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Abstract: Dynamics always exist in complex systems. Graphs (complex networks) are a mathematical
form for describing a complex system abstractly. Dynamics can be learned efficiently from the
structure and dynamics state of a graph. Learning the dynamics in graphs plays an important role in
predicting and controlling complex systems. Most of the methods for learning dynamics in graphs
run slowly in large graphs. The complexity of the large graph’s structure and its nonlinear dynamics
aggravate this problem. To overcome these difficulties, we propose a general framework with two
novel methods in this paper, the Dynamics-METIS (D-METIS) and the Partitioned Graph Neural
Dynamics Learner (PGNDL). The general framework combines D-METIS and PGNDL to perform
tasks for large graphs. D-METIS is a new algorithm that can partition a large graph into multiple
subgraphs. D-METIS innovatively considers the dynamic changes in the graph. PGNDL is a new
parallel model that consists of ordinary differential equation systems and graph neural networks
(GNNs). It can quickly learn the dynamics of subgraphs in parallel. In this framework, D-METIS
provides PGNDL with partitioned subgraphs, and PGNDL can solve the tasks of interpolation and
extrapolation prediction. We exhibit the universality and superiority of our framework on four kinds
of graphs with three kinds of dynamics through an experiment.

Keywords: complex systems; graph partition; graph neural networks; ordinary differential equation;
dynamics

1. Introduction

Complex networks or graphs are ubiquitous in life, and each individual is a node or
vertex in many kinds of graphs. It is very important to know what complex networks are
and how they affect us. Many systematic problems can be constructed as the mathematical
tool of a ‘Graph’ to carry out research and solve many practical problems, such as the global
outbreak of the WannaCry computer blackmail virus [1], the COVID-19 global pandemic [2],
the rapid spread of monkeypox [3], and the spread of rumors in social networks [4]. All of
these can be modeled as a graph or a complex network model. For these complex systems,
constructing effective graph models is helpful for better predictions and control. Specifically,
graphs help us to prevent the spread of epidemics, block the spread of computer viruses,
crack down on terrorist networks [5], improve the robustness of power grids, strengthen
public opinion monitoring, and so on. Dynamics is a mainstream approach for studying
the dynamic processes of vertexes in a graph. There are now many studies on network
dynamics [6], and the existing dynamics models of graphs are still worthy of further study.
Dynamics makes the solution to the dynamic process of the network easily explainable.
Nonlinear dynamics models have been widely studied and applied in different fields,
including applied mathematics [7,8], statistical physics [9], and engineering [10]. Some
networks’ evolution mechanisms are known at the beginning of their establishment, but
the real world is so complex that the potential dynamics of a large number of complex
networks are unknown. It is difficult to construct complex models of these unknown
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differential equations. Dynamics modeling on a graph also becomes more challenging
when considering the unknown elements of dynamics and the large scale of the complex
system itself.

Fortunately, in the era of big data, many complex network systems have produced a
large amount of available data in the process of dynamic development. When seeking a
model for the data, we can learn its dynamics on a graph with a combination of ODEs and
GNNs. In addition, after the complex system is abstracted into a graph, its complex network
structure, large-scale edges and vertexes, and complex dynamics processes form a series
of NP-complete problems [11,12]. This results in the poor performance of many models
and algorithms on the graph. However, there is a better method, namely, graph partition.
This process evenly divides the large-scale graph into a series of subgraphs to adapt to
distributed applications. Therefore, the learning process of the dynamics on a graph can be
accelerated by graph partition. Based on this, we proposed a model framework for graph
partition to accelerate the graph neural dynamics learning process. This method skillfully
combines the dynamic process on the graph with the fast graph-partition algorithm METIS
and realizes a large-scale graph-partition method considering a dynamic process. After
the large graph is divided evenly, the dynamics of each subgraph can further be learned in
parallel by combining GNNs [13–16] and differential equations. This helps us to recognize,
predict, and control a complex system more quickly and accurately.

Our work can be used for two tasks in a general framework. One is partitioning a
large graph with network dynamics for parallel tasks downstream. Another is learning
the unequal time interval states of subgraph dynamics for interpolation and extrapolation
predictions. In task one, this model is more accurate and faster than the usual spectral
clustering; the execution efficiency is very high, i.e., one to two orders of magnitude
faster than the common partition algorithm; and a graph with millions of vertexes can be
divided into 256 classes in a few seconds. In task two, the model can learn unequal interval
(continuous-time) dynamics in graphs. It obtains more accurate results than most graphs
and dynamics, and it is more than twice as fast as other models.

Overall, the main contributions of this paper are as follows:

(1) A novel algorithm: We propose a novel algorithm for graph partition, namely,
Dynamics-METIS (D-METIS). D-METIS can partition a large graph into multiple
subgraphs, and it innovatively considers two balances of the subgraphs, i.e., the
balance of vertexes and the balance of cumulative dynamic changes.

(2) A novel model: This novel model is called the Partitioned Graph Neural Dynamics
Learner (PGNDL). The PGNDL is a parallel model that combines ordinary differential
equation systems and GNN. Thus, it can quickly learn the dynamics of large graphs.
It can also learn unequal interval (continuous-time) dynamics on any graph.

(3) More efficient parallel general framework: The experimental results show that our
framework completed the tasks on various graphs faster than the most well-known
framework, NDCN [17], with at least twice the efficiency.

(4) More accurate in regression tasks: The PGNDL (D-METIS) performs accurately on
various dynamics and networks.

The main purpose of this paper is to accelerate the dynamics learning process on large
graphs, apply the graph-partition algorithm to cut large graphs into needed subgraphs, and
then implement the neural dynamics learning model in parallel in each subgraph. Com-
pared to the existing method of graph partition, our model can learn more complex dynam-
ics on larger graphs and achieve faster, more accurate, and more interpretable results. Our
D-METIS considers not only the balance of the number of nodes in each subgraph but also
the balance of the degree of dynamic changes in each subgraph. Additionally, our PGNDL
model is different from other existing GNNs [14–17]. It is a parallel learning method, which
can reduce the complexity of each thread and improve the computational efficiency.

To illustrate the proposed framework, we review knowledge of graph partition and
GNNs with ODE (Section 2). Then, we define the methods and framework’s terminol-
ogy and its algorithms (Section 3). Following this, we demonstrate the framework on
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different graphs with different dynamics using 24 datasets consisting of 400 vertexes and
2000 vertexes (Section 4). Finally, we summarize this work (Section 5).

2. Related Work
2.1. Graph Partition

Graph partitioning involves evenly dividing a large graph into a series of subgraphs.
This means subgraphs can be executed in parallel. If the current subgraph needs informa-
tion from other subgraphs, partitioning must consider information transfer. The quality of
the graph partition affects the storage cost of each machine and the communication cost
among machines. According to the memory cost of partition, it can be divided into offline
and streaming partition algorithms. For large-scale graph data, streaming partition is
particularly important when the memory of a single machine cannot meet the requirements
of the partition algorithm [18]. The partition method of graph data can be divided into
vertex partitioning or edge-cut partitioning. For graph data with power law distribution,
some vertexes may have many edges; if we run the vertex partitioning, many edges will be
missing, and the edge load will be uneven, but edge partition can deal with this kind of
problem [19]. The two goals of graph partition are load balancing (reducing storage costs)
and minimizing cuts (reducing communication costs). At the same time, the two goals of
optimization are balanced graph partitioning.

As you can see, graph partition is an NP-hard problem [19]. In normal circumstances,
the relaxation is to optimize load balancing and ensure minimum cuts as much as possible.
We can define a Graph as G = (V, E), which means graph G has |V| vertexes and |E| edges.

The edge partitioning is shown as follows:

max
i∈[1,k]

|Ei| ≤
(1 + α)|E|

k
(1)

RFv =
k

∑
i−1

V(Ei)

|V| (2)

In Formula (1), the balanced graph-partitioning problem is defined as creating k
disjoint sets of vertices (partitions); |E| means the number of edges in graph G; V(Ei)
means a set of vertexes representing the association of all edges Ei in a subgraph; and the
parameter α controls the balance rate. In Formula (2) RFv represents the replication factor
of the vertex and measures the number of vertex cuts. Regarding edge partition, linear
deterministic greedy partitioning (LDG) [18] considers using a greedy algorithm to put
neighbor vertexes together during partition to reduce edge cutting and ensure the vertex
load balance of each subgraph. Compared with LDG, Fennel’s [20] scoring function has
relaxed the constraint on the number of vertexes in the subgraph from multiplication to
subtraction. METIS [21] is a hierarchical partitioning algorithm. The core idea is to reduce
the size of the original graph via continuously sparsely merging vertexes and edges for a
given original graph structure and then, to a certain extent, segmenting the reduced graph
structure. Finally, the small, segmented graph is restored to the original graph structure to
ensure the balance of each subgraph. METIS adopts the heavy edge-matching strategy in
the sparse phase. When dividing the reduced subgraph, it randomly initializes a node to
conduct a width first search to obtain the subgraph with the minimum tangent edge and
then maps it to the original graph structure. Because METIS needs to traverse and scale
the entire graph structure, it is inefficient when segmenting large-scale graphs with large
memory consumption.

Additionally, the edge partitioning is as follows:

max
i∈[1,k]

|Vi| ≤
(1 + α)|V|

k
(3)
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where |Vi|means the number of vertexes in each subgraph, representing the load balancing
of the vertex; and the parameter α controls the balance rate. Regarding edge partition,
neighbor expansion (NE) [19] edge partition also considers the locality of neighbors; for the
boundary vertex, it selects a candidate vertex whose neighbor is the closest to the outside of
the boundary, which can ensure the maximization of the assigned neighbor edge to ensure
the minimum node-repetition rate. Degree-Based Hashing (DBH) [22] divides the vertex
allocation edge by judging the degree information of the vertex. For power-law graphs, the
locality of low-degree vertexes is easy to maintain. Meanwhile, for high-degree vertexes,
it is impossible to allocate all edges on a subgraph because there are too many vertexes
associated. Thus, the algorithm tries to maintain the locality of low-degree vertexes as
much as possible. Additionally, the generalizable approximate graph-partitioning (GAP)
framework [23] is a vertex-partition algorithm based on GNN.

2.2. GNNs with ODE

This is a new way to combine Ordinary Differential Equations (ODE) [17,24–26] and
GNNs to learn the non-linear and high-dimensional dynamics of graphs. Neural Dynamics
on Complex Networks (NDCN) [17] is a successful network class. NDCN captures the
instantaneous rate of change of vertex states by differential equation systems and GNNs
instead of mapping through a discrete number of layers forward. It integrates GNN layers
in continuous time rather than discrete depth. The continuous-time dynamics on a graph
can describe by a differential equation system, such as Formula (4).

dX(t)
dt

= f (X, G, W, t) (4)

where X(t) ∈ Rv×d represents the state of a dynamic system consisting of v-linked vertexes
at time t ∈ [0, ∞), and X(0) is the initial state of this system at time t = 0. Each vertex is
characterized by v dimensional features. G = (V, E) is the network structure capturing
how vertexes interact with each other. W(t) are parameters that control how the system
evolves. The function f governs the instantaneous rate of change of dynamics on the graph.
We can obtain the NDCN model as follows:

argmin
W(t),Θ(T)

L =
∫ T

0
R(X, G, W, t)dt + S(Y(X(T), Θ)) (5)

subject to Xh(t) = fe(X(t), We)
dXh(t)

dt = f (Xh, G, Wh, t)
X(t) = fd(Xh(t), Wd)

(6)

where
∫ T

0 R(X, G, W, t)dt is the ‘running‘ loss of the continuous-time dynamics on graphs
from t = 0 to T, and S(Y(X(T), Θ)) is the ‘terminal’ loss at time T. Vertexes can have various
semantic labels encoded by one-hot encoding Y(X(T), Θ), and Θ represents the parameters
of this classification function. The first constraint transforms X(t) into hidden space Xh(t)
through encoding function fe, and X(0) = X0. The second constraint is the governing
dynamics in the hidden space. The third constraint decodes the hidden signal back to the
original space with a decoding function.

The neural structures of the model are illustrated in Figure 1.
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Figure 1. Illustration of an NDCN instance.

We can see that the input of NDCN is the node state X(t) at time t, while the output
is the node state after time (t + δ). The NDCN will first map the input X(t) into the
hidden space using Xh(t) to represent X(t) after the hidden layer. The hidden layer is an
encoding function fe. Additionally, the dynamics of influence and information diffusion
between nodes are modeled in the hidden space, which is completed through the GNN.
By integrating the dynamic process Xh(t) from t to t + δ, we can obtain the output state.
Then, we use the decoder fd to obtain the status of nodes in the original space. Moreover,
fe and fd are flexible as any deep neural structure (including the linear weighting layer and
activation function).

From the point of view of the dynamic system, continuous depth can be interpreted as
continuous physical time, and the output of any hidden GNN layer at time t is the instanta-
neous network dynamics process of conventional neural network models. Additionally,
a unified framework for automated interactions and dynamics discovery (AIDD) was
proposed [27]. It is based on the more rigorous mathematical form of Markov dynamics
and local network interaction to express the problem. Additionally, it provides a unified
objective function based on logarithmic likelihood. This kind of model has been applied to
many fields, such as climate studies [28], rumor detection [29], and healthcare [30].

3. Methodology

Cutting a graph with dynamic characteristics is a new problem. Additionally, finding
a graph-partition method that can match the downstream applications and how to dynami-
cally reconstruct each subgraph are two difficulties inherent in this problem. The following
methods and frameworks are proposed to resolve this problem.

In this section, we propose the Dynamics METIS (D-METIS) algorithm to solve the first
difficulty of the problem. For the second difficulty, we use the data-driven method based
on GNNs to obtain the dynamics of subgraphs cut by D-METIS, called the Partitioned
Graph Neural Dynamics Learner (PGNDL), and we give its application ways to resolve
the regression task of interpolation prediction and extrapolation prediction. Finally, we
elaborate on the general framework.

3.1. Dynamics METIS

We proposed a novel method named Dynamics METIS (D-METIS) for cutting large
graphs while considering the dynamics in the graph. There are three given rules when
designing D-METIS:

1. The graph structure damage caused by partitioning should be minimized;
2. The structure of each subgraph should be evenly distributed to facilitate the synchro-

nization and parallel assessment of downstream tasks;
3. The distribution of the dynamics state change degree of each subgraph should be

even and convenient for downstream application and analysis.
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Thus, our D-METIS method can compress the dynamics states for more efficient graph-
partitioning tasks and also take advantage of the information on state changes of vertexes,
which takes the partitioning task closer to reality.

3.1.1. METIS Algorithm

METIS is a multilevel k-way partition algorithm [21]. The graph G = (V, E) is first
coarsened into a small-scale graph, which contains a small number of points. Then, the
k-path is divided for the coarsened graph. At this time, the number of points is greatly
reduced due to the coarsening, so a much smaller graph needs to be divided now, and the
time complexity is greatly reduced. After the partition, each subgraph is refined step-by-
step until the number of original points is restored to obtain the original graph. The three
steps of coarsening, dividing, and refining can be seen graphically in Figure 2.
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Figure 2. The three steps of multilevel k-way graph partitioning. G0 is the input, which is also the
finest graph, Gi+1 is the second most coarse graph of Gi, and G4 is the coarsest graph.

3.1.2. METIS for a Graph with Dynamics

The traditional METIS algorithm is applied to some static graphs without dynamics.
However, there are many graphs with dynamics in the real world, so we need a new
method for partitioning with dynamics. We enabled the METIS algorithm to be suitable
for a graph with dynamics by designing the dynamic process compression strategy of
vertexes. First, we give a case of dynamic process compression on a graph, as shown in
Figure 3; in Figure 3a, we give every vertex five states; and in Figure 3b, we sequentially
compute the sum of dynamic changes for each vertex as the new weight for vertexes. For
example, the vertex numbered 1 has five states: 2→3→5→7→9, and is then compressed
into a weight = 7. This compression method will be mathematically detailed later.

Let G = (V, E) denote an undirected graph consisting of a vertex set V and an edge
set E. A pair of vertexes makes up an edge (i.e., e = {v1, v2} where v1, v2 ∈ V). The
number of vertexes in the graph is denoted as n = |V|, and the number of edges is denoted
by m = |E|.

Additionally, vertexes can have a group of weights vi(t). where i ∈ (1, 2 , 3, . . . , n),
vi ∈ V, t ∈ [0, T]. If there are no weights specified on vertexes, they are assumed to be one.
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(b) Compression result of a graph with dynamics.

To facilitate the partitioning of graphs with dynamics, the total dynamic change of
vertexes is counted as the new unique weight of vertexes denoted by wi and is calculated
as Formula (7).

wi =
T

∑
t=0
|vi(t)− vi(t + 1)| (7)

Therefore, referring to the original steps of the METIS algorithm [21], the steps of our
D-METIS algorithm are as follows:

1. Obtaining graph data;
2. Compressing dynamics process information;
3. Converting the adjacency matrix to Compressed Sparse Row (CSR) format;
4. Coarsening;
5. Initial partitioning;
6. Refinement.

This is a model for large graph partition with its dynamic changes. The balanced graph-
partitioning problem is defined as creating C disjoint sets of partitions, V = V1 ∪ V2 . . . ∪ VC,
with the constraint that the sum of the weights in any given set does not exceed some
threshold ε, which is greater than the average weight of a set Vc.

C
max

c
|Vc|

|V| ≤ 1 + ε (8)

D-METIS’s objective is to minimize the weight of inter-partition edge edgecuts while
not exceeding the balance constraint.

edgecuts =
C

∑
c=1

∑
v∈Vc

∑
u∈Γ(v),u/∈Vc

θ{v, u} (9)

C

∑
c=1

Gc + relink(edgecuts) = G (10)

where v, u ∈ V, c ∈ {1, 2, 3, . . . , C}, Vc ⊆ V. The links between vertexes and the vertexes
in each Vc form a subgraph Gc. relink(edgecuts) is a function for relinking all the cut edges
between subgraphs; it turns the subgraphs into the original large graph G.

The specific value of C depends on downstream task requirements. A larger value can
be taken for faster results, and a smaller value can be used for improved accuracy. As we
determined after many experiments, C = |V|/l, l ∈ (100, 400), C ≥ 2 is best.
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3.2. Partitioned Graph Neural Dynamics Learner

The Partitioned Graph Neural Dynamics Learner (PGNDL) is a model of learning
dynamics on partitioned graphs. It is a parallel model proposed specifically for large
graphs. First of all, we used a differential equation system, as presented in Formula (11), to
describe the dynamics on subgraphs cut by D-METIS.

dXc(t)
dt

= fc(Xc, Gc, Wc, t) (11)

where Xc(t) ∈ Rv×d represents the state of a dynamic system consisting of v-linked vertexes
in the subgraph Gc at time t ∈ [0, T]. Wc(t) are parameters that control how the system
evolves. The function fc governs the instantaneous rate of change of dynamics on the
subgraph Gc.

Such a problem can be seen as an optimal control problem so that the goal becomes to
learn the best control parameters Wc(t) for Formula (11). Unlike the traditional optimal con-
trol modeling, we modeled Formula (10) using GNN. After integrating Formula (11) over
continuous time, the graph neural ODE model was proposed, illustrated as Formula (12).

Xc(t) = Xc(0) +
∫ t

0
fc(Xc, Gc, Wc, τ)dτ (12)

Formula (11) can have continuous layers with a real number t depth corresponding
to the continuous-time dynamics on subgraph Gc. Thus, it can also be interpreted as a
continuous-time GNN; the concept of continuous-time GNN was elaborated on in [17]. To
increase the express ability of this model, we can encode the subgraph signals Xc(t) from
the original space to hidden space signals Xc,h(t) so that this model can learn the dynamics
better in a hidden space.

Then, a general model of graph neural dynamics learner can be denoted as follows:

argmin
W(t)

L =
C

∑
c=1

(∫ T

0
R(Xc, Gc, Wc, t)dt

)
(13)

Subject to
Xc,h(t) = fe(Xc(t), Wc,e) (14)

dXc,h(t)
dt

= f (Xc,h, Gc, Wc,h, t) (15)

Xc(t) = fd(Xc,h(t), Wc,d) (16)

where the objective formula, Formula (13), means the total loss of the continuous-time
dynamics on subgraphs {G1, G2, G3, . . . . . . . . . , GC} from t = 0 to t = T. The constraint
formula, Formula (14), transforms Xc(t) into hidden space Xc,h(t), and fe is the encoding
function. The constraint formula, Formula (15), is the governing dynamics in the hidden
space by f . The constraint formula, Formula (16), decodes the hidden signal back to the
original space by decoding function fd. Additionally, fe, f , and fd are flexible to be any
deep neural structures.

The PGNDL can learn differential equation systems to predict unequal interval states
of the vertex, which means the PGNDL can learn the continuous-time dynamics on a
graph (or subgraphs) at an arbitrary physical time t. The arbitrary physical times mean
is unequally sampled with different observational time intervals. Additionally, there are
two situations: when t < T and t is not in {t, t + a, t + 2a, . . .} (a is the value of equal
sampling interval), it can be called interpolation prediction; when t > T, it is called
extrapolation prediction.

We used `1-norm loss as the loss function of the continuous-time dynamics on sub-
graphs and adopted two fully connected neural layers with a nonlinear hidden layer as
fe. A GCN model with a simplified diffusion operator Φ denotes the instantaneous rate of
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dynamics changes on subgraphs in the hidden space, and fd is a linear decoding function to
obtain the original signal for regression tasks. In addition, since our model uses a parallel
learning mechanism on multiple subgraphs to minimize the total prediction error, it is easy
to think of summing the errors of each subgraph to obtain the objective function (17). Thus,
the model is:

argmin
W∗ ,b∗

L =
C

∑
c=1

(
∫ T

0
|Xc(t)− X̂c(t)|dt) (17)

Subject to
Xc,h(t) = tanh(Xc(t)Wc,e + bc,e)W0 + b0 (18)

dXc,h(t)
dt

= ReLU(ΦXc,h(t)Wc + bc) (19)

Xc(t) = Xc,h(t)Wc,d + bc,d (20)

where X̂c(t) ∈ Rn×d is the supervised dynamic information available at time stamp t. | · |
denotes l1-norm loss between Xc(t) and X̂c(t) at time t ∈ [0, T]. Φ is the normalized graph
Laplacian, Φ = D−

1
2 (D− A)D−

1
2 , where A ∈ Rn×n is the adjacency matrix of the network

and D ∈ Rn×n is the corresponding node degree matrix of subgraph c. Wc ∈ Rde×de and
bc ∈ Rn×de are shared parameters in subgraph c. Wc,e ∈ Rd×de and W0 ∈ Rde×de are the
matrices in linear layers for encoding, and Wd ∈ Rde×d are for decoding. bc,e, b0, bc, and bc,d
are the biases at the corresponding layers. Additionally, we designed the graph neural
differential equation system as (19) to learn the network dynamics in a data-driven way.
Thus, we can obtain Xc(t), which means the states of subgraph c at time t.

3.3. General Framework

In this part, we summarize the general parallel framework of the work in a flowchart,
as shown in Figure 4.
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In this framework, the original graph is taken as input data and contains the adjacency
matrix Ai,j, and dynamic states of each vertex. We need to convert Ai,j into the CSR format,
then input CSR(Ai,j) and dynamic states of vertexes into the D-METIS algorithm. In the
D-METIS algorithm, the total changes of states of each vertex on the original graph are first
calculated as a compressed representation of the vertex dynamics changes. Additionally,
coarsening, initial partitioning, and refinement are executed just like METIS [21]. After
dividing the original large graph into C subgraphs, we can use PGNDL on C subgraphs in
parallel to learn the dynamics of each subgraph. Then, the dynamic states of any vertex at
a continuous time can be predicted according to the actual demands and tasks.

4. Experiments
4.1. Setup

In setup, four classes of graphs and three dynamics models were used to generate
the simulation data. All the experiments were conducted with 11th Gen Intel (R) CPU @
2.30 GHz with 32 GB of RAM. To ensure the generality of the results, each dataset was
executed 10 times to obtain the average value.

4.1.1. Datasets

We chose the following graphs as our experimental datasets to verify the effectiveness
of the model and framework:

• Random graph proposed by Erdós and Rényi [31];
• Power-law graph proposed by Albert Barabási [32];
• Community graph proposed by Santo Fortunato [33];
• Small World graph proposed by Watts and Strogatz [34].

Therefore, we obtained 4 graphs with 400 vertexes and 4 graphs with 2000 vertexes
using the 4 classes of network models. Additionally, we set the initial value X(0) the
same for all the experiments, and thus, different dynamics were only due to their different
dynamics’ rules and networks’ structures. We generated these graphs using the python
package ‘networkx2.0′. The specific generation parameters are shown in Appendix A (open
source code in Github).

As we can see in Table 1, there are four classes of graphs, where |V| and |E|mean the
numbers of vertexes and edges in different graphs, respectively.

Table 1. Statistics for four simulated datasets.

Graphs |V| |E|

Random
400 8050

2000 200,160

Power Law
400 1975

2000 9975

Community 400 1201
2000 159,866

Small World
400 6308

2000 5976

4.1.2. Dynamics Simulation on the Graph

The following three continuous-time network dynamics were used for dynamic simu-

lation on the graph, where
→

xi(t) ∈ Rd×1 is the d dimensional features of vertex i at time t,

X(t) =
[

. . . ,
→

xi(t), . . .
]T
∈ Rn×d.
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• Mutualistic interaction dynamics [35].
• This is a dynamic among species in ecology, and its equation is

→
dxi(t)

dt
= bi +

→
xi

(
1−

→
xi
ki

)(→
xi
ci
− 1

)
+

n

∑
j=1

Ai,j

→
xi
→
xj

di + ei
→
xi + hj

→
xj

(21)

• The operations there between vectors are element-wise. The mutualistic differential

equation systems capture the abundance
→

xi(t) of species i, consisting of incoming
migration term bi, logistic growth with population capacity ki and Allee effect with
cold-start threshold ci, and the mutualistic interaction term with interaction network A.

• Gene-regulatory dynamics [36].
• This can be described by an equation as follows:

d
→

xi(t)
dt

= −bi
→
xi f +

n

∑
j=1

Ai,j

→
xh

j
→
x

h
j + 1

(22)

• where the first term models degradation when f = 1 or dimerization when f = 2, and
the second term captures genetic activation tuned by the Hill coefficient h.

• SIS dynamics [37,38].
• S (Susceptible), a susceptible person, refers to a healthy person who lacks immunity

and is vulnerable to infection after contact with an infected person. I (Infectious), the
patient, refers to the infectious patient, and the infection can be transmitted to S and
changed into I; R (Recovered) refers to a person with immunity after recovery. If the
disease is a lifelong immune infectious disease, a person cannot be changed into S or I
again. If the immune period is limited, a person can be changed into S again and then
be reinfected. The mathematical expression is

N∗ di(t)/dt = λ∗ s(t)∗ N∗i(t)− µ∗ N∗ i(t) (23)

• The total number of people is N. At time t, the ratio of various groups to the total
number of people is, respectively, recorded as s(t) and i(t), and the number of various
groups is S(t) and I(t). When t = 0 at the initial time, the initial ratio of the number
of different types of people is s0 and i0. The average number of susceptible persons
effectively contacted by each patient at each time point is λ, and the ratio of the number
of cured patients to the total number of patients at each time point is µ.

4.2. Balance Analysis of D-METIS

We analyzed the graph-partition effect of the D-METIS algorithm from two aspects: the bal-
ance of the vertex number in every subgraph and the dynamic cumulative change of subgraphs.

4.2.1. Dynamic Cumulative Change of Subgraphs

As far as we know, this work is the first to consider how to segment a graph with
dynamic processes. To analyze the dynamic balance effect of the D-METIS algorithm on
each segmented subgraph, we compared three graph-partition methods, namely, random
partition, METIS, and D-METIS, which are all graph-partition tasks for 400-node power-law
networks. The partition results were positioned from 3 subgraphs to 11 subgraphs to verify
the stability of our D-METIS algorithm through various cutting degrees.

As shown in Figure 5, the abscissa is the number of cut subgraphs; the ordinate is the
number of nodes/dynamics-changes in subgraphs. The red lines are our D-METIS, which
ensures the stability of dynamic cumulative change in each task. METIS performs poorly,
and random partition performs worst.
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4.2.2. Vertex Distribution of Subgraphs

Additionally, we compared the three graph-partition methods to analyze the vertex
distribution balance effect of the D-METIS algorithm on each subgraph; as seen in Figure 6,
D-METIS performs much better than random partition and a little worse than METIS, as
D-METIS should consider the constraint of dynamics balance. Despite this, D-METIS still
splits the large graph evenly into multiple subgraphs. This is enough to balance the running
time of downstream parallel tasks.

4.3. Learning Graph Dynamics with Unequal Interval Sampling

The PGNDL can be used for learning graph dynamics with unequal interval sampling
and can complete interpolation/extrapolation prediction tasks using the ‘dopri5′ method
with time-step 1 in the forward-integration process. To verify the progressiveness of the
model, we compared and analyzed the NDCN [17] model, the PGNDL (with METIS),
and our PGNDL (with D-METIS). In the PGNDL (with METIS) and PGNDL (with D-
METIS), we ran the PGNDL (with METIS) and PGNDL (with D-METIS) in parallel on the
subgraphs from the original graphs generated by three dynamic models and four graph
types mentioned above. The NDCN is a single-threaded model used as our baseline. The
three models used parameters of the same scale. Additionally, we repeated this experiment
10 times in the same way in each large graph; each repetition had 1000 iterations. We
analyzed the fixed vertex numbers of 400 and 2000 and took the average `1 loss of 10 runs
as the final result for comparison. According to the same specifications, we also analyzed
the efficiency of our models.
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Using the `1 loss results of the above three models, we analyzed the effect of graph
dynamics learning with METIS and D-METIS algorithms in various graphs and their
dynamics models. The experimental results proved the effectiveness of D-METIS. In terms
of the calculation run time, the advantages of our model are obvious.
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4.3.1. Interpolation-Prediction Task

We irregularly sampled 120 snapshots of the [0, T] dynamics
{

Xc
(
t̂1
)
, . . . , Xc

(
ˆt120
)
|

0 ≤ t1 < . . . < t120 ≤ T}; the intervals between t1 . . . t120 were random and different. Then,
we picked 80 snapshots randomly from the top 100 as the training set and used the remained
20 snapshots in the top 100 to test the interpolation-prediction task.

The experimental results for the NDCN, PGNDL (METIS), and our PGNDL (D-METIS)
are shown in Table 2 (for n = 400) and Table 3 (for n = 2000).

As can be seen in Tables 2 and 3, our PGNDL (D-METIS) model attained 17 ↑ and
1—symbols when n = 400 and 15 ↑ when n = 2000; this means our model performs better
in most cases. Additionally, we noticed that the PGNDL performs best if the dynamics is
SIS Dynamics. Similarly, we also found that when the class of the graph was Community
or Small World, using our model for the interpolation-prediction task was a better choice.
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Table 2. Accuracy of the interpolation-prediction task. The original graph size is A400×400, and cut
every graph into 4 subgraphs.

Model Dynamics Random Power Law Community Small World

NDCN
SIS Dynamics 0.023 0.287 0.025 0.037

Mutualistic interaction 0.472 0.341 0.831 0.436
Gene Regulation 1.951 0.719 2.529 1.053

PGNDL
(METIS)

SIS Dynamics 0.005 0.291 0.012 0.033
Mutualistic interaction 0.503 0.437 0.523 0.393

Gene Regulation 3.451 1.534 2.671 0.891

PGNDL
(D-METIS)

SIS Dynamics 0.004 ↑↑ 0.273 ↑↑ 0.011 ↑↑ 0.033 ↑-
Mutualistic interaction 0.460 ↑↑ 0.486 ↓↓ 0.457 ↑↑ 0.407 ↑↓

Gene Regulation 2.780 ↓↑ 1.568 ↓↓ 2.456 ↑↑ 0.849 ↑↑
The following is an explanation of some symbols used in the tables: ↑↑means the marked result is better than
that of the NDCN and PGNDL (METIS). ↑↓means the marked result is better than that of the NDCN but worse
than the PGNDL (METIS). ↓↓means the marked result is worse than that of the NDCN and PGNDL (METIS).
↓↑means the marked result is worse than that of the NDCN but better than the PGNDL (METIS). -↑means the
marked result is equal to that of the NDCN and better than the PGNDL (METIS). ↑- means the marked result is
better than that of the NDCN and equal to the PGNDL (METIS). -↓means the marked result is equal to that of the
NDCN but worse than the PGNDL (METIS). ↓- means the marked result is worse than that of the NDCN and
equal to the PGNDL (METIS). The symbol definitions above also apply to Tables 3–5.

Table 3. Accuracy of the interpolation-prediction task. The original graph size is A2000×2000, and we
cut every graph into 8 subgraphs.

Model Dynamics Random Power Law Community Small World

NDCN
SIS Dynamics 0.028 0.137 0.024 0.111

Mutualistic interaction 0.538 0.368 1.098 0.482
Gene Regulation 11.150 1.248 24.090 1.110

PGNDL
(METIS)

SIS Dynamics 0.024 0.024 0.014 0.043
Mutualistic interaction 0.644 0.538 0.697 0.446

Gene Regulation 11.582 2.085 47.890 2.892

PGNDL
(D-METIS)

SIS Dynamics 0.008 ↑↑ 0.022 ↑↑ 0.005 ↑↑ 0.037 ↑↑
Mutualistic interaction 0.664 ↓↓ 0.635 ↓↓ 0.735 ↑↓ 0.431 ↑↑

Gene Regulation 10.141 ↓↑ 1.548 ↓↑ 35.250 ↓↑ 2.030 ↓↑

Table 4. Accuracy of the extrapolation-prediction task. The original graph size is A400×400, and we
cut every graph into 4 subgraphs.

Model Dynamics Random Power Law Community Small World

NDCN
SIS Dynamics 0.017 0.021 0.008 0.021

Mutualistic interaction 0.223 0.245 0.434 0.227
Gene Regulation 2.287 0.371 3.070 0.870

PGNDL
(METIS)

SIS Dynamics 0.009 0.019 0.014 0.024
Mutualistic interaction 0.516 0.390 0.512 0.300

Gene Regulation 3.592 1.312 2.501 0.994

PGNDL
(D-METIS)

SIS Dynamics 0.005 ↑↑ 0.020 ↑↓ 0.006 ↑↑ 0.019 ↑↑
Mutualistic interaction 0.420 ↓↑ 0.360 ↓↑ 0.220 ↑↑ 0.210 ↑↑

Gene Regulation 2.860 ↓↑ 1.907 ↓↓ 2.597 ↑↓ 2.490 ↓↓
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Table 5. Accuracy of the extrapolation-prediction task. The original graph size is A2000×2000, and we
cut every graph into 8 subgraphs.

Model Dynamics Random Power Law Community Small World

NDCN
SIS Dynamics 0.004 0.021 0.004 0.019

Mutualistic interaction 0.103 0.299 0.493 0.194
Gene Regulation 15.710 0.548 25.940 1.258

PGNDL(METIS)
SIS Dynamics 0.004 0.024 0.004 0.023

Mutualistic interaction 0.644 0.538 0.686 0.346
Gene Regulation 11.582 2.025 54.130 3.271

PGNDL
(D-METIS)

SIS Dynamics 0.004 - - 0.020 ↑↑ 0.003 ↑↑ 0.019 -↑
Mutualistic interaction 0.634 ↓↑ 0.530 ↓↑ 0.487 ↑↑ 0.337 ↓↑

Gene Regulation 10.611 ↑↓ 2.034 ↓↓ 32.640 ↓↑ 2.625 ↓↑

4.3.2. Extrapolation-Prediction Task

Different from the interpolation-prediction task, extrapolation prediction requires
80 snapshots in the top 100 as the training set and 20 snapshots of the tail 20 for testing.

The results of the extrapolation-prediction task are shown in Tables 4 and 5. We
attained 16 ↑ when n = 400 and 13 ↑ and 2—when n = 2000. This result is similar to the
result of the interpolation-prediction task and shows that our model is very suitable for SIS
Dynamics and Community graphs.

In addition, we also found that the results of almost all PGNDL models based on
D-METIS are more accurate than those using only METIS. This shows that D-METIS plays
a positive role in helping the model learn dynamics in the graph.

4.3.3. Complexity and Time-Consumption Analysis

First, we compared the space complexity of NDCN and PGNDL:

OPGNDL
(
|V|2·ParaGNN

)
ONDCN

((
|V|
|C|

)2
·ParaGNN

) =
1
|C| (24)

where ParaGNN is the parameters in the GNN’s neural network structure to be optimized;
thus, the space complexity of our PGNDL is 1

|C| of the NDCN.
Additionally, since our PGNDL is a parallel implementation of the NDCN, the time

complexity is consistent with the NDCN.
To further analyze the actual efficiency of the PGNDL, it is necessary to conduct a

detailed analysis of the runtime, which is beneficial for summarizing engineering experience
for practice. The PGNDL can complete the extrapolation- and interpolation-prediction
tasks simultaneously due to the same training process. Therefore, we can estimate the time
consumption of two tasks at once. In other words, the time consumption of these two tasks
is consistent. We recorded the above experimental runtime of extrapolation prediction and
interpolation prediction.

The running-time statistics of each model are as follows.
It can be seen in Table 6 that our PGNDL (D-METIS) is the fastest model in every class

of graph or dynamics; it is 2 to 3 times faster than NDCD when n = 400.
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Table 6. Time consumption. The original graph size: A400×400; number of subgraphs is 4.

Model Dynamics Random Power Law Community Small World

NDCN
SIS Dynamics 66.8 67.6 64.1 67.4

Mutualistic interaction 74.8 75.8 74.6 73.2
Gene Regulation 82.5 78.2 83.4 74.9

PGNDL
(METIS)

SIS Dynamics 35.4 30.2 37.6 29.5
Mutualistic interaction 35.5 30.4 37.8 29.8

Gene Regulation 35.4 30.2 37.9 29.9

PGNDL
(D-METIS)

SIS Dynamics 34.2 28.5 36.8 28.2
Mutualistic interaction 33.4 28.7 37.2 28.4

Gene Regulation 33.9 28.5 37.1 28.4

When n = 2000, as seen in the results of Table 7, our model PGNDL with D-METIS is
2 to 4 times faster than NDCD.

Table 7. Time consumption. The original graph size: A2000×2000; number of subgraphs is 8.

Model Dynamics Random Power Law Community Small World

NDCN
SIS Dynamics 207.8 234.7 223.6 179.4

Mutualistic interaction 198.8 240.7 260.8 276.1
Gene Regulation 342.9 238.5 432.3 286.8

PGNDL
(METIS)

SIS Dynamics 118.3 77.3 145.3 77.0
Mutualistic interaction 119.2 80.1 146.6 77.5

Gene Regulation 118.6 79.7 147.8 77.4

PGNDL
(D-METIS)

SIS Dynamics 115.7 76.7 146.2 75.1
Mutualistic interaction 116.9 77.8 149.2 76.2

Gene Regulation 116.1 77.3 148.5 77.5

In addition, by comparing 400 vertexes with 2000 vertexes, we can infer that as
the number of vertexes increases, the number of cut subgraphs will increase, and the
acceleration effect will be more significant.

5. Conclusions

This work proposed a general parallel framework that contains a graph-partition
accelerated graph neural dynamics learning model called the PGNDL and a novel graph-
partition algorithm entitled D-METIS for graphs with dynamics. The PGNDL can learn
unequal interval sampled dynamics states in graphs. Different from other graph-learning
methods, our model has an appropriate graph-partition mechanism that reduces the graph
size and then uses parallel learning for subgraphs; benefiting from this, our model is
more than twice as fast as others. Furthermore, we obtained more accurate results on
some mainstream network types and dynamics. We used the PGNDL to learn unequal
time interval states of subgraphs dynamics for interpolation prediction and extrapolation
prediction in parallel. Based on the PGNDL, four graph networks and three dynamic
processes were tested and analyzed in the experimental part. We found that the graph
dynamics learning of the graph-partition parallel acceleration method was faster than other
methods by at least 200%, and it is very suitable for SIS dynamics and Community graphs;
in these cases, our model performed accurately and efficiently. In the future, we will try to
apply D-METIS and PGNDL to the prevention and control of infectious diseases in large
communities and the prediction of interest transfer in large communities. Additionally, we
will explore its limitations and wider application scope.
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Appendix A

https://github.com/Huangbuffer/PGNDL (accessed on 15 November 2022). The
codes and parameters are open-sourced at the link above. The datasets can be generated in
Dynamics-METIS.py.
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