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Abstract: We studied the ability to reduce the supply–demand mismatch of a periodic Make-to-Order
(MTO) production system using safety stocks with marketing managing demand using lead-time
guarantee and price as levers. The aim is to understand the interdependencies between lead-time
guarantee, price, and safety stocks. We modeled the problem as an unconstrained stochastic non-
linear programming problem, maximizing the expected profit per-unit time and obtaining a closed-
form solution. The price is a function of the lead-time guarantee. Based on the sensitivity analysis
of problem parameters, we found that lead-time competitiveness is adversely affected by a low
safety stock level, MTO production rate (i.e., low supply capability), and product price (i.e., high
demand volume). A shorter lead-time requires higher safety stock through reduced product and
inventory holding costs. A higher price for a shorter lead-time in a lead-time-sensitive market reduces
the safety stock. In a price-sensitive market, lead-time is decreased instead of the price. Demand
variation results in longer lead-time and higher safety stock (provided the holding cost is low). For a
higher price premium, price increases and lead-time decrease (safety stock increases). The integrated
operation-marketing model captures the complex trade-offs not seen in a hierarchical model to
produce better solutions.

Keywords: operations-marketing model; guaranteed lead-time; price; make-to-order; make-to-stock

1. Introduction

The supply–demand mismatch is the result of inadequate supply and demand co-
ordination. It is due to poor supply performance (quality, delivery) of the (1) upstream
supplier(s), (2) local firms, and (3) downstream distributors/retailers and is exacerbated
by the uncertainty of customer(s) demand [1]. One of the basic approaches to reducing
supply–demand mismatch is product management through postponement (e.g., make-to-
order (MTO), assemble-to-order (ATO), and process sequencing). The MTO production
system produces only in response to confirmed orders and thereby finds it challenging to
compete on delivery lead-time with an increase in load. A ‘periodical’ MTO production
system is used if the aggregate demand is continuous [2].

Demand, information, and supply management are other primary approaches to
reducing supply–demand mismatch [3,4]. Firms often advertise or guarantee a lead-time
within which they expect to meet the demand with high probability and make every effort
to ensure it is competitively short yet reliable. Reliable lead-times reduce the need for
change in production plans and are preferred by customers over a short but unreliable
lead-time. Lead-time guarantees serve to manage demand to obtain an improved match
with the firms’ supply.

The reliability of the lead-time guarantee by the marketing needs to be ensured by
a suitable operations strategy. The integrated firm that coordinates well between depart-
ments is in the best position to avoid conflicts and make good the lead-time promise [5,6].
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An integrated operations-marketing approach with effective ‘information management’ is
the key to reducing supply–demand mismatch.

In response to demand uncertainty, firms produce the less-uncertain portion of prod-
uct demand to stock (which we term safety stock) using an efficient, low-cost specialized
manufacturing facility (referred to in this study as a secondary supply source). The more
uncertain portion of product demand is produced using a high-cost flexible manufacturing
facility based on firm order. The ‘efficient’ plant focuses on cost reduction by improving
resource usage. The ‘flexible’ manufacturing system competes on lead-time at the expense
of cost. This strategy is also termed the ‘focus’ strategy via ‘space’ separation [7]. Sup-
ply management using safety stock in an MTO production system improves operational
flexibility to reduce supply–demand mismatch.

1.1. Research Motivation

Several individual industrial situations, which have been documented in operations
management literature, have motivated this research. This work was partly motivated by
a leather furniture manufacturer’s industrial situation, described in Rao et al. [8], which
guarantees retailers delivery within two weeks. Offering a lead-time guarantee, which is
uniform to all customers, is also usual for many firms engaged in construction, industrial
equipment supply, catering, and transportation. Lead-times determine the success of such
systems with little or no finished goods inventory [9]. A shorter lead-time attracts more
demand, as seen in the situation of a food packaging film manufacturer described by
Dobson and Yano [10]. Besides a shorter lead-time, a smaller price quote attracts more
demand [11].

A large demand volume makes it more likely that the firm shall fail to meet the quoted
delivery time. Safety stocks in an MTO environment cater to the element of demand, which
can be well-forecasted, and MTO strategy to the element with high forecast error. Using
safety stock in an MTO setting has long been employed in the fashion industry [12,13].
It serves to improve lead-time competitiveness. Moreover, industry practice, especially
prevalent among Web retailers (e.g., Amazon, Flipkart), suggests that customers are willing
to pay a price premium for a shorter lead-time [6,14,15].

1.2. Objective and Approach

We studied the ability to reduce supply–demand mismatch of a periodic MTO produc-
tion system using safety stocks with marketing managing demand using the two product
attributes (i) lead-time guarantee, and (ii) price as levers. We modeled the problem as an
unconstrained stochastic non-linear programming (NLP) problem of two-stage, maximiz-
ing the expected profit per-unit time. Stage 1 decisions are taken before demand realization.
In Stage 1, operations decide the level of safety stocks and length of the production planning
cycle, thereby managing supply. Marketing decides the two product attributes, thereby
managing demand. In Stage 2, demand is realized and is modeled as a linear function
of the product attributes, with a non-negative stochastic error component. The price is
explicitly modeled as a function of the lead-time guarantee. We provide a closed-form
solution using the multivariable optimization technique [16,17]. The sensitivity of demand
and cost parameters and production rate on decision variables and expected profit per-unit
time is performed, and essential managerial insights are drawn.

1.3. Research Contribution

We explicitly specify the dependencies between price and lead-time in an integrated
operations-marketing model to capture the trade-offs between lead-time guarantee, price,
and safety stock. We find that lead-time competitiveness is adversely affected by a low
safety stock level, MTO production rate (i.e., low supply capability), and product price (i.e.,
high demand volume).

1. To promise a short lead-time, an integrated firm aims to increase safety stocks by
reducing product costs and setting a low inventory holding cost.
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2. A higher price quote corresponding to a shorter lead-time in a lead-time-sensitive
market reduces the need to increase the safety stock level. In a price-sensitive market,
the firm would reduce lead-time rather than the price.

3. Demand variability is countered by guaranteeing a longer lead-time and increasing
the safety stock (The stock level is lowered when the holding costs are high).

4. The firm sets a higher product price and quotes a shorter lead-time (thereby increasing
the safety stock level) in response to an opportunity to charge a higher price premium
for a given lead-time decrease.

The integrated operation-marketing model captures the complex trade-offs not seen
in a hierarchical model to produce better solutions.

1.4. Literature Review

This study considers decisions on two product attributes: (i) lead-time guarantee
and (ii) price, and decisions on production capacity (production cycle) and safety stock
level in a periodic MTO production system. Few studies consider the effect of decisions
on both price and lead-time guarantee, on-demand volume. Dobson and Yano [10] mod-
eled demand as lead-time and price dependent in a mixed MTS-MTO system to evalu-
ate a product-wise MTS vs. MTO decision. Ray and Jewkes [14] modeled customer’s
product switchover decision owing to price and a lead-time difference between two prod-
ucts. Rao et al. [8] modeled demand as a function of lead-time guarantee in an MTO
system and evaluated how production cycle length relates to the lead-time guarantee.
Pekgün et al. [18] designed a contract to coordinate decentralized price (marketing) and
lead-time (operations) decisions. Shao and Dong [19] modeled the random demand as a lin-
ear function of lead-time in an ATO system and evaluated back-ordering, backup sourcing,
and compensation strategy as a response to supply disruption. Qian [20] modeled product
demand as a deterministic linear function of service level and quality besides price and
guaranteed lead-time to evaluate suppliers in the MTO system. Kuthambalayan et al. [21]
modeled demand as a linear function of guaranteed lead-time and price to capture the
trade-offs of inventory of components, semi-finished goods, and outsourcing costs in the
ATO system. Pekgün et al. [22] studied cross-price and lead-time effects with decentralized
capacity, price, and lead-time decisions. Kuthambalayan and Bera [23] modeled demand as
a function of guaranteed lead-time in a mixed MTO/MTS production system with level
dependency to evaluate a product-wise MTS vs. MTO decision.

Additionally, few studies consider both safety stock and MTO strategy to manage
the supply. Eynan and Rosenblatt [24] studied an ATO system and Assemble-in-Advance
(AIA) system and evaluated the benefits of the production system in terms of reduced
overstocking risk compared to a pure AIA system and improved lead-time service in
comparison to an ATO system. Eynan and Rosenblatt [25] confirmed the benefits in an
assembly system with component commonality. In contrast, Hariga [26] confirmed it in a
multi-echelon assembly system, Fu et al. [27] confirmed it in situations where components
have long procurement lead-times and the firm’s production capacity is outsourced, and
Xiao et al. [28] confirmed it in situations of uncertain assembly capacity. Altendorfer and
Minner [29] evaluated the benefits of an MTO system with safety stocks by analyzing
demand and cost parameters, production rate, and mean customer required lead-time.

Research Positioning

We used the work of Xiao et al. [28] as the starting point of our research. In their
model, the demand is free from market characteristics. In contrast, we consider the demand
as a linear function of two product attributes: (i) guaranteed lead-time, and (ii) price [20]
with a non-negative stochastic error component. This study differs further from Xiao
et al. [28] as we assume the safety stock to be supplied by a secondary source instead of
being self-produced. This study also differs from Qian [20] due to the stochastic demand
assumption (while they consider the actual delivery time stochastic) and the safety stock
aspect. Most studies consider real-time lead-time quotation while this study determines
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tactical level lead-time guarantee before demand realization. Additionally, most studies
consider guaranteed lead-time mainly in an MTO system, a few in a mixed MTS-MTO
production setting, but to the best of our knowledge, none in an MTO system with safety
stocks. Additionally, the product price in this study is lead-time dependent as shown in the
Table 1.

Table 1. Literature on managing demand with lead-time.

Study Model

Strategy Demand Price

Mixed or
Safety Stock Price Lead-Time Stochastic Lead-Time

Dependent

Dobson and Yano (2002) NLP Mixed X X
Ray and Jewkes (2004) NLP X X

Rao et al. (2005) NLP X X X
Pekgün et al. (2008) NLP X X

Shao and Dong (2010) NLP X X X
Qian (2014) NLP X X

Kuthambalayan et al. (2014) MINLP X X X
Pekgün et al. (2017) NLP X X X

Kuthambalayan and Bera
(2020) NLP Mixed X X X

This Study NLP Safety stock X X X X

Further, in the paper, Section 2 provides the Materials and Methods. Section 3 provides
results of a numerical example and sensitivity analysis of key problem parameters. Section 4
discusses the results of sensitivity analysis. Section 5 concludes with future scope of the research.

2. Materials and Methods
2.1. Assumptions and Notations

The firm sells a single product to customers at multiple locations in this study. The
orders for products are continuously received and accumulated by the sales department
over the production planning cycle T before communicating to production. The marketing
department pre-announces an upper-bound on lead-time 2T. The production schedule
is updated once every period T, and customers can adjust their orders until the end of
the preceding T period. At this time, their order acceptance decision is finalized, and
operations make an improved allocation of orders and capacity planning. This problem set
is motivated by Rao et al. [8].

We model the problem as a two-stage stochastic problem. Stage 1 decisions are taken
before actual demand realization. In Stage 1, operations decide the level of safety stocks
q2 and the length of the production planning cycle T (thereby, managing supply). The
MTO production quantity is limited to q1 due to the planning cycle time constraint T
and the production rate ρ1. Additionally, in Stage 1, marketing decides the two product
attributes, price p and lead-time guarantee 2T (thereby, managing demand). In Stage 2,
demand is realized and is modeled as a linear function of the product attributes, with
a non-negative stochastic error component D, D′ = a − 2b1T − b2 p + D. Here, a is the
basic market size, b1 is the non-negative lead-time sensitivity of demand, and b2 is the
non-negative price sensitivity of demand. D is assumed to be nonnegative with a uniform
distribution, D ∼ U(0, c), to capture uncertainty. f (D) denotes the density function and∫

f (D)d(D) is the distribution function of f (D) and continuously differentiable. The price
p is explicitly modeled as a function of the lead-time guarantee 2T, p = p1 − e(2T). Here,
p1 is the selling price of the product when the lead-time guarantee 2T is zero and e is the
non-negative lead-time sensitivity of price. We summarize these and additional notation in
Table 2.

In the second stage, at the beginning of the period T, product demand information is
received. There are three possible scenarios:

1. The product demand is less than the safety stock level q2: The demand is met from available
safety stock q2 at a per-unit cost t2 and per-unit selling price p. Any safety stock in
excess of the demand quantity D′ incurs a per-unit time holding cost r3t2 (0 < r3 < 1).
In this scenario, MTO quantity and demand shortages are nil.



Systems 2022, 10, 256 5 of 19

2. The product demand exceeds the safety stock level q2 but is less than the planning cycle MTO
limit q2: The demand is first met from available safety stock q2 at a per-unit cost t2
and per-unit selling price p. Any excess demand is made-to-order at a per-unit cost t1,
with (t2 < t1 < p) [25,30], and per-unit selling price p. In this scenario, excess safety
stock and demand shortages are nil.

3. The product demand exceeds the sum of safety stock level and planning cycle MTO limit
(q2 + q1): The demand is first met from available safety stock q2 at a per-unit cost t2
and per-unit selling price p. The quantity q1 is then made-to-order at a per-unit cost
t1, and per-unit selling price p. In this scenario, a shortage cost of r2t1 (0 < r2 < 1) is
incurred on any demand quantity D′ which exceeds (q2 + q1).

Table 2. Notation.

Parameters

a Basic market size in a linear attribute-dependent demand function (in units)

D ∼ U(0, c) Non-negative error (in units) in estimating the market demand (stochastic
component of the market demand with uniform distribution)

p1 Per-unit selling price (in $) of the product when lead-time is zero

r2 Per− unit cos t of shortage (in $) is given by r2t1, (0 < r2 < 1 )

r3 Per− unit per unit time cos t of holding is given by r3t2 (in $), 0 < r3 < 1

t1 Per-unit cost of MTO product (in $)

t2 Per− unit cos t of safety stock (t2 < t1 ) (in $)

ρ1 Production rate of MTO product (in units per day)

b1 Non-negative lead-time sensitivity of the demand (in units per day)

b2 Non-negative price sensitivity of the demand (in units per $)

e Non-negative lead-time sensitivity of price (in $ per day)

Decision variables and the objective

q1 MTO production limit (in units) in time T at production rate ρ1

q2 Level of safety stock (in units)

2T Uniform guaranteed lead-time (in days)

p Per-unit price the product (in $)

E[z] Expected profit per-unit time (in $ per day)

2.2. Model Formulation

The demand function is modeled as D′ = a − 2b1T − b2 p + D. Demand increases
with a decrease in lead-time and price. If T increases, the delivery time will be longer. The
time-sensitive customer segment may cancel or may not place the order if the delivery time
is longer. Consequently, the firm’s demand will decrease, which will lead to a decrease in
the firm’s profit. This situation can be managed by making the price lead-time sensitive
(p = p1 − e(2T)). This implies that the customer shall pay a lower price for a longer lead-
time. To trace such a situation, since price is not an independent decision variable, demand
function is expressed as D′ = a′ − b′T + D, where, a′ = a− b2 p1 and b′ = 2b1 − 2b2e. The
model under this condition captures the trade-off between lead-time, price, and safety stock.

The objective is to maximize expected profit per-unit of time. The expected profit over
period time T comprises the following components in three different scenarios over period
time T, which are explained below:

1. The product demand is less than the safety stock (0 ≤ D′ ≤ q2) This implies that
b′T − a′ ≤ D ≤ q2 + b′T − a′

(a) The sales revenue is
∫ q2+b′ q1

ρ1
−a′

b′ q1
ρ1
−a′

pD′ f (D)d(D),
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(b) The cost of products is
∫ q2+b′ q1

ρ1
−a′

b′ q1
ρ1
−a′

q2t2 f (D)d(D), and

(c) The holding cost is r3t2
∫ q2+b′ q1

ρ1
−a′

b′ q1
ρ1
−a′

T(q2 − D′) f (D)d(D).

2. The product demand exceeds the safety stock (D′ > q2) but is less than the planning
cycle MTO limit q1(D′ ≤ q1): This implies that q2 + b′T− a′ ≤ D ≤ q2 + q1 + b′T− a′.

(a) The sales revenue is
∫ q2+q1+b′ q1

ρ1
−a′

q2+b′ q1
ρ1
−a′

(q2 p + (D′ − q2)p) f (D)d(D) and

(b) The cost of products is
∫ q2+q1+b′ q1

ρ1
−a′

q2+b′ q1
ρ1
−a′

(q2t2 + t1(D′ − q2)) f (D)d(D).

3. The product demand exceeds the quantity (q2 + q1) (D′ ≥ q2 + q1): Since, D ∼ U(0, c),
this implies that c ≥ D ≥ q2 + q1 + b′T − a′.

(a) The sales revenue is
∫ c

q2+q1+b′ q1
ρ1
−a′ p(q2 + q1) f (D)d(D),

(b) The cost of products is
∫ c

q2+q1+b′ q1
ρ1
−a′ (q2t2 + t1q1) f (D)d(D), and

(c) The shortage cost is r2t1
∫ c

q2+q1+b′ q1
ρ1
−a′ (D′ − (q2 + q1)) f (D)d(D).

Expected profit over period time T is the difference between sales revenue and net
cost (production cost, holding cost, and shortage cost). The objective function, which is to
maximize the expected profit per-unit of time is given below with T replaced by q1

ρ1
.

Substituting f (D) = 1/c, p = p1 − e(2q1/ρ1), a′ = a− b2 p1 , and b′ = 2b1 − 2b2e, the
expected profit per-unit time is given as:

E[z] =
∫ q2+b′ q1

ρ1
−a′

b′ q1
ρ1
−a′

p

(
a′−b′ q1

ρ1
+D

)
q1
ρ1

f (D)d(D)−
∫ q2+b′ q1

ρ1
−a′

b′ q1
ρ1
−a′

q2t2
q1
ρ1

f (D)d(D)

−r3t2
∫ q2+b′ q1

ρ1
−a′

b′ q1
ρ1
−a′

(
q2 − a′ + b′ q1

ρ1
− D

)
f (D)d(D) +

∫ q2+q1+b′ q1
ρ1
−a′

q2+b′ q1
ρ1
−a′

(
q2 p+

(
a′−b′ q1

ρ1
+D−q2

)
p
)

q1
ρ1

f (D)d(D)

−
∫ q2+q1+b′ q1

ρ1
−a′

q2+b′ q1
ρ1
−a′

(
q2t2+t1

(
a′−b′ q1

ρ1
+D−q2

))
q1
ρ1

f (D)d(D) +
∫ c

q2+q1+b′ q1
ρ1
−a′

p(q2+q1)
q1
ρ1

f (D)d(D)

−
∫ c

q2+q1+b′ q1
ρ1
−a′

(q2t2+t1q1)
q1
ρ1

f (D)d(D)− r2t1
∫ c

q2+q1+b′ q1
ρ1
−a′

(
a′−b′ q1

ρ1
+D−(q2+q1)

)
q1
ρ1

f (D)d(D)

E[z] = − 1
2cq1ρ1

(4b2
1q2

1r2t1 + b2
2r2t1(2eq1 − p1ρ1)

2 − 4b1q1(2eq1(q1 + q2 + b2r2t1)

−((q1(−1 + r2)− (c + a− q2)r2)t1 + p1(q1 + q2 + b2r2t1)− q2t2)ρ1)
+2b2(2eq1 − p1ρ1)(2eq1(q1 + q2) + (−p1(q1 + q2) + (q1 + (c + a− q1 − q2)r2)t1 + q2t2)ρ1)
+ρ1(q1

(
−2e(q1 + q2)(−2c− 2a + q1 + q2) + q2

2r3t2
)
+−p1(2c + 2a− q1 − q2)(q1 + q2)

+
(
−q1(−2c− 2a + q1 + 2q2) + (c + a− q1 − q2)

2r2

)
t1 + 2(c + a)q2t2)ρ1))

(1)

Lemma 1. The expected profit function E[z] is concave in q1 andq2 under certain conditions. The
proof of the lemma1 is given in the Appendix A.

The following Proposition addresses the optimal solution of the problem through the
necessary conditions of Optimization Theory.

Proposition 1. In both price, as well as delivery time sensitive market, the manufacturer’s optimal
planning cycle MTO limit and safety stock level (q∗1 , q∗2) satisfy first order necessary conditions
∂z
∂q1

= 0 and ∂z
∂q2

= 0 [31]. Which is given as:

J1q3
1 + K1q2

1q2 + L1q2
2 + M1q2 + N1 = 0

where, J1 = (16e(b1 − eb2) + 4eρ1), K1 = (8e(b1 − eb2), L1 =
(

p1ρ2
1 + r2t1ρ2

1
)
,

M1 =
(
2(c + a)t2ρ2

1 − 2p1(c + a + b2(−r2t1 + t2))ρ
2
1 + 2b2 p2

1ρ2
1 − 2cr2t1ρ2

1 − 2ar2t1ρ2
1
)

N1 = (c + a)2r2t1ρ2
1 + b2 p2

1b2r2t1ρ2
1 − 2(c + a)b2 p1r2t1ρ2

1 + (b1 − eb2)(−b1 + eb2)4r2t1 − 4ceρ1
−4eaρ1 + 4eq2ρ− 4b1(p1 + (−1 + r2)t1)ρ1 + 2eb2(2p1 + (−1 + r2)t1)ρ1 − p1ρ2

1 + (1− r2)t1ρ2
1)

(2)
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J2q2
1 + K2q1q2 + L2q2 + M2q1 + N2 = 0

where, J2 = (4e(b1 − eb2) + 2eρ1), K2 = (2eρ1 − r3t2ρ1), L2 = −
(
r2t1ρ2

1 + p1ρ2
1
)
, M2 = −2ceρ1

−2eaρ1 + 2eb2(2p1 + r2t1)ρ1 − 2b1(p1 + r2t1 − t2)ρ1 − 2eb2t2ρ1 − p1ρ2
1 + (1− r2)t1ρ2

1,
N2 = cp1ρ2

1 + ap1ρ2
1 − b2 p2

1ρ2
1 + (c + a)r2t1ρ2

1 − b2 p1(r2t1 − t2)ρ
2
1 − (c + a)t2ρ2

1

(3)

There exists a unique optimal solution for planning cycle MTO limit (q∗1) and safety
stock level (q∗2), which are determined by solving the simultaneous Equations (2) and (3).

Analyzing the solution of the simultaneous Equations (2) and (3), we observe that
the planning cycle length (q∗1/ρ1) is positively related to the per-unit time holding cost
and per-unit shortage cost and negatively related to the MTO production rate and price
corresponding to zero lead-time. A low safety stock level and MTO production rate (and
hence, ability to meet demand), along with a low price corresponding to zero lead-time
(and hence, high demand volume), shall make the firm less lead-time competitive.

Product Demand Is Dependent Only on the Guaranteed Lead-Time

In Section 2.2, the problem is modeled considering both lead-time and price-sensitive
customers. In this section, we present a model for the case when customers are only lead-
time sensitive (D′ = a− 2b1T + D) by considering price sensitivity negligible (b2 = 0).
Moreover, by setting e = 0, we consider p = p1. This model captures the trade-off between
lead-time and safety stock. The objective is to maximize the expected profit per-unit time.

Substituting b2 = 0 and e = 0, in Equation (1), the expected profit per-unit time is
given as:

E[z] = − 1
2cq1ρ1

(4b1
2q2

1r2t1 + q1(4b1(p1q2 − (a + c− q2)r2t1 + q1(p1 + (−1 + r2)t1))

+q2(−4b1 + q2r3)t2)ρ1 + ((a + c)2r2t1 + q2
1(p1 + (−1 + r2)t1)

−2q1(a + c− q2)(p1 + (−1 + r2)t1) + q2
2(p1 + r2t1)− 2(a + c)q2(p1 + r2t1 − t2))ρ

2
1)

(4)

Lemma 2. The expected profit function E[z] is concave in q1 and q2 under certain conditions. The
proof of the Lemma 2 is given in the Appendix A.

The following Proposition addresses the optimal solution of the problem through the
necessary conditions of Optimization Theory.

Proposition 2. In the lead-time sensitive market, the manufacturer’s optimal MTO production
limit and safety stock level (q∗1 , q∗2)satisfy first-order necessary conditions ∂z

∂q1
= 0 and ∂z

∂q2
= 0 [31].

∂z
∂q1

= 0 and ∂z
∂q2

= 0 represents Equations (3) and (4) respectively as given below:

q2
1
(
ρ1(p1 − t1 + r2t1)(4b1 + ρ1) + 4b2

1r2t1
)
− q2

2ρ2
1(p1 + r2t1)

+2q2ρ2
1(a + c)(p1 − t2 + r2t1)− (a + c)2ρ2

1r2t1 = 0 (5)

q1((p1 + r2t1)(2b1 + ρ1)− 2b1t2 − ρ1t1) + q2ρ1(p1 + r2t1) + q1q2r3t2 + (a + c)t2 − ρ1(a + c)(p1 + r2t1) = 0 (6)

There exists a unique optimal solution for MTO production limit (q∗1) and safety stock
level (q∗2), which are determined by solving the simultaneous Equations (5) and (6).

Analyzing the solution of the simultaneous Equations (5) and (6), we observe that the plan-
ning cycle length (q∗1/ρ1) is positively related to the per-unit holding cost and per-unit shortage
cost, and negatively related to production rate. A low safety stock level and MTO production
rate (and hence, ability to meet demand) shall make the firm less lead-time competitive.
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3. Results

The following data set is used to validate the model. a = 300, D ∼ U(0, 400), b1 = 2,
b2 = 0.6, e = 0.2, p1 = 130, r2 = 0.4, r3 = 0.04, t1 = 105, t2 = 96, and ρ1 = 10. The existing
literature on lead-time guarantee, namely, Kuthambalayan et al. [21] and Kuthambalayan
and Bera [23], has motivated the assignment. Using these parameter values, we obtain the
expected profit. Simultaneous equations are obtained through necessary conditions [31]
and solved for critical points. After that, sufficient conditions for optimality are satisfied
at the critical point, with Hessians (see Appendix A) H1 = −0.0085, H2 = −0.0228, and
H3 = 0.00012 for the lead-time and price sensitive customer segment. Similarly, the
sufficient conditions for optimality are satisfied at the critical point, with H1 = −0.0096,
H2 = −0.0226, and H3 = 0.00013 for the lead-time sensitive customer segment. The
expected profit function is concave, and at these parameter values, the optimal values of
decision variables (critical point) are q1

∗ = 302.58, q2
∗ = 57.46, p∗ = 117.9, and T∗ = 30.25,

with E[z] = 79.36 for the lead-time and price sensitive customer segment. In a similar
way, the expected profit function is concave, and at these parameter values, the optimal
values of decision variables (critical point) are q1

∗ = 331.38, q2
∗ = 69.92, and T∗ = 66.26,

with E[z] = 217.995 for the lead-time sensitive customer segment. The software Wolfram
Mathematica was used throughout. We find the closed-formed solution using the Calculus
of Multivariable Optimization theorem [31].

The sensitivity analysis of some key parameters, namely, (1) lead-time sensitivity of the
demand (see Figures 1 and 2), (2) price sensitivity of the demand (see Figure 3), (3) lead-time
sensitivity of price (see Figure 4), (4) per-unit cost of MTO product (see Figures 5 and 6),
(5) per-unit cost of safety stock (see Figures 7 and 8), (6) per-unit per-unit time cost of hold-
ing (see Figures 9 and 10), and (7) production rate (see Figures 11 and 12) are conducted. We
use another software package, General Algebraic Modeling System (GAMS), for sensitivity
analysis. The effect on profit and the decision variables, namely, planning cycle MTO limit,
safety stock level, and price, is recorded.
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Figure 1. Change in (a) profit, (b) q2
∗,(c) T∗, and (d) p∗ with change in b1 for demand as f(T, p) at

[b2 = 0.6, e = 0.4, t1 = 105, t2 = 95, r2 = 0.2, r3 = 0.04, ρ1 = 10].
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Figure 3. Change in (a) profit, (b) q2
∗, (c) T∗, and (d) p∗ with change in b2 for demand as f(T, p) at

[b1 = 4, e = 0.4, t1 = 105, t2 = 95, r2 = 0.2, r3 = 0.04, ρ1 = 12].
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Figure 4. Change in (a) profit, (b) q2
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Figure 5. Change in (a) profit, (b) q2
∗, (c) T∗, and (d) p∗ with change in t1 for demand as f(T, p) at

[b1 = 2, b2 = 0.6, e = 0.2, t2 = 90, r2 = 0.2, r3 = 0.1, ρ1 = 6].
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Figure 7. Change in (a) profit, (b) q2
∗, (c) T∗, and (d) p∗ with change in t2 for demand as f(T, p) at

[b1 = 2, b2 = 0.6, e = 0.2, t1 = 101, r2 = 0.2, r3 = 0.1, ρ1 = 6].
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Figure 9. Change in (a) profit, (b) q2
∗, (c) T∗, and (d) p∗ with change in holding cost for demand as

f(T, p) at [b1 = 2, b2 = 0.6, e = 0.2, t1 = 105, t2 = 95, r2 = 0.2, ρ1 = 5].
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Figure 11. Change in (a) profit, (b) q2
∗, (c) T∗, and (d) p∗ with change in ρ1 for demand as f(T, p) at

[b1 = 4, b2 = 0.6, e = 0.4, t1 = 105, t2 = 96, r2 = 0.4, r3 = 0.04, ρ1 = 10].
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Figure 12. Change in (a) profit, (b) q2

∗, and (c) T∗ with change in ρ1 for demand as f(T) at
[b1 = 2, t1 = 105, t2 = 96, r2 = 0.4, r3 = 0.04, ρ1 = 10].

4. Discussion

From the sensitivity analysis, the following observations are obtained.

4.1. Effect of Holding Cost

When the per-unit time holding cost is fixed at a meagre value, the firm meets demand
using safety stock and guarantees a low lead-time in both the cases D′ = f (T, p) and
D′ = f (T) (Figures 9 and 10). Both figures show that with an increase in the holding
cost, the safety stock level decreases (Figures 9b and 10b), and the MTO production limit
and lead-time increase (Figures 9c and 10c). The increase in lead-time negatively affects
the demand volume and is counteracted by decreasing the selling price of the product
(Figure 6d). Consequently, the firm’s profit decreases with increasing holding costs.

Managers should treat holding costs as a policy variable [32]. Its value should ensure
that the corresponding lead-time guarantee is competitive (i.e., compares well with the
lead-time promised by the firm’s competitor) and meets the customers’ expectations. In
an integrated decision model, this lead-time quote is based on the firm’s operational
constraints (e.g., MTO production rate).

4.2. Effect of Production Costs on Decision Variables

Reducing a product’s cost increases the profit margin and the firm’s profit. It is the
outcome of an improvement in the firm’s Total Productivity without compromising on
quality and service and is a vital concern of an organization. A higher lead-time guarantee
due to sourcing less costly materials from low-cost countries can sometimes be more
profitable [33]. The holding cost value is usually directly proportional to the product’s
cost (t1, t2), and a corresponding reduction in holding cost causes the safety stock level to
increase (Figures 5, 6, 7b and 8b), thereby reducing the lead-time and MTO production limit. A
decrease in MTO production limit implies a decrease in the lead-time (Figures 5, 6, 7c and 8c).
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A lead-time decrease has a positive effect on demand volume, causing the firm’s profit to
increase (Figures 5, 6, 7a and 8a), thereby allowing the firm to quote a higher price when
the price is lead-time sensitive.

4.3. Effect of Market Characteristics on Decision Variables
4.3.1. Effect of b1

When the product demand is dependent on lead-time and price (D′ = f (T, p)), as
the lead-time sensitivity of demand (b1) increases, to compete effectively, the lead-time
decreases (Figure 1c). The decrease in demand volume due to the increase in the lead-
time sensitivity of demand (b1) is thus counteracted to an extent by the lead-time decrease.
Similarly, in the only lead-time market (D′ = f (T)), with an increase in lead-time sensitivity
of demand (b1), the lead-time decreases (Figure 8c). The MTO production limit decreases
with lead-time. However, the safety stock increases (Figures 1b and 2b) and the profit
decreases (Figures 1a and 2a) only when the product demand is dependent solely on
lead-time. Jayaram et al. [34] determined that financial performance is strongly related
to competitive lead-time, based on a study of three car manufacturers in North America.
Tiedemann et al. [35] confirmed this based on multiple case studies.

When the price is dependent on the lead-time, with reduced lead-time, at the higher
value of lead-time sensitivity of the price (e = 0.4), the firm, instead of increasing the safety
stock level (Figure 3b), increases the selling price (Figure 1d) and profit increases (Figure 1a).
The increase in selling price negatively affects the demand volume, thereby controlling the
lead-time decrease and the safety stock increase. Therefore, the study suggests that the
firms that are lead-time competitive can sell the product in markets where the lead-time
sensitivity of the price is high, i.e., the customers are willing to pay more for reduced
lead-time.

4.3.2. Effect of b2

Given that a′ > 0 and b′ > 0, the situation under study is when customers are more
lead-time sensitive than price sensitive. b′ ≤ 0, however, shall imply that the customers
are willing to wait to obtain price benefits, and the demand volume increases or remains
unchanged with the lead-time [14]. With an increase in price sensitivity of demand (b2),
the demand volume decreases, which is counteracted by a lead-time decrease (Figure 3c),
reducing the MTO production limit. Despite the reduced lead-time, the safety stock
decreases (Figure 3b) at a higher value of e (=0.4) and is explained by the price increase
(Figure 3c), reducing the demand volume. The profit obtained also decreases (Figure 3a)
because of decrease in demand at a high value of e (=0.4).

4.3.3. Effect of e

With an increase in lead-time sensitivity of price €, the price quoted decreases and
is counteracted by a lead-time reduction, reducing the planning cycle MTO limit and
increasing the safety stock level. The profit obtained also decreases because of the decrease
in price (Figure 4a). Thus, it is evident that a lead-time reduction offers the possibility
of a price premium besides increasing demand. In a time-based competition, e-retailers
are known to set prices based on lead-time (quicker delivery at a higher charge), and the
lead-time is uniform to all potential customers [6].

4.4. Effect of Production Rate

In the past few decades, many production systems have focused on reducing inven-
tories by adopting just-in-time sourcing (where the firm’s suppliers provide goods based
on end-customer orders) [36]. The firm has spare production capacity or can vary the
production rate to compensate for the low inventory stocks and be lead-time competitive
in the face of variations in system load. The drawback is the increased risk of production
and delivery failure the firm faces when its supply (raw material/semi-finished goods) is
disrupted. The firm’s operational constraints are loosened with an increase in the MTO
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production rate, reducing planning cycle length (Figures 11c and 12c) and lead-time. The
safety stock level (Figures 11b and 12b), product price (Figure 11d), and expected profit
(Figures 11a and 12a) increase.

4.5. Effect of Demand Variation

A change from a = 400, D = U(0, 200) to a = 300, D = U(0, 400) reflects an increase
in demand variance. Demand variability negatively impacts profit per-unit time due to the
increase in aggregate costs (Figure 1a, Figure 2a, Figure 3a, Figure 4a, Figure 5a, Figure 6a,
Figure 7a, Figure 8a, Figure 9a, Figure 10a, Figure 11a, Figure 12a). To counteract this, the
length of the planning cycle length (hence, the lead-time) is increased (Figure 1c, Figure 2c,
Figure 3c, Figure 4c, Figure 5c, Figure 6c, Figure 7c, Figure 8c, Figure 9c, Figure 10c,
Figure 11c, Figure 12c). This step lowers the demand volume and provides additional time
to MTO. The lead-time increase also results in a reduced price quote (Figure 1d, Figure 2d,
Figure 3d, Figure 4d, Figure 5d, Figure 6d, Figure 7d, Figure 8d, Figure 9d, Figure 10d,
Figure 11d). The increase in demand variability leads to an increase in safety stock level
when the holding cost is set low (Figure 1b, Figure 2b, Figure 3b, Figure 4b, Figure 8b,
Figure 9b, Figure 10b, Figure 11b, Figure 12b), but may lead to its reduction, increasing the
preference towards made-to-order, when set high (Figures 5 and 7b). It is not, therefore,
always advisable to increase the safety stock level in response to an increase in demand
variability, as in a pure make-to-stock system. This counterintuitive observation results
from the complex trade-offs in the integrated operations-marketing model.

4.6. Effect of p1

Consumers do not postpone their purchase decision during festive seasons,
e.g., Christmas. They are sensitive to lead-time and willing to pay a price premium
for the delivery on their chosen date, prompting firms to hold higher stocks. A change
from p1 = 125 to p1 = 130 implies a higher selling price for a given lead-time and reflects a
higher opportunity to charge a price premium for a given lead-time decrease. The setting
p1 = 130 thereby resulted in a higher price (Figure 1d, Figure 2d, Figure 3d, Figure 4d,
Figure 5d, Figure 6d, Figure 7d, Figure 8d, Figure 9d, Figure 10d, Figure 11d) and in-
creased profit per-unit time (Figure 1a, Figure 2a, Figure 3a, Figure 4a, Figure 5a, Figure 6a,
Figure 7a, Figure 8a, Figure 9a, Figure 10a, Figure 11a). The resulting reduction in de-
mand volume is countered by quoting a shorter lead-time guarantee (Figure 1c, Figure 2c,
Figure 3c, Figure 4c, Figure 5c, Figure 6c, Figure 7c, Figure 8c, Figure 9c, Figure 10c,
Figure 11c) and increasing the safety stock level (Figure 1b, Figure 2b, Figure 3b, Figure 4b,
Figure 5b, Figure 6b, Figure 7b, Figure 8b, Figure 9b, Figure 10b, Figure 11b) to improve
lead-time competitiveness.

5. Conclusions

In this study, the supply–demand mismatch is reduced through (1) product management
(postponement, e.g., MTO), (2) demand management (using three product attributes- lead-
time guarantee, price, and quality, as levers), (3) information management (to improve
inter-department coordination), and (4) supply management (using secondary supply source
to stock safety stocks). A reliable lead-time promise reduces the customer’s supply risk and is
advertised by the firm to capture demand. Past studies on the lead-time guarantee in an MTO
production system ignore (1) safety stocks and (2) the lead-time-sensitive price.

The problem is modeled as an unconstrained stochastic non-linear programming
problem of two stages, maximizing the expected profit per-unit of time. In Stage 1, before
demand realization, operations decide the level of safety stocks and length of the production
planning cycle, thereby managing supply. Marketing decides the three product attributes,
thereby managing demand. The price is explicitly modeled as a function of the lead-time
guarantee. In Stage 2, demand is realized and is modeled as a linear function of the product
attributes, with a non-negative stochastic error component. The integrated operations-
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marketing model captures the trade-offs between lead-time guarantee, price, and safety
stock. The multivariable optimization technique provides a closed-form solution.

The sensitivity analysis of key problem parameters reveals that lead-time competitive-
ness is adversely affected by a low safety stock level, MTO production rate (i.e., low supply
capability), and product price (i.e., high demand volume). To promise a short lead-time,
an integrated firm aims to increase safety stocks by reducing product costs and setting a
low inventory holding cost. A higher price quote corresponding to a shorter lead-time
in a lead-time sensitive market negatively affects demand volume and reduces the need
to increase the safety stock level. In a price-sensitive market, the firm would reduce the
lead-time rather than the price. Demand variability is countered by guaranteeing a longer
lead-time and increasing the safety stock (The stock level is lowered when the holding
costs are high). The firm sets a higher product price and quotes a shorter lead-time (thereby
increasing the safety stock level) in response to an opportunity to charge a higher price
premium for a given lead-time decrease.

The hierarchical operation-marketing model, which sequentially determines the mar-
keting decisions (price and lead-time guarantee) and operations decisions (safety stock),
shall provide a suboptimal solution [37]. In a hierarchical decision-making approach, the
outcome of the marketing decisions constrains the operations decisions. The problem sub-
optimality resulting from a hierarchical approach increases with the problem size [38]. The
integrated operation-marketing model promotes joint decision-making [39] and produces
better solutions [40].

This study highlights the importance of integrating operations decisions on inventory
and production cycle time, marketing decisions on price, lead-time, and understanding the
trade-offs that lead to improved decisions. Future research could consider the stochastic
production rate and an assembly system with component commonality.
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Appendix A

Proof of Lemma 1: From Equation (1), we get the following:

∂2z
∂q2

1
= 1

cq3
1ρ1

(8e(b1 − eb2)q3
1 + 2eq3

1ρ1 − ((c + a− q2)
2r2t1 + b2 p2

1(2q2 + b2r2t1)

+2(c + a)q2t2 + p1
(
q2

2 − 2(c + a)b2r2t1 − 2q2(c + a + b2(−r2t1 + t2))
)
)ρ2

1) ≤ 0

or 8e(b1 − eb2)q3
1 + 2eq3

1ρ1 − ((c + a− q2)
2r2t1 + b2 p2
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q2
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)
)ρ2

1 ≤ 0
(A1)

∂2z
∂q2

2
= − q1(r3t2−2e)+(p1+r2t1)ρ1

cq1
≤ 0
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H =

∣∣∣∣∣∣
∂2z
∂q2

1

∂2z
∂q2∂q1

∂2z
∂q1∂q2

∂2z
∂q2

2

∣∣∣∣∣∣ ≥ 0; or

1
c2q4

1ρ2
1
(−
(

4e(b1 − eb2)q2
1 + 2eq2

1ρ1 +

(
(−c− a + b2 p1 + q2)(p1 + r2t1)

+(c + a− b2 p1)t2

)
ρ2

1

)2

+ρ1(q1(2e− r3t2)− (p1 + r2t1)ρ1)(8e(b1 − eb2)q3
1 + 2eq3

1ρ1−
((c + a− q2)

2r2t1 + b2 p2
1(2q2 + b2r2t1) + 2(c + a)q2t2+

p1
(
q2

2 − 2(c + a)b2r2t1 − 2q2(c + a + b2(−r2t1 + t2))
)
)ρ2

1)) ≥ 0

Since, under mentioned conditions ∂2z
∂q2

1
≤ 0 (H1 < 0), ∂2z

∂q2
2
≤ 0 (H2 < 0) and 2 × 2

Hessian (H3 > 0) is negative definite for all q1 and q2. Thus, the profit function is concave
under the conditions and the optimal MTO (q∗1) and safety stock (q∗2) production quantities
are determined by solving the simultaneous equation ∂z

∂q1
= 0 and ∂z

∂q2
= 0

Proof of Lemma 2: From Equation (4), we get the following:

∂2z
∂q2

1
= − ((a+c)2r2t1+q2

2(p1+r2t1)−2(a+c)q2(p1+r2t1−t2))ρ1

cq3
1

≤ 0

or (a + c)2r2t1 + q2
2(p1 + r2t1) ≥ 2(a + c)q2(p1 + r2t1 − t2)

∂2z
∂q2

2
= − q1r3t2 + (p1 + r2t1)ρ1

cq1
≤ 0

H =

∣∣∣∣∣∣
∂2z
∂q2

1

∂2z
∂q2∂q1

∂2z
∂q1∂q2

∂2z
∂q2

2

∣∣∣∣∣∣ ≥ 0 or

q1r3

(
(a + c)2r2t1 + q2

2(p1 + r2t1)− 2(a + c)q2(p1 + r2t1 − t2)
)

t2 ≥

(a + c)2
(

r2t1(p1 − 2t2)

+(p1 − t2)
2

)
ρ1

Since, under mentioned conditions ∂2z
∂q2

1
≤ 0 (H1 < 0), ∂2z

∂q2
2
≤ 0 (H2 < 0) and 2 × 2

Hessian (H3 > 0) is negative definite. Thus, the profit equation is concave under the
conditions and the optimal MTO (q∗1) and safety stock (q∗2) production quantities are
determined by solving the simultaneous equation ∂z

∂q1
= 0 and ∂z

∂q2
= 0.
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