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Abstract: Fuzzy control theory has been extensively used in the construction of complex fuzzy
inference systems. However, we argue that existing fuzzy control technologies focus mainly on the
single-source fuzzy information system, disregarding the complementary nature of multi-source
data. In this paper, we develop a novel Gaussian-shaped Fuzzy Inference System (GFIS) driven
by multi-source fuzzy data. To this end, we first propose an interval-value normalization method
to address the heterogeneity of multi-source fuzzy data. The contribution of our interval-value
normalization method involves mapping heterogeneous fuzzy data to a unified distribution space
by adjusting the mean and variance of data from each information source. As a result of combining
the normalized descriptions from various sources for an object, we can obtain a fused representation
of that object. We then derive an adaptive Gaussian-shaped membership function based on the
addition law of the Gaussian distribution. GFIS uses it to dynamically granulate fusion inputs and
to design inference rules. This proposed membership function has the advantage of being able to
adapt to changing information sources. Finally, we integrate the normalization method and adaptive
membership function to the Takagi–Sugeno (T–S) model and present a modified fuzzy inference
framework. Applying our methodology to four datasets, we confirm that the data do lend support to
the theory implying the improved performance and effectiveness.

Keywords: multi-source fuzzy data; normalization method; membership function; Gaussian-shaped
fuzzy inference

1. Introduction

Traditional fuzzy control models have achieved remarkable success in making infer-
ences for single-source fuzzy information systems. They have been increasingly applied to
intelligent driving [1–3], intelligent medical [4–6], intelligent factories [7–9], and various
other fields. It is believed that information fusion enhances the descriptive ability of objects
through the use of data redundancy and complementarity [10–12]. A Fuzzy Inference Sys-
tem (FIS) could be improved by combining information fusion theory with fuzzy control
theory to enable the system to perform better in terms of control and decision-making
tasks than before. Motivated by this, we examine a fuzzy inference model that is driven by
multi-source fuzzy data and look at how multi-source fuzzy data affect the precision of the
inference model.

The fuzzy set (FS) and the rough set (RS) are two commonly used methods for describ-
ing fuzzy data or knowledge in a different way. As far back as 1965, scholar Zade was the
first to propose the fuzzy set theory [13]. Its essence is to mine the decision-making value
of fuzzy data by constructing membership functions and performing fuzzy set operations.
Zadeh’s fuzzy set is modeled as:

A = A(x1)/x1 + A(x2)/x2 + · · ·+ A(xn)/xn, (1)
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where A(xi) represents the membership degree of x1 in set A, and “+” represents the
component connection symbol in a fuzzy set; see [13]. Rough set theory was first proposed
by Pawlak in 1982 [14]. The core idea is to use equivalence relation R to construct the
equivalence class of object x in universe U. The approximation set composed of equivalent
objects is called the lower approximation set, denoted as:

R(x) = {x ∈ U|[x]R ⊆ U}, (2)

see [15]. In contrast, the approximation set composed of equivalent objects and similar
objects is called the upper approximation set, denoted as:

R(x) = {x ∈ U|[x]R ∩U 6= ∅}, (3)

see [15]. A key aspect of using fuzzy set theory to describe fuzzy knowledge lies in
modeling membership functions [16]. There are four candidates for membership func-
tions: bell-shaped curve function [17], S-shaped curve function [18], Z-shaped curve func-
tion [19], and π-shaped curve function [20]. Theoretically, the bell-shaped curve function
is most widely used because it follows the law of large numbers and the central limit
theorem [21,22].

Unfortunately, bell-shaped curve functions do not directly work for fuzzy systems
involving multiple sources, for two reasons. First, it requires the function input to be a
continuous and accurate real number. Second, it requires data from different sources to
be analyzed using the same metrics so that comparability of data can be ensured. Our
solution to these two problems is to use interval values to represent fuzzy data (such as
measurement errors, degrees, spatial and temporal distances, emotions, etc.) and then to
normalize heterogeneous fuzzy data to exact real numbers using interval normalization.
Upon normalization, these real numbers will all be subjected to the same quantization factor
(mean and variance). Additionally, we propose an adaptive membership function model
that considers the dynamics of a multi-source environment, such as different information
sources joining and leaving the system. With the aid of the membership function model,
not only are we able to represent the overall distribution of data from multiple sources,
but we are also able to adjust the membership value of the input variables to accommodate
dynamic changes in the data. Combining the normalization method with the adaptive
membership function, we develop a Gaussian-shaped Fuzzy Inference System (GFIS)
driven by multi-source fuzzy data.

Our article makes two contributions to this literature. The first contribution is to
propose an interval normalization method that is based on the normalization idea of Z-
scores [23], and describe the meaning of fuzzy data by the standard deviations of each data
value from the mean. The interval normalization method can be formalized as:

Nx =
0.5× (x + x)− µ

σ
, (4)

where x = [x, x] is an interval. The greatest challenge and innovation of our method lies in
calculating mean µ and variance σ for fuzzy data. In this work, we present formal models
for mean and variance of fuzzy data, and we develop an approach for normalizing fuzzy
data (interval value) with these formal models. The interval-value representation and
normalization of fuzzy data are the premise of designing the fuzzy model of input variables
in GFIS.

The second contribution of this article consists of deriving a Gaussian-shaped mem-
bership function for the input variable in GFIS. This function can be used to analyze
normal-distributed data, and we denote it as:

µ(x) = f (N(x|0, m)), (5)



Systems 2022, 10, 258 3 of 20

where m is the number of information sources. A significant advantage of the proposed
membership function lies in its ability to be adapted to the change of information sources.
As a general rule, membership functions based on Gaussian distributions require dynamic
mean and variance parameters to be specified as hyperparameters. When function vari-
ables are normalized in advance, we can ensure that the mean value of function variables
is always 0 and that variance increases linearly with the number of information sources
available. Therefore, we do not have to incur large computational costs to obtain the hyper-
parameters of Gaussian-shaped membership functions. Additionally, a Gaussian-shaped
membership function can handle dynamic changes in information sources effectively. It is
important to note that the GFIS, which comprises the normalization method and Gaussian-
shaped membership function, is thus applicable to multi-source fuzzy environments.

The rest of the article is organized as follows: Section 2 provides a selected literature
overview. Section 3 introduces preliminaries. Section 4 outlines the methodology proposed.
Section 5 details the experimental design and Section 6 reports the experimental results.
In Section 7, we present the conclusions.

2. Related Work

Due to its smoothness and ability to reflect people’s thinking characteristics, the Gaus-
sian membership function has been widely used. Below, we provide a brief description of
several Gaussian membership function methods and their applications in the literature. It
is worth mentioning that our method (among the three alternatives discussed) is the only
one that takes into account both data heterogeneity and fuzzy data fusion.

Hosseini et al. presented a Gaussian interval type-2 membership function and ap-
plied it to the classification of lung CAD (Computer Aided Design) [24]. Type-2 interval
membership functions extend type-1 interval membership functions. In the type-2 fuzzy
system, the membership of the type-1 fuzzy set is also characterized by a fuzzy set, which
can improve the ability to deal with uncertainties. However, there are additional theoretical
and computational challenges associated with the Gaussian interval type-2 membership
function.

In Kong et al.’s study, a Gaussian membership function combined with a neural
network model was designed to help diagnose automobile faults [25]. The system has been
proven to perform better in terms of reasoning accuracy than either a network model or a
fuzzy inference model alone. However, it relies on a single source of information to derive
fuzzy inferences from multivariable data.

Li et al. proposed a Gaussian fuzzy inference model for multi-source homogeneous
data [26]. The model uses three indicators (center representation, population, and den-
sity function) to describe single-source information and adopts a mixed Gaussian model
to represent multi-source fusion information. This model does not address the hetero-
geneity and fuzziness of multi-source data. In addition, the model fails to account for
differences between variables in a multidimensional dataset in terms of magnitude and
measurement standards.

In previous research, different fuzzy inference models and membership functions
were proposed for various practical applications. We propose a Gaussian fuzzy control
inference model to solve the fuzzy inference problem in a multi-source fuzzy environment.
Our model can improve medical CAD diagnostic accuracy by fusing X-ray images from
different institutions. For automobile fault diagnosis, our model can describe each diagnosis
parameter with fuzzy data. By further modeling these fuzzy parameters with fuzzy sets,
we enhance fuzzy systems’ ability to cope with uncertainty. The fuzzy normalization
model for multi-source data fusion enables us to map multivariate data to a dimensionless
distribution space to ensure that the data metrics are aligned.

3. Preliminary

The Fuzzy Inference System (FIS), also known as a fuzzy system, is a software ap-
plication that utilizes fuzzy set theory and fuzzy inference technology to process fuzzy
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information. In order to illustrate FIS’s application scenarios, let us take car following as
an example. Due to the fact that the driver’s behavior is fuzzy and uncertain during the
process of controlling the car, it can be difficult to accurately describe the driver’s behavior.
When a car follows another car, it is necessary to maintain a safe distance in order to ensure
the safety of drivers. FIS can be used to control the distance between a car and the one it
is following. Specifically, based on the driver’s experience, the fuzzy rules of FIS for car
following are summarized as follows. When a driver believes that the relative distance
is far greater than the safe distance and the relative speed is fast, he or she accelerates
appropriately. This will make the difference between the relative and safe distances as
small as possible.

The classical FIS consists of five basic components: the definition of inputs and outputs;
the construction of fuzzification strategies; the construction of knowledge bases; the design
of fuzzy inference mechanisms; and the defuzzification of output. See Figure 1 for details.

Fuzzy input

(Define)

Exact output

(Define)

FIS

Output 
defuzzification

Fuzzy sets

Fuzzification 
strategy

Knowledge base

Data
base

Rule
base

Fuzzy inferencing

Figure 1. The architecture of a fuzzy inference system (FIS). The architecture of FIS describes the
mapping process from a given input to an output. The process consists of five parts: defining
input and output, formulating a fuzzification strategy, building a knowledge base, designing fuzzy
inference mechanism, and defuzzification of output. See the main text for details.

(1) The definition of inputs and outputs
In an FIS, the inputs and outputs correspond to the observation variables and op-

eration variables, respectively. Definition of inputs and outputs includes determining
parameters, variable numbers, data formats, etc. An FIS that has one input variable is
called a single variable FIS and an FIS that has more than one input variable is called a mul-
tivariable FIS. FIS driven by multi-source fuzzy data encounters challenges in normalizing
heterogeneous fuzzy data due to the fact that the traditional method of normalizing data
fails in this situation.

(2) The construction of fuzzification strategies
Fuzzification is the process of assigning each input variable to a fuzzy set with a

certain degree of membership. An input variable can be either an exact value or fuzzy data
with noise [27]. It is therefore necessary to consider the format of input variables when
developing a strategy for fuzzification. In particular, fuzzy data are typically presented in
discrete nominal formats or in aggregate interval-value formats, which makes mathematical
fitting of membership functions challenging. In this paper, we use interval normalization
to convert heterogeneous fuzzy data into continuous and exact values. We also use a math
function to derive the membership function for fuzzy data.

(3) The construction of knowledge bases
In a knowledge base, there are two parts: a database and a rule base, respectively [28].

Among the features in the database are membership functions, scale transformation factors,
and fuzzy set variables. The rule base contains some fuzzy control conditions and fuzzy
logic relationships.

(4) The design of fuzzy inference mechanisms
Fuzzy inference uses fuzzy control conditions and fuzzy logics to predict the future

status of operating variables. This is the core of an FIS. In an FIS, syllogisms [29–31] are
commonly used to make inferences, which can be expressed as follows:
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Truth: IF x1 is A1, · · · , and xn is An, THEN y is B.
Condition: x1 is A

′
1, · · · , and xn is A

′
n.

The inference result: y is B
′
.

According to the FIS, truth is represented by fuzzy implication relations, denoted

as A
f (x)
−−→B. The inference result is derived from the combination of fuzzy conditions and

fuzzy logics.
(5) The defuzzification of output
In general, the result derived from the FIS is a fuzzy value or a set, which must be

deblurred to identify a clear control signal or a decision output. Most commonly used
defuzzification methods include the maximum membership [32], the weighted average [33],
and the center of gravity [34].

Maximum Membership Given k FIS submodels, the output of each FIS submodel is yi
with the membership degree of µ(xi). The final output of the FIS model is given by:

y = yi, (6)

where
i = arg max

i
{µ(x1), µ(x2), . . . , µ(xk)}, (7)

see [32].
Weighted Average Given k FIS submodels, the output of each FIS submodel is yi with

the membership degree of µ(xi). The final output of the FIS model is:

y =
∑i=k

i=1 yi × µ(xi)

k
, (8)

as k is the number of sub FIS models, see [33].
Center of Gravity Given k FIS submodels, the output of each FIS submodel is yi with

the membership degree of µ(xi). The final output of the FIS model is:

y =
∑i=k

i=1(µ(xi)× yi)

∑i=k
i=1 µ(xi)

, (9)

as k is the number of FIS submodels, see [34].

4. The Methodology
4.1. Normalization of Heterogeneous Fuzzy Data

We begin this section by defining mean and variance in the interval-value universe by
referring to mean and variance of real numbers.

Definition 1 (interval-value mean). Let X = {x1, · · · , xi, · · · , xn} denote the universe X of
intervals, where xi = [xi, xi] represents the i-th interval. The interval-value mean is the sum of the
average values of all intervals divided by the number of intervals, denoted as:

µ =
∑i=n

i=1 0.5×
(
xi + xi

)
n

. (10)

Definition 2 (interval-value variance). Let X = {x1, · · · , xi, · · · , xn} denote the universe X of
intervals, where xi = [xi, xi] represents the i-th interval. The interval-value variance is the weighted
square sum of the deviation degree between each interval-value mean and the overall mean of the
interval-value universe, denoted as:

σ2 =
∑i=n

i=1
(
0.5×

(
xi + xi

)
− µ

)2

n
(11)
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with 1
n as the weight.

In the next step, we develop the normalization model for multi-source fuzzy data
with interval-value format using the z-score normalization method [23] in the real number
universe. Interval-value normalization is the process of mapping heterogeneous fuzzy data
to the same data distribution space with a mean of 0 and a variance of 1. By transforming the
data metrics of various platforms or organizations, interval-value normalization facilitates
the analysis of multi-source fuzzy data. It is shown in Equation (12) that the core for
normalizing interval values is µ and σ, where µ is the mean and σ is the standard deviation
of the interval-value universe. The interval-value normalization method is applicable to
the case where the maximum and minimum values in the universe are unknown:

Nxi =
0.5×

(
xi + xi

)
− µ

σ
. (12)

Given a k-dimensional interval value xi in which components (dimensions) are mu-
tually independent, xi is written as

[
(xi1, xi2, · · · , xik), (xi1, xi2, · · · , xik)

]
. At this point,

the mean of the interval-value universe is a k-dimensional vector, denoted as:

µ =

∑i=n
i=1 0.5×

(
xi1 + xi1

)
n

, · · · ,
∑i=n

i=1 0.5×
(

xik + xik

)
n

. (13)

The variance of interval-value universe is a diagonal matrix, given by Equation (14), where
σ2

i is the variance of the i-th dimension. All non-diagonal elements of matrix σ2 are zero
since the different dimensions of the data are independent. The normalization result
corresponding to interval xi is also a k-dimensional vector, given by Equation (15):

σ2 =

σ2
1 . . . 0
...

. . .
...

0 . . . σ2
k

. (14)

Nxi =

0.5×
(
xi1 + xi1

)
− µ1

σ1
, · · · ,

0.5×
(

xik + xik

)
− µk

σk

. (15)

On the basis of the above-mentioned notions, we propose an algorithm for normalizing
multidimensional intervals (Algorithm 1). Algorithm 1 is divided into three program loops:
(1) looping n× k times to obtain the mean of each dimension of the interval-value universe
(see line 1–6), whose time complexity is O(n× k); (2) looping n× k times to obtain the
standard deviation of each dimension of the interval-value universe (see line 7–12), whose
time complexity is O(n× k); and (3) looping n× k times to obtain the normalized value
of each dimension of each interval object (see lines 13–17), whose time complexity is also
O(n× k). Hence, the total time complexity of Algorithm 1 is O(3× n× k).
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Algorithm 1: Interval-value normalization
input :A set of intervals X = {x1, x2, · · · , xn}.
output :A set of real numbers

1 // Each dimension. for i← 1 to k do
2 // Each interval. for j← 1 to n do
3 sum[i]+ = 0.5× (xji + xji)

4 end
5 µ[i] = sum[i]/n
6 end
7 // Each dimension. for i← 1 to k do
8 // Each interval. for j← 1 to n do

9 E[i] =
(

0.5×
(

xji + xji

)
− µ[i]

)2

10 end

11 σ[i] =
√

E[i]
n

12 end
13 // Each interval. for i← 1 to n do
14 // Each dimension. for j← 1 to k do

15 Nxij =
0.5×

(
xij+xij

)
−µj

σj

16 end
17 end
18 return NX

4.2. Membership Function Modeling

The method above normalizes a random fuzzy dataset to a random real number set NX
with a mean of 0 and a variance of 1. It has now been possible to resolve the heterogeneity
and fuzziness of multi-source data. Therefore, we can fit the membership function using
the distribution function of the data. According to the definition of normal distribution,
the distribution law of a one-dimensional random number can be expressed by a standard

univariate normal distribution with N(Nx|0, 1) = 1√
2π
× e

−N2
x

2 . Multidimensional random
real numbers correspond to a standard multivariate normal distribution, given by:

N(Nx|0, E) =
1

(
√

2π)k
× e

−NT
x �Nx
2 . (16)

when k = 1, N(Nx|0, E) is equivalent to N(Nx|0, 1). We thus use N(Nx|0, E) to uniformly
identify the distribution law of normalized data. The integration of standard normal
distribution is used to determine the probability that the corresponding value (fuzzy data)
will occur. Based on this, we construct a membership function for fuzzy data x, which can
be denoted as:

µ(Nx) =

∫ x
−∞ N(Nx|0, E)dx−

∫ min
−∞ N(Nx|0, E)dx∫ max

−∞ N(Nx|0, E)dx−
∫ min
−∞ N(Nx|0, E)dx

, (17)

where
∫ max
−∞ N(Nx|0, E)dx−

∫ min
−∞ N(Nx|0, E)dx is the total probability of fuzzy set [min, max],

and µ(Nx) is the membership degree of the normalized value Nx or the corresponding
fuzzy data x.

Considering the dynamic nature of the multi-source environment, we design an
adaptive membership function model to increase FIS’s adaptability. According to the
addition law of normal distribution [35], namely:

N(x1|u1, σ2
1 ) + N(x2|u2, σ2

2 ) = N(x1 + x2|u1 + u2, σ2
1 + σ2

2 ), (18)
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the data from several same data distribution spaces can be added and the sum still meets
the normal distribution. In the event that we consider the data from the i-th information
source as belonging to a standard normal distribution N(Nxi |0, E), the fusion data from m
independent information sources are still grouped according to the normal distribution
N(Nx|0, ∑i=m

i=1 Ei), where Nx = ∑i=m
i=1 Nxi is the fusion data of multi-source normalized data.

Accordingly, the adaptive membership function of fuzzy data x is modeled as:

µ(Nx) =

∫ x
−∞ N(Nx|0, E×m)dx−

∫ min
−∞ N(Nx|0, E×m)dx∫ max

−∞ N(Nx|0, E×m)dx−
∫ min
−∞ N(Nx|0, E×m)dx

, (19)

where the min and max are the minimum value and the maximum value in the fusion
dataset, respectively.

According to Equation (19), as long as the law of large numbers and the central limit
theorem are satisfied, we can continuously calculate the membership value of fusion data
as its variance changes linearly with the number of information sources.

4.3. Integration into T–S Model

As shown in Figure 2, the T–S model [36] is a fuzzy inference model that divides the
global nonlinear reasoning system into several simple linear reasoning systems. The outputs
of multiple subsystems are fused into a final decision result. Instead of the T–S model,
an alternative model may be used, such as the Mamdani model. The T–S model is chosen for
its simplicity of design. Both the IF and Then parts of the Mamdani model are ambiguous.
Therefore, the Mamdani model needs to rely on prior knowledge to design reliable Then
rules. In contrast, the output variable of the T–S model is a precise constant or a linear
function, and its degree of automation is higher. The working principle of the multi-input
T–S model is as follows:

Fuzzy input
……

𝑥!

𝑓(𝑥!)

𝑓(𝑥!)

𝑓(𝑥!)

IF …… THEN ……

𝑥"

𝑓(𝑥!)

𝑓(𝑥!)

𝑓(𝑥!)

IF …… THEN ……

y Output

Input 
normalization

Input 
fuzzification Fuzzy inference Inference 

fusion
Output 

defuzzification

Figure 2. Sample diagram of a T–S model. A T–S model is a nonlinear system characterized by a
set of “IF–THEN” fuzzy rules. Each rule indicates a subsystem, and the entire T–S model is a linear
combination of all these subsystems. See the text for details.

(1) As a result of normalizing and fuzzifying the input, the input is mapped to the fuzzy
set of the input universe, which corresponds to a membership function f (x).

(2) It is important to select the right fuzzy rules and inference methods in order to derive
results from sub-T–S models.

(3) The results of all sub-T–S models are merged to yield a total fuzzy output;
(4) The fuzzy output is deblurred to arrive at the final decision.

Example 1. Suppose that two input fuzzy sets are known as S1 = {x|x ∈ [1, 2]} with the mem-
bership function:

f (x1) =

∫ x
−∞ N(x|0, 1)dx−

∫ 1
−∞ N(x|0, 1)dx∫ 2

−∞ N(x|0, 1)dx−
∫ 1
−∞ N(x|0, 1)dx

, (20)
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and S2 = {x|x ∈ [−1, 1]} with the membership function:

f (x2) =

∫ x
−∞ N(x|0, 1)dx−

∫ −1
−∞ N(x|0, 1)dx∫ 1

−∞ N(x|0, 1)dx−
∫ −1
−∞ N(x|0, 1)dx

. (21)

There are three T–S fuzzy rules:

(1) R1: if x1 ∈ S1, then y1 = x1;
(2) R2: if x2 ∈ S2, then y2 = 2× x2;
(3) R3: if x1 ∈ S1 and x2 ∈ S2, then y3 = x1 + x2.

When x1 = 1.5 and x2 = 1 are observed, we obtain:

(1) R1: f (x1) = 0.68 and y1 = 1.5;
(2) R2: f (x2) = 1 and y2 = 2;
(3) R3: f (x1) = 0.68 and f (x2) = 1, and y3 = 1.5 + 1 = 2.5.

We first use the direct product method [37] to calculate the weight of each sub-T–S model:
w1 = f (x1) = 0.68, w2 = f (x2) = 1, and w3 = f (x1)× f (x2) = 0.68. Then, calculate the total
output according to the weighted average:

y =
(w1 × y1 + w2 × y2 + w3 × y3)

count(yi)
= 1.57. (22)

Finally, it is necessary to explain the total output and return a defuzzification decision.

5. Experiments
5.1. Data Description

To illustrate our method, three datasets are retrieved from the University of California
Irvine (UCL) Machine Learning Repository to conduct the effectiveness and efficiency
analysis. Table 1 summarizes the details of the three datasets.

Table 1. Descriptions of datasets.

No. Datasets Objects Continuous Attributes Classes Abbreviations

1 Wine [38] 178 13 3 Wine

2 User Knowledge Modeling [39] 403 5 4 User

3 Climate Model Simulation [40] 540 18 2 Climate

The Wine dataset [38] consists of three grape varieties with 13 chemical components.
Thirteen chemical components are taken as the 13 dimensions of an input parameter (xi)
and three grape varieties are taken as the three categories of an output parameter (yi).
GFIS is used for inferencing the category of grape based on the 13 kinds of chemical
components. The fuzzy rule is that, if Nxi ∈ Si, then yi = Nxi with the weight µ(Nxi ),
i ∈ [1, 13]. Our proposed membership function is used to calculate the weight of each
sub-T–S model output. Finally, we perform the K-means algorithm to cluster and explain
the final inference results. L1-Distance [41] is used as the distance formula. By calculating
the clustering precision, we assess the effectiveness of the proposed normalization method
and the membership function. The more precise the clustering, the more effective the
proposed methods. The User dataset [39] consists of four user varieties with five kinds
of study data. Five kinds of study data are taken as the five dimensions of an input
parameter and four user varieties are taken as the four categories of an output parameter.
The Climate dataset [40] consists of two kinds of climate varieties with 18 kinds of climate
data. Eighteen climate data are taken as the 18 dimensions of an input parameter and two
kinds of climate varieties are taken as the two categories of an output parameter. To fully
verify the effectiveness of the proposed methods, the same fuzzy inference program is
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conducted on the two datasets, respectively. Due to the lack of a public database containing
multi-source fuzzy data, we refer to [42,43] to preprocess the original datasets in order to
obtain target datasets:

Step 1: Let X = {x1, x2, · · · , xn} denote an original dataset. Construct an interval-
valued dataset, denoted as:

X′ = {
[

x′1, x′1
]
, · · · ,

[
x′n, x′n

]
}, (23)

where
x′i = [x′i , x′i ] = [xi − ασ, xi + ασ], (24)

σ is the standard deviation of the i-th attribute in the same class and and α is a noise
condition factor. In the benchmark analysis, we set α = 1

Step 2: Let the number of information sources be m. Construct a multi-source interval-
valued dataset by copying each piece of data m times.

Step 3: Get a random number r from a normal distribution N(0, 0.1). If r > 0,

x′i = [x′i × (1− r), x′i × (1 + r)], (25)

otherwise
x′i = [x′i × (1 + r), x′i × (1− r)]. (26)

Take a test dataset with two attributes and two categories as an example.
The original test data are: category 1 {460, 0.2; 550, 1.3} and category 2 {580, 4.0; 570, 3.5}.

The mean and standard deviation of the first attribute of Category 1 are 460+550
2 = 505 and

σ11 =

√
(460− 505)2 + (550− 505)2

2− 1
= 63.64. (27)

The mean and standard deviation of the first attribute of Category 2 are 0.2+1.3
2 = 0.75 and

σ12 =

√
(0.2− 0.75)2 + (1.3− 0.75)2

2− 1
= 0.78. (28)

Similarly, the standard deviations of the two attributes of Category 2 are σ21 = 70.71
and σ22 = 0.35.

Let α = 1. The interval value data set is: Category 1 {396.36 ∼ 523.64,−0.58 ∼
0.98; 486.36 ∼ 613.64, 0.52 ∼ 2.08} and Category 2 {509.29 ∼ 650.71, 3.65 ∼ 4.35; 499.29 ∼
640.71, 3.15 ∼ 3.85}.

In the end, we can construct a multi-source dataset by following steps 2 and 3.

5.2. Experimental Settings

We performed all experiments using Pycharm on MacOS 12.1 with an Intel Core
i7 2.6GHz processor and 16 GB RAM. Three different experiments were conducted to
illustrate the impact of multi-source fuzzy data on fuzzy inference accuracy. Three kinds of
experiments are described briefly below:

(1) Experiment 1 is conducted on the original dataset. The original dataset refers to the
dataset which has not been processed to remove noise (fuzzy processing).

(2) Experiment 2 is conducted on the normalized dataset. The normalized dataset is
obtained by fuzzifying (noise addition) and normalizing the original dataset.

(3) Experiment 3 is conducted on the fusion dataset. Fusion data are obtained by summing
normalized data from different information sources, denoted as:

Nxi =
m

∑
j=1

Nxij , (29)
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where Nxi is the i-th fusion data and Nxij is the i-th normalized data from the j-th
information source.

5.3. Performance Measurement

In this subsection, we evaluate the effectiveness and efficiency of the proposed method-
ology. In our study, the dataset goes through four stages of state: original data, interval-
valued data, normalized data, and fusion data. Since the input parameters of GFIS must
be exact numerical values, we only perform GFIS inference on the original, normalized,
and fusion datasets. For the purpose of defuzzying and interpreting the inference results,
the K-means algorithm is used to cluster the inference results, with each cluster indicating
a decision category. Clustering results are compared with the actual decision categories to
obtain the clustering precision, which reflects the effectiveness of the proposed normaliza-
tion method and the membership function. The proposed method becomes more effective
as clustering precision increases.

In a multi-source environment, GFIS inference on normalized data are performed
independently for each information source, and the weighted average is used to indicate
the final GFIS inference. However, the difference is that the GFIS inference of fusion data
is to fuse the data of all information sources first and then perform GFIS inference on the
fusion data. To facilitate memory, the GFIS inference experiment conducted on normalized
data is called Non-fused GFIS, while the GFIS inference experiment on fusion data is called
Fused GFIS. In Non-fused GFIS, the clustering precision of inference results is denoted as:

p =
No. o f IS

∑
i=1

(
∑

count o f clusters in each IS
j=1

object No. with correct classi f ication o f each cluster in each IS
object No. o f each cluster in each IS

count o f clusters in each IS
)/No. o f IS, (30)

where IS stands for information sources. In Fused GFIS, the clustering precision of inference
results is expressed as:

p =
∑

count o f clusters on the f usion dataset
i=1

number o f objects with correct classi f ication in each cluster
number o f all objects in each cluster

count o f clusters on the f usion dataset
. (31)

We have used K-means clustering to quantify the precision of inference results for
different GFIS models. We are now ready to test the operating efficiency of the normaliza-
tion method, the fusion method, and two types of GFIS models. Additionally to accuracy,
operating efficiency is an equally crucial metric for evaluating models or methods, as it
tells us how much it costs to operate them. A high level of operating efficiency indicates a
high level of availability and feasibility.

Our fusion method is based on the addition law of normal distribution; see Equation (18).
Through the transformation of data distribution space, we guarantee that the normalized
data from each information source satisfy the standard normal distribution N(Nx|0, E) and
the fusion data from m independent information sources meet the normal distribution
N
(

∑i=m
i=1 Nxi |0, ∑i=m

i=1 Ei

)
. We need to calculate the sum of each object with respect to the

sources of information as well as the variance of the fusion data according to the normal
distribution formula. Thus, the proposed fusion method has a total time cost equal to the
sum of the two calculation steps.

6. Results
6.1. Effectiveness Analysis Results

Table 2 reports the clustering precision achieved using GFIS on three different datasets.
In general, the higher the precision, the better the inference ability of GFIS becomes and,
therefore, the more effective the proposed method will be. For the dataset Wine, three
experiments have an accuracy of 90.69%, 86.32%, and 90.14%, respectively. GFIS preci-
sion in three experiments is 52.88%, 43.24%, and 44.90% for the User dataset, respectively.
As shown in the last row of Table 2, the precision of GFIS is 55.62%, 55.52%, and 66.13%



Systems 2022, 10, 258 12 of 20

for the Climate dataset, respectively. As presented in Figure 3, we can draw three conclu-
sions. First, data normalization will reduce the clustering precision of inference results
(0.18–18.23%). This is because normalization will scale the distance of the original data
and add some noise. Second, data fusion can improve the clustering precision of inference
results (3.84–19.11%). The reason for this is that data fusion can help eliminate part of
the errors caused by different sources of information. Third, the clustering precision of
inference results is related to datasets. The closer the dataset is to the normal distribution,
the higher the clustering precision is.

Table 2. Clustering precision of GFIS inference on different datasets.

Dataset
Precision

Original data Normalized data Fusion data

Wine 90.69% 86.32% 90.14%

User 52.88% 43.24% 44.90%

Climate 55.62% 55.52% 66.13%

Notes: The “original data” refer to Experiment 1 performed on the original dataset. The “normalized data” refer
to Experiment 2 conducted on the normalized dataset. The “Fusion data” refer to Experiment 3 conducted on the
fusion dataset. In total, 20 information sources are available, and the number of data objects is what counts.

Wine User Climate
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Figure 3. Clustering precision of GFIS inference on different datasets. The normalization of data will
reduce the clustering precision of the inference results (0.18–18.23%) because normalization scales
the distance between the original data and adds some noise to the results. Data fusion increases
the clustering precision by 3.84–19.11% due to its ability to eliminate part of the errors from diverse
information sources.

In Table 3 , we have shown the clustering precision of inference results generated by
two different GFIS models across three datasets as IS quantity changes. The bold value in
Table 3 indicates the better of the two GFIS models. The precision data in Table 3 reveal
that the Fused GFIS is better than the Non-fused GFIS under all the test conditions with
respect to the number of IS. Results of the test verify the effectiveness and superiority of
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the hypothesis. That is, information fusion technology combined with fuzzy control theory
enhances the decision-making capability of FIS. Figure 4 demonstrates how the clustering
precision changes with the increase or decrease of information sources. As illustrated in
Figure 4, whether it is the Fused GFIS model or the Non-fused GFIS model, clustering
precision does not appear to be related to the number of information sources. This is
because, although information fusion can improve the accuracy of clustering, adding more
information sources will also bring more noise.

Table 3. Clustering precision of GFIS inference with different numbers of information sources.

Dataset

Number of information sources (IS)

10 20 30 40 50

Non-Fused GFIS Fused GFIS Non-Fused GFIS Fused GFIS Non-Fused GFIS Fused GFIS Non-Fused GFIS Fused GFIS Non-Fused GFIS Fused GFIS

Wine 81.13% 90.14% 86.32% 90.14% 87.80% 91.08% 88.51% 90.14% 89.18% 90.61%

User 41.02% 46.36% 43.24% 46.73% 43.94% 47.67% 43.28% 47.67% 43.21% 50.59%

Climate 54.61% 54.85% 55.52% 66.13% 54.67% 59.71% 57.60% 58.90% 54.96% 58.80%

Notes: “Non-fused GFIS” refers to GFIS that is driven by normalized data from independent sources. “Fused
GFIS” refers to the GFIS driven by fusion data from multiple information sources.
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Figure 4. Clustering precision of GFIS inference with different numbers of information sources (IS).
When it comes to the number of IS, the clustering precision of Fused GFIS is better than that of
Non-fused GFIS under all test conditions. In either model, the clustering precision does not appear to
be related to the number of information sources.

6.2. Efficiency Analysis Results

Table 4 reports the time cost associated with the normalization of heterogeneous
fuzzy data. Test results show that the time cost of data normalization varies with datasets
and the number of data objects. Apart from that, under all test conditions, the time cost
of data normalization is controlled at the second level, which is generally acceptable.
By using linear fitting, Figure 5 demonstrates the linear relationship between the time cost
of data normalization and the number of data objects. Figure 5 illustrates that all datasets
demonstrate a positive linear relationship between the normalization time cost and the
number of data objects, which is consistent with the time complexity O(3× n× k) in the
normalization algorithm (see Algorithm 1 for details).
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Table 4. Time cost of data normalization for heterogeneous fuzzy data with different numbers of data
objects (seconds).

Dataset
Number of Data Objects

50 100 150 200

Wine 9.10 18.56 27.80 36.93

User 3.67 7.19 10.28 13.82

Climate 13.00 25.92 39.25 51.35

Notes: Experiments were conducted on interval-valued data. The number of IS is 20.
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Figure 5. Time cost of data normalization for heterogeneous fuzzy data with different numbers of
data objects. For all datasets, the normalization time cost has a positive linear relationship with the
number of data objects, which is consistent with the time complexity O(3× n× k) in the normalization
algorithm (see Algorithm 1 for details).

Table 5 shows the time cost of fusion of normalized data. The non-fused GFIS models
incur no time burden, as opposed to the GFIS models that undergo data fusion. Figure 6
displays how the fusion time cost varies based on the number of IS in multi-source normal-
ized data. Results from all datasets show a positive linear relationship between fusion time
cost and IS number. The reason for this is that our fusion method requires us to calculate
the sum of each data object’s multi-source normalized value ∑i=m

i=1 Nxi and the sum of
variances from all information sources ∑i=m

i=1 Ei. In this regard, the positive correlation
between the time complexity of the fusion method and the number of IS can be formulated
as O(T)n m, where O(T) is the time cost of fusing an information source and m is the
number of information sources.
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Table 5. Time cost of normalized data fusion with different numbers of IS (seconds).

Dataset Number of Information Sources (IS)
10 20 30 40 50

Wine 7.35 14.05 21.62 28.84 36.59

User 6.29 12.49 18.56 24.19 30.21

Climate 30.89 59.61 87.51 117.33 149.28

Notes: Experiments were conducted on the normalized dataset. The number of data objects is the actual value.
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Figure 6. Time cost of normalized data fusion with different numbers of IS. For all datasets, the fusion
time cost and the number of IS are positively correlated. Using the core formula of the fusion method,
if we assume that the time cost of fusing one information source is O(T), and m is the number of
sources, we obtain O(T)n m as the total time cost.

Table 6 presents a summary of the time cost associated with GFIS inferences. Com-
pared with Non-fused GFIS, the inference time cost of Fused GFIS additionally includes
the time cost of data fusion (see Table 5). However, the inference time cost of Fused GFIS is
still lower than that of Non-fused GFIS, demonstrating the effectiveness and superiority
of Fused GFIS. Figure 7 displays the time trend of GFIS inference with IS increasing or
decreasing. The results show that, for both GFIS models, the inference time increases
linearly with IS number for all three data sets. A fused GFIS, however, has a significantly
lower time cost than a non-fused one. A major reason for this is the improved adaptability
of the membership function in the GFIS model, which enables GFIS to properly handle
incremental data with fuzzy inference.
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Table 6. Time cost of GFIS inference with different numbers of IS (seconds).

Dataset

Number of information sources (IS)
10 20 30 40 50

Non-Fused GFIS Fused GFIS Non-Fused GFIS Fused GFIS Non-Fused GFIS Fused GFIS Non-Fused GFIS Fused GFIS Non-Fused GFIS Fused GFIS

Wine 27.92 15.34 55.39 29.07 89.34 43.67 114.49 57.95 138.72 72.80

User 24.84 14.11 49.83 26.00 74.06 37.64 101.84 49.89 120.53 61.89

Climate 120.63 67.48 204.25 119.56 295.02 170.53 383.36 224.94 478.23 280.56

Notes: Experiments were conducted on the non-fused and fused datasets. The number of data objects is the actual
value.
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Figure 7. Time cost of GFIS inference with different numbers of IS. It has been found that the inference
time cost for both two GFIS models increases linearly with the number of IS for all datasets. Fused
GFIS, however, has a much lower time cost than non-fused GFIS, demonstrating the effectiveness
and adaptability of the proposed membership function.

6.3. Sensitivity Analysis Results

In this subsection, we perform two robustness checks. In particular, we perform some
additional tests regarding data noise and analyze the sensitivity with respect to different
dataset choices.

The baseline tests run on three datasets. To demonstrate that the results are not driven
by a specific dataset choice, another dataset, Iris [44], is also considered. There are three
classes in the dataset, each with 50 objects, and each class represents a type of iris plant. We
use the shape of the flower to identify the category of flowers. Each dataset is successively
filled with ±σ, ±2σ, ±3σ, ±4σ and ±5σ of noise to determine the GFIS sensitivity to
data noise. We test whether different noises influence the accuracy of inference for the
Non-fused GFIS and the Fused GFIS.

Table 7 reports the experimental results. It is evident from the experimental results
that data noise does not seem to change the benchmark conclusion of our experiment. In
addition, we find that the amount of noise has no significant impact on the accuracy of
each model (see Figure 8). This is because we use the mean value of fuzzy data to offset the
effect of noise.

Moreover, we notice that, although the Fused and Non-fused GFIS on Iris, Wine and
User are close to each other, the Fused and Non-fused GFIS on Climate seem far from
each other. Table 7 shows that the optimization ratio of Fused GFIS to Non-fused GFIS is
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stable within 3% and 6% for datasets Iris, Wine, and User. However, for dataset Climate,
the optimization ratio of Fused GFIS to Non-fused GFIS varies between 3% and 20%. This
is due to the fact that the dataset Climate is unbalanced, with category 1 to category 2 ratios
of 1:11. As a result of this, the GFIS model is moderately sensitive to class 1 on a smaller
scale, and overall inference accuracy is affected to some extent.
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(b) Fused GFIS

Figure 8. Influence of noise on the accuracy of different GFIS models. (a) non-fused GFIS;
(b) fused GFIS.

Table 7. Inference precision of different GFIS models with the noise of each dataset changed.

Datasets Noise Non-Fused GFIS Fused GFIS Optimization

Wine

σ 86.46 90.14 4.25%
2σ 86.32 90.14 4.43%
3σ 86.59 90.61 4.64%
4σ 86.57 91.49 5.68%
5σ 86.39 90.14 4.34%

User

σ 42.48 44.43 4.59%
2σ 43.24 44.9 3.84%
3σ 42.17 44.19 4.79%
4σ 43.06 45.48 5.62%
5σ 42.14 44.12 4.70%

Climate

σ 54.37 57.13 5.08%
2σ 55.52 66.13 19.11%
3σ 54.35 56.24 3.48%
4σ 55.82 59.88 7.27%
5σ 55.54 66.53 19.79%

Iris

σ 76.5 80 4.58%
2σ 75.97 79 3.99%
3σ 76.03 79.33 4.34%
4σ 75.93 79.33 4.48%
5σ 75.6 80 5.82%

Notes: “Non-fused GFIS” refers to GFIS that is driven by single-source data. “Fused GFIS” refers to the GFIS
driven by fusion data from multiple information sources. “Optimization” is the ratio: (Fused GFIS-Non-fused
GFIS)/Non-fused GFIS

7. Conclusions

In this article, we develop a new Gaussian-shaped fuzzy inference system that is suit-
able for multi-source fuzzy environments. To achieve this goal, our first step is to normalize
multi-source fuzzy data to remove the heterogeneity of multi-source data. In order to
obtain the fused data of an object, we sum the normalized descriptions of it from different
information sources. We then propose an adaptive membership function for the fusion data,
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which provides the basis for granulating the input for GFIS and designing its inference
rules. We also propose a novel fuzzy inference framework by integrating the normalization
method and adaptive membership function with the T–S model.

We conducted extensive experiments on three benchmark datasets to evaluate the
effectiveness of the proposed methods. Three main conclusions can be drawn from the
experimental results. First, the normalization of interval-value data can slightly reduce the
clustering accuracy of the original data since it scales the distances and adds some noise.
Second, the Fused GFIS model’s inference precision is significantly higher than that of the
Non-fused GFIS model. This is due to the fact that data fusion can remove some of the
errors from different sources of information. Third, with an adaptive membership function,
the proposed GFIS can handle fuzzy inferences of incremental data more efficiently.

There are some limitations to the proposed GFIS, which helps us identify future
research directions. First, all data variables should be independent. Second, all data
variables have to follow the law of large numbers and the central limit theorem. Third,
when applying GFIS, it is necessary to select appropriate fuzzy rules and inference logic.
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