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Abstract: Adaptive learning systems have gained popularity within higher education, given the
affordances that claim to enhance student learning outcomes by providing personalised learning
trajectories that allow students to interact with course content at their own pace. Nonetheless, studies
investigating the impact of such systems on learning outcomes such as course scores have been
mixed, in part due to the research approaches applied, as found by the review undertaken in this
study. Yet, for purposes of accountability, it remains critical to investigate the efficacy of adaptive
learning systems, at least for its relation to course scores when assessment stakes are involved. This
study reports the efficacy of an in-house adaptive learning system used within an institution in
terms of its impact on course scores, based upon propensity score analysis, a quasi-experimental
approach considered as a feasible alternative to randomised controlled trials. Results of this study
reported a difference in course scores, suggesting merit in using the in-house adaptive learning
system, though the difference did not present statistically significant differences at the 95% confidence
level. Directions for future research are also discussed.
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1. Introduction

One of the primary objectives of general and higher education is to create an effective
and efficient learning environment for students. However, the classic learning context
revolves around an environment in which a learner is provided with the same informa-
tion, structure, and interface [1]. Yet, to improve diverse students’ learning, educational
researchers point out that students learn more effectively when instructional materials are
individualised to meet their needs [2]. This is particularly important for students who
have been working for some years prior to pursuing academic studies due to job and
family responsibilities, and may have limited time to complete academic work related to
their coursework [3]. Further, students with diverse levels of knowledge and skills could
pose more challenges for faculty members to teach or integrate fundamental concepts into
the curriculum.

To enhance students’ competencies and success in multiple programs, alternative
teaching and learning approaches are crucial, including the use of technology in instruction
that had been emphasised during the recent COVID-19 pandemic [4]. As an example,
given the complexity of mathematics [5], sufficient prior knowledge and personalised sup-
ports for individual students are important to the enhancement of students’ mathematics
learning outcomes [6]. To foster learners’ problem-solving competence, researchers have
developed various learning strategies and technological tools to enhance students’ learning
outcomes [7]. In particular, adaptive learning platforms have been gaining popularity in
higher education settings. A study by [8] suggested that the core elements of adaptiveness
contribute to incremental learning, regular assessment, and the availability of many paths
to a final destination. In this regard, adaptive learning transforms the learning environment
from a fixed to flexible setting.

In addition to making a difference to teaching and learning processes, the adaptive
learning approach changes another high priority factor—time. As mentioned, students in
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the workforce (e.g., part-time students) have limited time due to multiple responsibilities.
Yet, for mastery to occur during learning, some students need more time than others.
Incidentally, adaptive learning platforms provide a solution to this, by providing students
an opportunity to navigate their learning trajectories at a self-determined pace when
completing course content within the scheduled deadline [9]. For these reasons, adaptive
learning platforms provide flexible context, content, and an opportunity for students in the
workforce to complete required pre-requisite assignments at their own pace.

While adaptive learning systems provide some affordances to enhance learning and
teaching, efficacy studies of such systems have yielded inconclusive findings, some due to
less robust research approaches (e.g., studies without control groups), as identified by the
literature review undertaken in this study. Some have reported learning gains in terms of
course scores, while others reported otherwise. Nonetheless, it remains critical to establish
whether an adaptive learning system impacts learning outcomes, at least in terms of course
scores particularly where stakes are higher; in the least desirable situation, an adaptive
learning system should not be detrimental to student course scores as they engage with
it. To this end, this study seeks to contribute to scholarship by reporting the efficacy of
an in-house adaptive learning system used within an institution (i.e., AdLeS) in terms
of its impact on course scores, based upon a quasi-experimental approach considered as
a feasible alternative to randomised controlled trials.

2. The Potential of Adaptive Learning: Improving Educational Performance

In part to scaffold students’ current levels of understanding and identify knowledge
gaps, research studies have also indicated that adaptive learning systems have the potential
to improve learners’ performance [10]. However, due to the evolving states of adaptive
learning within higher education, research findings on adaptive learning systems have
been mixed [11]. In particular, the review undertaken here of some studies published since
2015 found some that showed no statistically significant difference on student learning
outcomes and others that demonstrated significant learning outcomes (see Table 1). As
an example, to investigate the efficacy of adaptive systems, ref. [1] examined the use of
two instructional methods to compare students’ scores and completion rates. The first
method employed an adaptive learning approach in which instruction and tasks were
adapted in real time. The second method engaged a more traditional approach using a set
of quizzes supplied by the textbook publisher. Finding that neither the first nor the second
method provided a learning advantage to students’ learning, ref. [1] concluded that both
instructional delivery approaches did not vary significantly during the course of learning.

In the same vein, having implemented an adaptive learning system with the aim
to examine performance differences between the pre-test and post-test of students who
completed the adaptive learning versus those who did not participate, ref. [2] found that
the adaptive learning intervention significantly increased students’ knowledge of chemistry
content but not for other subjects. It is noteworthy, however, that [2] explained that the
differences between pre- and post-test scores in biology, mathematics, and information
literacy were greater for students who completed the adaptive system compared to those
who did not, though the difference in scores were not statistically significant following
the intervention.
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Table 1. Efficacy studies of adaptive learning systems.

Author(s) Participants Methods Findings Remarks

[12] Arsovic, B., &
Stefanovic, N. (2020)

Total number of first and second years of
undergraduate students; number was

not indicated

t-test, ANOVA, & multivariate
linear regression

Students who attended the adaptive course
obtained higher marks, and the pass rate

was higher.

Comparability of students who attended the
traditional or adaptive course was not observed. This

could suggest that the finding (of students who
attended the adaptive course attained higher scores)

could be influenced by confounding variables.

[13] Daines, J.B., Troka, T., &
Santiago, JM. (2016)

27 students from Calculus I course, 19
from Trigonometry and Pre-calculus

prerequisite courses
Descriptive statistics

Results show that average pass rates in
Trigonometry, Pre-calculus and Calculus I

increased from 76% to 94%, 66% to 94%, and
69% to 86%, respectively.

As no control group was observed, the findings could
possibly be confounded by single-group threats

(e.g., maturation).

[14] Foshee, C.M., Elliott, S.N., &
Atkinson, R.K. (2016) 2880 college students Pre-test and post-test, paired

sample t-test, two-way ANOVA

Results show statistically significant
improvements in students’ learning and

math efficacy suggesting that the adaptive
system led to successful remediation.

The authors indicated that it was deemed unethical to
use a control group for first-year students. However,

without a control group, the outcome could have
been influenced by other confounding variables.

[2] Liu, M., McKelroy, E.,
Corliss, S.B., &

Carrigan, J. (2017)

128 first year undergraduate students
(74 participated in Biology module; 52 in

Chemistry; 62 in Math; 50 in
Information Literacy)

ANCOVA, t-test, Pearson
correlation, linear regression

The adaptive learning intervention
significantly increased students’ knowledge

of Chemistry but not other subjects.

No control group was observed. The effects of the
adaptive system could have been influenced by other

confounding variables.

[15] Mojarad, S., Essa, A.,
Mojarad, S., & Baker, R. (2018)

3422 college students.
Non-ALEKS-section consisted of

706 students;
ALEKS-section consisted of 417 students

who participated

Logistic regression to calculate
propensity score matching

Five comparisons were statistically
significant in favour of ALEKS, with a boost

of 6 to 19 points in pass rates.

The study had a large sample size and applied
propensity score analyses that supported

the findings.

[16] Mojarad, S., Baker, R.S.,
Essa, A., & Stalzer, S. (2021) 2072 community college students

Matched comparisons using the
inverse proportion of treatment

weights and chi square

This replication study obtained an effect size
of 0.36, which was higher than that of

a similar previous study which was 0.22.

The study was observed to have a large sample size
and comparable control groups to validate findings

of the prior research.

[17] Mou, C., Tian, Y., Zhang, F.,
& Zhu, C. (2022) 3426 college students Deep neural networks

Results indicated that adaptive and deep
learning were more targeted at students’

learning in areas of difficulty and accuracy
than traditional teaching modes.

The study recommended that future research should
account for students’ characteristics (e.g., matching

students from each of the modes of teaching).

[1] Murray, M.C., &
Pérez, J. (2015) 218 university students Correlation, and t-test

Results indicated that neither the adaptive
learning nor the traditional approaches

provided a definitive learning advantage

The researchers concluded that more similar research
studies are needed. Further, evidence related to the

comparability of the control group was not observed.
[18] Ruan, S., Jiang, L., Xu, J.,

Tham, B.J.K., Qiu, Z.N., Zhu, Y.,
Murnane, E.L., Brunskill, E.,

Landay, J.A. (2019)

76 students from 12 different universities
over 20 majors including Mathematics,

Computer Science, Biology, History,
Communication, Psychology, and others

Descriptive statistics, pre- and
post-test, two sample t-test

The algorithm sequencing system helped
learners recognise 21.4% more (and recall

21% more) questions than a traditional
flashcard learning tool.

Academic performance in terms of quiz scores were
not studied. However, the researchers suggested that

further studies are necessary to understand
long-term usage behaviours and attitudes.

[19] Shelle, G., Earnesty, D.,
Pilkenton, A, Powell, E. (2018)

85 undergraduate students competed the
pre-test and 50 attempted post-test,

75 completed the questionnaire

Descriptive statistics, pre- and
post-test, t-test; qualitative

approach with open, axial, and
selective data analysis

There was a significant difference between
the pre- and post-test average scores

suggesting the effectiveness of the tool

No control group was observed. The effects of the
adaptive system could have been influenced by other

confounding variables.
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Further, to examine the efficacy of an adaptive platform, ref. [12] compared college
students who adopted an adaptive learning system (i.e., ALEKS) with those who chose
not to use it. They collected data from four courses including pre-algebra, elementary
algebra, intermediate algebra, and college mathematics. The comparisons showed that
students using ALEKS had significantly higher pass rates than non-users. Mojard and
colleagues pointed out that all comparisons were statistically significantly in support of the
adaptive learning system, which enhanced pass rates by 6 to 19 points between users and
non-users. Subsequently, ref. [13] conducted a follow-up study to investigate: (1) if usage of
the adaptive platform had increased and, (2) whether users had the same improvements in
terms of learning outcomes as demonstrated in the previous study. Similarly, this follow-up
study compared students using ALEKS with non-users by adding a new analysis approach
that was not applied in the original research. The results showed that all comparisons
between users and non-users were again statistically significant in support of the adaptive
learning system. The pass rates for the original research achieved a boost of 6 to 19 points
between users and non-users. In comparison, the pass rates for the follow-up study
achieved a boost of 13 to 20 points. With these, ref. [13] concluded that ALEKS was likely
to be beneficial for learners within the same educational context.

The findings of the research studies discussed are consistent with those of [11], indicat-
ing that the efficacy of adaptive learning systems within higher education yielded mixed
results. Although adaptive learning has been adopted across different higher education
contexts and various disciplines to influence student performance, it remains unclear how
it could be efficacious. Given these inconclusive results, the efficacies of different adaptive
learning approaches and their learning outcomes need to be further investigated in various
educational settings. Specifically, the continued investigation of the efficacy of adaptive
learning systems remains critical as it would provide information useful for instructors
and institutions to decide whether to implement adaptive learning and if yes, what would
work better for their students.

Adaptive Learning in the Institution in This Study

The institution in this study comprises mainly adult learners with diverse academic
and demographic backgrounds along with varied work experiences. About 80% of enrolled
undergraduate learners read their studies while working. To ensure all learners are given
the best possible opportunity to achieve their optimal performance, learning and teaching
instruction cannot be one-size-fits all, but one that is personalised to the level of individual
prior knowledge and learning behaviour. To this end, adopting personalised learning
as part of innovating for diverse learners is a key instructional strategy adopted by the
institution in this study.

One form of personalised learning is via technology-enabled adaptive systems where
the digital platform adapts both components of content and assessment based on individual
learners’ prior knowledge. The adaptive learning system used in this study (i.e., AdLeS)
also caters to personalised learning behaviours as it intends for learners to have flexibility
when they learn online within a stipulated period, depending on the progress they make in
the learning process. Based on these characteristics, AdLeS aims to enable learners to level
up their prior knowledge, which is varied and uneven, such that they are able to engage
with the tertiary level content more meaningfully. Further, the outputs from AdLeS would
reflect analytics of learners’ learning gains and gaps, thereby enabling instructors to perform
more targeted instruction to address these gains, and in particular, the learning gaps.

3. Methodology

Based on the gaps of the efficacy studies identified in Table 1, it was determined
that propensity score analysis [20], the Student’s t-test [21], and Cohen’s d [22] would be
appropriate for this study. Data between July 2020 and January 2022 was first curated
from two main sources (i.e., student demographics from the data information office, and
student course examination results from the school) as AdLeS was piloted only from July
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2021. Subsequently, the data was processed such that students with missing covariates
(e.g., General Certificate of Education Ordinary [GCEO] Level English or Mathematics
grades) were deleted before data from both sources were merged, for the purpose of
computing propensity scores. In order to minimise unaccounted hidden bias [23,24], all
available and relevant covariates were considered with the exception of the concomitant
variable (i.e., end-of-course examination score [TOA]). These included the: (1) student
unique identifier (2) course code (i.e., course A7 or course B8; both are level one Calculus
courses in the tertiary institution) (3) academic semester that the student read and com-
pleted the course (4) age when student read and completed the course (age) (5) gender
(6) post-secondary institution that the student was from prior to matriculating with the
current tertiary institution (7) GCEO Level English grade (ELGRnum) (8) GCEO Level
Mathematics grade (MAGRnum) (9) course computer-marked assignment score (CMA),
and (10) mid-of-course tutor-marked assignment score (TMA).

Propensity Score Analysis

While randomised controlled trials are considered the gold standard for efficacy
research studies of educational programmes or interventions, practical issues remain. For
example, artificially establishing control and treated groups within the same semester of
study may disadvantage either, particularly if the stakes are high, and calls into question
the issue of research ethics [25]. In this regard, quasi-experimental methods could be used
and one such approach is propensity score analysis [26]. Propensity score analysis via SAS
(9.4) was used in this study as it was not possible to randomise both control (students who
did not interact with AdLeS across the July 2020 and January 2021 semesters; N = 162 for
course A7 and N = 76 for course B8) and treated (students who interacted with AdLeS
across the July 2021 and January 2022 semesters; N = 98 for course A7 and N = 56 for course
B8) groups, on the basis of research ethics and that AdLeS was introduced only in the July
2021 semester.

Of the three common methods within propensity score analysis (i.e., weighting, strati-
fication and matching), matching (i.e., propensity score matching [PSM]) was used in this
study as the aim was to establish whether the treated group benefited from their interaction
with AdLeS in terms of their TOA). PSM matches each individual in the treated group
with one in the control group who is similar on one of more covariates, based upon the
definition of a propensity score, that is, the conditional probability estimates of a subject
receiving treatment given observed covariates [20] (see Equation (1)).

ei ≡ e(Xi) ≡ P(Wi = 1|Xi = xi) (1)

where ei is the propensity score, Xi is a scalar summary of a vector of the covariates,
P(Wi = 1|Xi = xi) is the probability of treatment (i.e., 0 means non-treatment and 1 means
treatment) given a vector of the covariates xi.

Matching this way allows a between-groups comparison thereby providing an estimate
of the effect of a treatment on a non-randomised control group. For this study, propensity
scores for each subject in both the control and treatment groups were first estimated
by fitting a binary logistic regression model [20] before matching subjects based on this
score [27]. In fitting the regression model, all covariates, other than the concomitant variable
that may be impacted by the treatment [28], were included to minimise the occurrence of
unaccounted hidden bias, as opposed to selecting covariates to maximise the predictive
power of the logistic regression, which is not the focus in propensity score analyses [23,24].

To achieve optimal matching with the highest number of matches, three matching
methods (i.e., greedy nearest neighbour matching, optimal matching, and matching with
replacement) were considered. In addition, the caliper value (i.e., the upper limit of
the difference in propensity score between each pair of matched subjects) and different
regions of support were applied and iteratively adjusted [29]. Three approaches were then
used for balance assessment: (1) standardised mean difference of covariates (2) treated-
to-control variance ratio of propensity scores between both treatment and control groups,



Systems 2023, 11, 31 6 of 11

and (3) percent bias reduction of propensity scores. Following the balance assessment,
Student’s t-test was applied along with the computation of Cohen’s d to determine if TOA
scores were influenced by students’ interaction with AdLeS.

4. Results

Of the three types of matching, greedy nearest neighbour matching was found to
be optimal based on the iterative matching procedure discussed. Greedy matching was
also deemed more appropriate for this study as the number of students who interacted
with AdLeS for both courses was smaller than those who did not interact with AdLeS; [30]
specified that greedy matching works well in such instances. Despite the importance
of a caliper specification to improve matching quality and enforce a common support
region [30], this specification had to be lifted for optimal matching in this study to run
successfully, contrary to caliper width recommendations by [31,32] (i.e., 0.20 to 0.25).
Similarly, matching with replacement was deemed as less ideal as individuals in the control
group (i.e., students who did not interact with AdLeS) would have to be re-used; this
would decrease precision owing to increased reliance on just a few individuals, and may
impact effect sizes [33].

With greedy nearest neighbour matching, 55 and 43 matched pairs were found for
course A7 and course B8, respectively. Figures 1 and 2 illustrate that the standardised mean
differences for the matched pairs of course A7 and course B8 were acceptable based on the
0.25 threshold for covariate balance recommended by [34]. Further, Table 2 shows that the
treated-to-control variance ratios of propensity scores between both treatment and control
groups for both course A7 and course B8 were 0.99 and 1.21, respectively, well within the
thresholds for optimal balance by [34] (i.e., between 0.5 and 2). The percent bias reduction
of propensity scores for both course A7 and course B8 were also considered adequate given
their values of 87.16% and 79.86%, respectively [35].
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Table 2. Treated-to-control Variance Ratio and Percent Bias Reduction for Course A7 and Course B8
Propensity Scores.

Propensity Score Course A7 Course B8

Treated-to-control variance ratio 0.99 1.21
Percent bias reduction (%) 87.16 79.86

Figures 3 and 4, which illustrate the propensity score distributions for individuals in
the treated and control groups, further indicate that the distributions are well-balanced for
the matched observations.
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Given the acceptable findings upon the balance assessment, Student’s t-tests were
conducted on the matched pairs, as well as prior to the matching to establish the worth of
PSM in this study. Table 3 presents the t-test results.

Table 3. Comparison of TOA Scores.

Course Comparison of TOA Scores N Equality of
Variances p Values t Value p Value 95% CI Cohen’s d

A7
Students who interacted AdLeS

with students who did not interact
with AdLeS, without PSM

162 (without
AdLeS); 98

(with AdLeS)
0.47 −0.25 0.80 [−0.21, 0.28] 0.03

A7
Students who interacted AdLeS

with students who did not interact
with AdLeS, with PSM

55 0.48 −1.75 0.08 [−0.05, 0.71] 0.33

B8
Students who interacted AdLeS

with students who did not interact
with AdLeS, without PSM

76(without
AdLeS); 56

(with AdLeS)
0.79 −1.48 0.14 [−0.08, 0.61] 0.26

B8
Students who interacted AdLeS

with students who did not interact
with AdLeS, with PSM

43 0.39 −1.73 0.09 [−0.06, 0.80] 0.37

5. Discussion

Results in Table 3 demonstrate that the TOA scores did not present statistically signifi-
cant differences at the 95% confidence level between students who interacted with AdLeS
and those who did not, regardless of whether PSM was applied. However, relying solely
on statistical significance is inadequate as it only suggests whether the findings are likely to
be due to chance; whether interacting with AdLeS impacts TOA scores, and to what extent,
remains unknown. In this regard, it is worthwhile considering effect size as it quantifies the
magnitude of differences found [36]. For this study, the effect size would indicate whether
AdLeS impacted the TOA scores and to what extent.

Without PSM, based on recommendations by [37], the effect size of AdLeS on course
A7 and course B8 would be considered negligible and small, respectively. Nonetheless, it is
noteworthy that [31] effect size benchmarks (i.e., 0.2 suggests a small effect, 0.5 suggests
a medium effect, and 0.8 suggests a large effect) should not be interpreted strictly [38].
On the contrary, applying the recommendations of [39] for effect sizes of educational
interventions (i.e., less than 0.05 indicates a small effect, 0.05 to less than 0.20 indicates
a medium effect, and 0.20 or greater indicates a large effect) would render the effect size
of AdLeS on course A7 and course B8 as small and large, respectively. With PSM and
based on the recommendations from [39], however, the effect sizes for both course A7 and
course B8 would be considered large and, hence, more consistent. Particularly for course
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A7, the effect size suggests practical significance [40,41] in that students who interacted
with AdLeS yielded higher TOA scores than those who did not.

While PSM overcomes issues such as research ethics and presented AdLeS as having
a large effect size on both courses in this study, there are limitations to this approach. The
identification and availability of relevant covariates are dependent on the data information
office, and pertinent covariates could have been omitted resulting in propensity score
estimation bias. It is undeniable that the computation of propensity scores is limited by
observable variables afforded by access granted for this study, and does not account for
hidden bias due to other unknown variables. It is also noteworthy that propensity score
analyses works best when sample sizes are large, and those within this study might not be
considered as such.

6. Conclusions and Practical Implications

This study sought to determine whether students’ TOA scores would be impacted if
they interacted with AdLeS. While the results indicate non-statistical significance at the 95%
confidence level, the effect sizes suggest that there is merit in having students use AdLeS
within a course. This finding, consistent with what was gleaned the literature, indicated
that while there is some merit to using an adaptive learning system, more work is needed
to thoroughly unpack specific learning benefits. In particular, we envisage how instructors
act on the analytics produced by the adaptive learning system and what specific teaching
strategies they adopt will influence the eventual performance in the TOA scores. These
conditions constitute an indication of the direction of future research on using adaptive
learning systems for personalised learning.
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