
of malware. The capacity of any malware detection solution to adopt in conjunction with
the ever‑changing threat environment is critical to its real‑world success. This dedication
to flexibility is a critical component of our study and a focus area for future efforts. Our
proposed technique provides a solid foundation for malware identification, displaying ex‑
cellent performance on existing datasets. However, adaptability to new forms of malware
remains a vital component that needs more research and development. We are commit‑
ted to updating our technique as cybersecurity evolves to guarantee it stays successful in
recognizing and mitigating future threats.

7. Conclusions
With the continuous evolution of IoT technologies, the incidence of cyberattacks on

these devices, particularly malware attacks, is increasing. These threats present a substan‑
tial challenge in IoT environments. Attackers often exploit vulnerabilities through com‑
mand and control (C&C) servers, seizing control of compromised devices to target unsus‑
pecting hosts. Our proposed detection architecture addresses these issues by identifying
known attacks and their variations while remaining adaptable to emerging threats. Pre‑
cision and efficiency are achieved through feature selection, distribution analysis, cluster‑
ing, and the isolation forest model. The incorporation of a hybrid classification method
enhances accuracy and accelerates detection.

In our future research, we will investigate normal traffic patterns on diverse IoT de‑
vices to bolster our anomaly detection engine’s ability to recognize unknown attacks. Fur‑
thermore, we plan to validate our system’s performance through testbed implementation
and propose strategies for effectively isolating compromised devices.

AuthorContributions: Conceptualization,N.A.; Formal analysis, A.A.A.; Funding acquisition, A.A.A.;
Investigation, A.A.A.; Methodology, A.A.A.; Resources, N.A.; Supervision, A.A.A.; Writing—original
draft, N.A.; Writing—review and editing, A.A.A. All authors have read and agreed to the published
version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation, Min‑
istry of Education in Saudi Arabia for funding this research work through project
number MoE‑IF‑UJ‑22‑4100409‑8.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Systems 2023, 11, 547 25 of 26

Data Availability Statement: The dataset is publicly available online on https://www.stratosphere
ips.org/datasets‑iot23 (accessed on 1 September 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mishra, N.; Pandya, S. Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A

Systematic Review. IEEE Access 2021, 9, 59353–59377. [CrossRef]
2. Gaurav, A.; Gupta, B.B.; Panigrahi, P.K. A Comprehensive Survey on Machine Learning Approaches for Malware Detection in

IoT‑Based Enterprise Information System. Enterp. Inf. Syst. 2023, 17, 2023764. [CrossRef]
3. Macas, M.; Wu, C.; Fuertes, W. A Survey on Deep Learning for Cybersecurity: Progress, Challenges, and Opportunities. Comput.

Netw. 2022, 212, 109032. [CrossRef]
4. Zhou, J.X.; Shen, G.Q.; Yoon, S.H.; Jin, X. Customization of On‑Site Assembly Services by Integrating the Internet of Things and

BIM Technologies in Modular Integrated Construction. Autom. Constr. 2021, 126, 103663. [CrossRef]
5. Shaukat, K.; Luo, S.; Varadharajan, V. A Novel Deep Learning‑Based Approach for Malware Detection. Eng. Appl. Artif. Intell.

2023, 122, 106030. [CrossRef]
6. Palša, J.; Ádám, N.; Hurtuk, J.; Chovancová, E.; Madoš, B.; Chovanec, M.; Kocan, S. MLMD—A Malware‑Detecting Antivirus

Tool Based on the XGBoost Machine Learning Algorithm. Appl. Sci. 2022, 12, 6672. [CrossRef]
7. Maniriho, P.; Mahmood, A.N.; Chowdhury, M.J.M. A Study on Malicious Software Behaviour Analysis and Detection Tech‑

niques: Taxonomy, Current Trends and Challenges. Future Gener. Comput. Syst. 2022, 130, 1–18. [CrossRef]
8. Udousoro, I.C. Machine Learning: A Review. Semicond. Sci. Inf. Devices 2020, 2, 5–14.
9. Shaukat, K.; Luo, S.; Varadharajan, V.ANovelMethod for Improving the Robustness ofDeep Learning‑BasedMalwareDetectors

against Adversarial Attacks. Eng. Appl. Artif. Intell. 2022, 116, 105461. [CrossRef]
10. Aslan, Ö.A.; Samet, R. A Comprehensive Review onMalware Detection Approaches. IEEE Access 2020, 8, 6249–6271. [CrossRef]
11. Mishra, A.; Almomani, A. Malware Detection Techniques: A Comprehensive Study. Insights Int. Interdiscip. J. 2023, 1, 1–5.
12. Kwon, H.Y.; Kim, T.; Lee, M.K. Advanced Intrusion Detection Combining Signature‑Based and Behavior‑Based Detection Meth‑

ods. Electronics 2022, 11, 867. [CrossRef]
13. Singh, J.; Singh, J. A Survey onMachine Learning‑BasedMalware Detection in Executable Files. J. Syst. Archit. 2021, 112, 101861.

[CrossRef]
14. Tayyab, U.E.H.; Khan, F.B.; Durad, M.H.; Khan, A.; Lee, Y.S. A Survey of the Recent Trends in Deep Learning Based Malware

Detection. J. Cybersecur. Priv. 2022, 2, 800–829. [CrossRef]
15. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al‑rimy, B.A.S.; Eisa, T.A.E.; Elnour, A.A.H. Malware Detection Issues, Challenges, and

Future Directions: A Survey. Appl. Sci. 2022, 12, 8482. [CrossRef]
16. Alomari, E.S.; Nuiaa, R.R.; Alyasseri, Z.A.A.; Mohammed, H.J.; Sani, N.S.; Esa, M.I.; Musawi, B.A. Malware Detection Using

Deep Learning and Correlation‑Based Feature Selection. Symmetry 2023, 15, 123. [CrossRef]
17. Hemalatha, J.; Roseline, S.A.; Geetha, S.; Kadry, S.; Damaševičius, R. An Efficient DenseNet‑Based Deep Learning Model for

Malware Detection. Entropy 2021, 23, 344. [CrossRef]
18. Ngo, Q.D.; Nguyen, H.T.; Le, V.H.; Nguyen, D.H. A Survey of IoT Malware and Detection Methods Based on Static Features.

ICT Express 2020, 6, 280–286. [CrossRef]
19. Khalid, A.; Badshah, G.; Ayub, N.; Shiraz, M.; Ghouse, M. Software Defect Prediction Analysis Using Machine Learning Tech‑

niques. Sustainability 2023, 15, 5517. [CrossRef]
20. Ravi, V.; Alazab, M.; Selvaganapathy, S.; Chaganti, R. A Multi‑View Attention‑Based Deep Learning Framework for Malware

Detection in Smart Healthcare Systems. Comput. Commun. 2022, 195, 73–81. [CrossRef]
21. Bhat, P.; Behal, S.; Dutta, K. A System Call‑Based Android Malware Detection Approach with Homogeneous & Heterogeneous

Ensemble Machine Learning. Comput. Secur. 2023, 130, 103277.
22. Dewanje, A.; Kumar, K.A. A NewMalware Detection Model Using Emerging Machine Learning Algorithms. Int. J. Electron. Inf.

Eng. 2021, 13, 24–32.
23. Patil, S.; Varadarajan, V.; Walimbe, D.; Gulechha, S.; Shenoy, S.; Raina, A.; Kotecha, K. Improving the Robustness of AI‑Based

Malware Detection Using Adversarial Machine Learning. Algorithms 2021, 14, 297. [CrossRef]
24. Taheri, R.; Ghahramani, M.; Javidan, R.; Shojafar, M.; Pooranian, Z.; Conti, M. Similarity‑Based Android Malware Detection

Using Hamming Distance of Static Binary Features. Future Gener. Comput. Syst. 2020, 105, 230–247. [CrossRef]
25. Sayadi, H.; Patel, N.; Sasan, A.; Rafatirad, S.; Homayoun, H. Ensemble Learning for Effective Run‑Time Hardware‑Based Mal‑

ware Detection: A Comprehensive Analysis and Classification. In Proceedings of the 55th Annual Design Automation Confer‑
ence, San Francisco, CA, USA, 24–29 June 2018; pp. 1–6.

26. Sihwail, R.; Omar, K.; Zainol Ariffin, K.A.; Al Afghani, S. Malware Detection Approach Based on Artifacts in Memory Image
and Dynamic Analysis. Appl. Sci. 2019, 9, 3680. [CrossRef]

27. Huang, X.; Ma, L.; Yang, W.; Zhong, Y. A Method for Windows Malware Detection Based on Deep Learning. J. Signal Process.
Syst. 2021, 93, 265–273. [CrossRef]

https://www.stratosphereips.org/datasets-iot23
https://www.stratosphereips.org/datasets-iot23
https://doi.org/10.1109/ACCESS.2021.3073408
https://doi.org/10.1080/17517575.2021.2023764
https://doi.org/10.1016/j.comnet.2022.109032
https://doi.org/10.1016/j.autcon.2021.103663
https://doi.org/10.1016/j.engappai.2023.106030
https://doi.org/10.3390/app12136672
https://doi.org/10.1016/j.future.2021.11.030
https://doi.org/10.1016/j.engappai.2022.105461
https://doi.org/10.1109/ACCESS.2019.2963724
https://doi.org/10.3390/electronics11060867
https://doi.org/10.1016/j.sysarc.2020.101861
https://doi.org/10.3390/jcp2040041
https://doi.org/10.3390/app12178482
https://doi.org/10.3390/sym15010123
https://doi.org/10.3390/e23030344
https://doi.org/10.1016/j.icte.2020.04.005
https://doi.org/10.3390/su15065517
https://doi.org/10.1016/j.comcom.2022.08.015
https://doi.org/10.3390/a14100297
https://doi.org/10.1016/j.future.2019.11.034
https://doi.org/10.3390/app9183680
https://doi.org/10.1007/s11265-020-01588-1

Systems 2023, 11, 547 26 of 26

28. Atitallah, S.B.; Driss, M.; Almomani, I. A Novel Detection and Multi‑Classification Approach for IoT‑Malware Using Random
Forest Voting of Fine‑Tuning Convolutional Neural Networks. Sensors 2022, 22, 4302. [CrossRef]

29. Malvacio, E.M.; Duarte, J.C. An assessment of the effectiveness of pretrained neural networks for malware detection. IEEE Latin
America Transactions 2023, 21, 47–53. [CrossRef]

30. Roseline, S.A.; Geetha, S.; Kadry, S.; Nam, Y. Intelligent Vision‑BasedMalware Detection and Classification Using Deep Random
Forest Paradigm. IEEE Access 2020, 8, 206303–206324. [CrossRef]

31. Andreopoulos, W.B. Malware Detection with Sequence‑Based Machine Learning and Deep Learning. InMalware Analysis Using
Artificial Intelligence and Deep Learning; Springer: Cham, Switzerland, 2021; pp. 53–70.

32. Zhang, N.; Xue, J.; Ma, Y.; Zhang, R.; Liang, T.; Tan, Y.A. Hybrid Sequence‑Based Android Malware Detection Using Natural
Language Processing. Int. J. Intell. Syst. 2021, 36, 5770–5784. [CrossRef]

33. Gržinić, T.; González, E.B. Methods for Automatic Malware Analysis and Classification: A Survey. Int. J. Inf. Comput. Secur.
2022, 17, 179–203. [CrossRef]

34. Roh, Y.; Heo, G.; Whang, S.E. A Survey on Data Collection for Machine Learning: A Big Data‑AI Integration Perspective. IEEE
Trans. Knowl. Data Eng. 2019, 33, 1328–1347. [CrossRef]

35. Demirezen, M.U. Image Based Malware Classification with Multimodal Deep Learning. Int. J. Inf. Secur. Sci. 2021, 10, 42–59.
36. Manzil, H.H.R.; Naik, S.M. Detection approaches for android malware: Taxonomy and review analysis. Expert Syst. Appl. 2023,

2023, 122255.
37. Manzano, C.; Meneses, C.; Leger, P.; Fukuda, H. An empirical evaluation of supervised learning methods for network malware

identification based on feature selection. Complexity 2022, 2022, 6760920. [CrossRef]
38. Kimmel, J.C.; Mcdole, A.D.; Abdelsalam,M.; Gupta,M.; Sandhu, R. Recurrent neural networks‑based online behavioralmalware

detection techniques for cloud infrastructure. IEEE Access 2021, 9, 68066–68080. [CrossRef]
39. Ghurab,M.; Gaphari, G.; Alshami, F.; Alshamy, R.; Othman, S. A detailed analysis of benchmark datasets for a network intrusion

detection system. Asian J. Res. Comput. Sci. 2021, 7, 14–33. [CrossRef]
40. Alavizadeh, H.; Jang‑Jaccard, J.; Enoch, S.Y.; Al‑Sahaf, H.; Welch, I.; Camtepe, S.A.; Kim, D.S. A Survey on Threat Situation

Awareness Systems: Framework, Techniques, and Insights. arXiv 2021, arXiv:2110.15747.
41. Saeed, M.M. A real‑time adaptive network intrusion detection for streaming data: A hybrid approach. Neural Comput. Appl.

2022, 34, 6227–6240. [CrossRef]
42. Malware Dataset, IoT23. Available online: https://www.stratosphereips.org/datasets‑iot23 (accessed on 12 September 2023).
43. Chicco, D.; Jurman, G. The Advantages of the Matthews Correlation Coefficient (MCC) over F1 Score and Accuracy in Binary

Classification Evaluation. BMC Genom. 2020, 21, 6. [CrossRef]
44. Geetha, K.; Brahmananda, S.H. Network Traffic Analysis Through Deep Learning for Detection of an Army of Bots in Health

IoT Network. Int. J. Pervasive Comput. Commun. 2022. ahead‑of‑print.
45. Manju, N.; Harish, B.S.; Prajwal, V. Ensemble Feature Selection and Classification of Internet Traffic Using XGBoost Classifier.

Int. J. Comput. Netw. Inf. Secur. 2019, 11, 37. [CrossRef]
46. AbdulRaheem, M.; Oladipo, I.D.; Imoize, A.L.; Awotunde, J.B.; Lee, C.C.; Balogun, G.B.; Adeoti, J.O. Machine Learning Assisted

Snort and Zeek in Detecting DDoS Attacks in Software‑Defined Networking. Int. J. Inf. Technol. 2023, 1–17. [CrossRef]
47. Anaraki, S.A.M.; Haeri, A.; Moslehi, F. A Hybrid Reciprocal Model of PCA and K‑means with an Innovative Approach of

Considering Sub‑datasets for the Improvement of K‑means Initialization and Step‑by‑Step Labeling to Create Clusters with
High Interpretability. Pattern Anal. Appl. 2021, 24, 1387–1402. [CrossRef]

48. Shutaywi, M.; Kachouie, N.N. Silhouette analysis for performance evaluation inmachine learningwith applications to clustering.
Entropy 2021, 23, 759. [CrossRef] [PubMed]

49. Lovmar, L.; Ahlford, A.; Jonsson, M.; Syvänen, A.C. Silhouette Scores for Assessment of SNP Genotype Clusters. BMC Genom.
2005, 6, 35. [CrossRef]

50. Hariri, S.; Kind, M.C.; Brunner, R.J. Extended Isolation Forest. IEEE Trans. Knowl. Data Eng. 2019, 33, 1479–1489. [CrossRef]
51. Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features fromCheapOperations. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition; IEEE/CVF, Seattle, WA, USA, 13–19 June 2020; pp. 1580–1589.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s22114302
https://doi.org/10.1109/TLA.2023.10015144
https://doi.org/10.1109/ACCESS.2020.3036491
https://doi.org/10.1002/int.22529
https://doi.org/10.1504/IJICS.2022.121297
https://doi.org/10.1109/TKDE.2019.2946162
https://doi.org/10.1155/2022/6760920
https://doi.org/10.1109/ACCESS.2021.3077498
https://doi.org/10.9734/ajrcos/2021/v7i430185
https://doi.org/10.1007/s00521-021-06786-x
https://www.stratosphereips.org/datasets-iot23
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.5815/ijcnis.2019.07.06
https://doi.org/10.1007/s41870-023-01469-3
https://doi.org/10.1007/s10044-021-00977-x
https://doi.org/10.3390/e23060759
https://www.ncbi.nlm.nih.gov/pubmed/34208552
https://doi.org/10.1186/1471-2164-6-35
https://doi.org/10.1109/TKDE.2019.2947676

	Introduction
	Literature Review
	Motivation and Problem Statement
	Proposed System Model
	Dataset
	PreProcessing
	Ensemble Classification Model
	GNGRUE
	Jaya Algorithm

	Experimental Results
	Discussion on Adaptability to New Types of Malware
	Conclusions
	References

