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Abstract: We studied the evolution of complex social networks over time. The elements of the
networks are users, and the connections correspond to the interactions between them. At a particular
moment in time, each node of a complex network has such characteristics as its degree, as well as
the total degree of its neighbors. Obviously, in the process of network growth, these characteristics
are constantly changing due to the fact that new edges are attached to this node or its neighbors. In
this paper, we study the dynamics of these characteristics over time for networks generated on the
basis of a nonlinear preferential attachment mechanism, and we find both the asymptotics of their
expected values and the characteristics of their spread around the mean. In addition, we analyze the
behavior of these local characteristics for three real social networks. The applicability of the findings
to actual problems in the study of social media in the digital humanities is discussed.

Keywords: social network analysis; complex networks; digital humanities; nonlinear preferential
attachment; social networks

1. Introduction

Modeling the behavior of social, biological, and technological systems is an important
task. One of the most successful approaches is the representation of a complex system in
the form of numerous homogeneous elements that interact with each other. The resulting
model is a complex network consisting of nodes and links (edges), and it reflects the
interactions among them in a real system.

This paper is devoted to the study of the dynamics for complex networks generated on
the basis of a model with a nonlinear preferential attachment mechanism. We are interested
in the analysis of stochastic processes that arise during the growth of such networks,
namely, ones that describe the dynamics of a node degree and the dynamics of the sum of
the degree of its neighbors. All of these characteristics of a node change over time, since
each newly born node in the network has a chance to join it or its neighbors in each of the
subsequent iterations. These local characteristics are extremely important in the analysis
of social networks. Note that in this paper, we do not limit ourselves to studying only
the expected behavior of these quantities, but we also analyze the asymptotic behavior of
their variances over time in order to better understand the features of their distributions.
Determining the characteristics of complex networks is crucial when solving a number of
practical problems [1–3].

In recent years, many models have emerged to describe the growth of complex net-
works. One of the difficulties in their creation is the need for the networks generated on
their basis to have the features of real networks. These features include the presence of
a power law distribution of node degrees in real networks [4–10]. The Barabási–Albert
model [11], which uses the preferential attachment mechanism, successfully reproduces this
phenomenon. However, some properties of real networks can only be modeled by adding
additional mechanisms to the network generation model [12–22]. Another approach is the
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modification of the preferential attachment mechanism in such a way to allow a nonlinear
dependence of the probability of attaching to a vertex on its degree. This mechanism is
called nonlinear preferential attachment (NPA). In this paper, we restrict ourselves to the
study of networks built on the use of this rule. Note that the analysis of such networks
allows us to shed light on both the properties of real networks that use the NPA mechanism
in their development and on the non-obvious limitations of the NPA model.

As networks built on this mechanism grow, the degree of each node may change
depending on whether a new node joins it or not. Therefore, all local characteristics of
a node are described by some stochastic processes, each subsequent state of which is
determined by the current one. Such processes are called Markov processes. For networks
built according to the classical Barabási–Albert model [11], the behavior of the expected
value, variance, kurtosis, and asymmetry of a node degree over time were studied in [23,24],
in addition to other local characteristics, such as the average degree of neighbors and their
friendship index. In this paper, we extend this analysis to a model that uses the nonlinear
preferential attachment mechanism.

By analyzing the evolution of real social networks over time, we discover the following
unusual phenomenon: For a group of nodes that appeared almost simultaneously (in a
certain short time interval), the ratio of their average degree to the variance of their degrees
is actually a constant at any subsequent point in time. In other words, although the
trajectories for the degrees of nodes that appeared almost simultaneously can differ greatly,
the coefficient of variation of the values of the degrees of nodes in this group practically
does not change in time.

In this regard, the main research question of this paper arises: What mechanisms of
evolution of complex networks can explain this phenomenon that is observed in real net-
works? We consider the Barabási–Albert model and analytically show that the mechanisms
of growth and preferential attachment used by this model are sufficient for the appearance
of this phenomenon in complex networks.

Thus, in this paper, we are interested in the following research questions:

• What are the features of stochastic processes that describe the growth of the degree of
a node and the growth of the sum of degrees of the neighbors of a node for networks
built according to the NPA model?

• What is the asymptotic behavior of the coefficients of variation for the degree of a node
and the summary degree of the neighbors of the node in networks built according to
the NPA model?

• Does the behavior of these local characteristics in simulated networks correspond to
their behavior in real social networks?

We answer these questions in our study by using the mean field method to find the
asymptotic behavior of the quantities [25–27].

Note also that for networks built on the basis of the Barabási–Albert model, the authors
of [28] obtained the limit distribution of node degrees, and they showed that after some
scaling procedures, this stochastic process converged to a Yule process (in distribution).
However, for networks using the nonlinear PA mechanism, finding the degree distributions
of nodes seems to be a too difficult task. Therefore, the estimates of the node degree
variance obtained in this paper shed light on additional characteristics of this distribution.

The aim of the paper is an analysis of the dynamics of node degrees during the growth
of a complex network. In particular, we are interested in how greatly the characteristics of
these trajectories depend on the time of node appearance.

First, we present the empirical analysis of real networks in Section 2. The trajectories
of node degrees over time for a specific node may vary from those of other nodes that
appear in close moments in time. Therefore, we explore the average dynamics of the degree
of a group of nodes that appear in one interval of time. We find the average trajectory and
its variance for all nodes in a group. The results of the analysis of such trajectories in real
social networks show that the average value of the node degrees and their variance are
proportional. This means that their ratio remains almost constant for the whole duration of
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network growth. This phenomenon is inherent in all social networks that are considered.
In this study, we observe real networks, the growth of which can be fully recreated. This
allows us to study the whole trajectory of the growth of the degree of each node over time.

Next, we examine whether this phenomenon exists in randomly growing networks
in Section 4. We choose the Barabási–Albert model with the non-polynomial preferential
attachment mechanism, since many other more complex models are based on this mecha-
nism of attachment or modifications thereof. A brief description of the model can be found
in Section 3.

We use the following method to analyze the degree trajectories of nodes that appear at
some moments in time. First, we simulate network growth many times to obtain trajectories
of nodes (fixed by iterations at which they appear). Then, we average these trajectories and
obtain their variances for each moment in time. These experiments allow us to prove that
the same phenomenon exists for random networks as well.

Our theoretical analysis (Section 4) shows that the coefficient of variation for stochastic
processes that describe the dynamics of degree growth tends to be constant with the
iteration growth.

The same results are obtained for the total degree of all neighbors for a node in the
Barabási–Albert model with the non-polynomial preferential attachment mechanism in
Section 5.

The applicability of the findings to actual problems in the study of social media in the
digital humanities is discussed in Section 6.

2. Empirical Dynamic Networks

In this section, we study the dynamics of local characteristics in real networks. In
order to lower the impacts from individual nodes in the network, we observe the degree
and summary degree dynamics not for one node, but for a group of nodes that appear
sequentially in the network. Each group contains one hundred nodes. At each iteration,
the obtained values of the characteristics are averaged for the group.

2.1. Real Network Overview

We consider three real networks that were taken from online repositories (see Table 1).
These networks reflect user behavior on websites where users ask questions and
receive answers.

Table 1. Dynamic network statistics.

Real Network |N| |E| Other Traits

StackOverflow users and posts [29] 545,200 1,300,000 Bipartite
networks

AskUbuntu reactions [29] 159,000 964,000 -
SuperUser reactions [29] 194,000 1,400,000 -

2.2. StackOverflow Network

The StackOverflow service connects millions of software developers from all over the
world. This network is represented by a bipartite graph, the nodes of which are users and
questions. A user is connected to a question if this user adds the question to bookmarks.
One may do this in order to have quick access to the question.

The average degree dynamics obtained for this network are shown in Figure 1. The
plots of both the average degrees and variances show logarithmic growth. This network is
the first one considered, and both random values follow the logarithmic law. Despite the
network growth, the coefficient of variation, which is described as the ratio of the standard
deviation to the mean, fluctuates around a constant as shown in Figure 2.
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Figure 1. Trajectories of the averaged degrees (top left), variances (top right), and coefficients of vari-
ation (bottom) for three groups of nodes from iterations (21, 121), (401, 501), and (901, 1001) over the
growth of the network based on the data of users adding posts to their favourites on StackOverflow.
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Figure 2. Trajectories of the averaged sum of degrees (top left), variances (top right), and coef-
ficients of variation (bottom) for three groups of nodes from iterations (21, 121), (401, 501), and
(901, 1001) over the growth of the network based on the data of users adding posts to their favourites
on StackOverflow.
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2.3. AskUbuntu Network

AskUbuntu is a popular website for consulting on technological topics related to the
Ubuntu operating system. The network data reflect user interactions on the platform. Two
nodes (u and v) that represent users are connected by an edge with a time stamp t if user u
has either answered or commented on the question or answer of user v at time t.

Plots of the dynamics of the average degree and its variance are presented in Figure 3.
A clear logarithmic growth can be seen in the first iterations of network growth. However,
for the greater part of the network’s existence, the growth remains linear for both the
average degrees in the left plot and the variances in the right plot. The coefficient of
variation, which is described as the ratio of the standard deviation to the mean, remains
constant for the greater part of the network’s growth as can be seen in Figure 4.
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Figure 3. Trajectories of the averaged degrees (top left), variances (top right), and coefficients of
variation (bottom) for three groups of nodes from iterations (21, 121), (401, 501), and (901, 1001) over
the growth of the network based on the data of user interactions inside the question and answer
service of AskUbuntu.

2.4. SuperUser Network

SuperUser is another popular Q&A website for technological topics. As with the
previous network, the data represent user interactions on the platform. Two nodes (u and
v) that represent users are connected by an edge with a time stamp t if:

• User u answers the question of user v at time t;
• User u comments on the question of user v at time t;
• User u comments on the answer of user v at time t;

After network modeling, we acquired the node trajectories, as shown in Figure 5. It
can be clearly seen that these trajectories are very reminiscent of those obtained for the
AskUbuntu network (Figure 3). It should be noted that the group of nodes that appeared
between iterations 400 and 500 differed significantly from the others. The increased values
of the characteristics are explained by the presence of a couple of very large nodes inside
this group. In Figure 6 we see that still, as in the previous empirically growing networks,
the coefficient of variation fluctuated around the constant during the whole process of
network growth.
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Figure 4. Trajectories of the averaged sum of degrees (top left), variances (top right), and coefficients
of variation (bottom) for three groups of nodes from iterations (21, 121), (401, 501), and (901, 1001)
over the growth of the network based on the data of user interactions inside the question and answer
service of AskUbuntu.
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Figure 5. Trajectories of the averaged degrees (top left), variances (top right), and coefficients of
variation (bottom) for three groups of nodes from iterations (21, 121), (401, 501), and (901, 1001) over
the growth of the network based on the data of user interactions inside the question and answer
service of SuperUser.
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Figure 6. Trajectories of the averaged sum of degrees (top left), variances (top right), and coefficients
of variation (bottom) for three groups of nodes from iterations (21, 121), (401, 501), and (901, 1001)
over the growth of the network based on the data of user interactions inside the question and answer
service of SuperUser.

To sum everything up, in real networks, both the degree and its variance grow over
time. Moreover, the coefficient of variation quickly converges to a constant. This phe-
nomenon is observed in many social networks. Since the Barabási–Albert model usually
produces networks with characteristics that are similar to those of real social networks, we
observe this phenomenon in networks produced by the model.

3. Barabási–Albert Model with Nonlinear Preferential Attachment
3.1. Notations and Definitions

We use Gt = {Vt, Et} to denote a network at time t with a set of its nodes
Vt = {v1, . . . , vt} and a set of its links Et. We denote the degree of node vi at time t
as di(t). The fixed integer m ∈ N is a model parameter and denotes a constant number
of attached links at each iteration. The quantity 0 < γ < 1 is another model parameter
that describes the power law exponent of the dependence of the node degree on the link
probability in the NPA rule.

According to the Barabási–Albert model with the NPA mechanism, the network Gt+1
is evolved from a previous state Gt (at moments in time t + 1 = m + 1, m + 2, . . .) as follows:

• At time t = m, Gm = {Vm, Em} is a complete graph with m nodes;
• The network adds one newly born node vt+1, i.e., Vt+1 = Vt ∪ {vt+1};
• m links are added to the network; they connect the newly born node vt+1 with m

already existing nodes; each of these links appears as the result of the application
of NPA rule: We use the discrete random variable ξt+1, which takes the value i
with probability

P(ξt+1 = i) =
dγ

i (t)

∑vj∈Vt dγ
j (t)

.

In the case of ξt+1 = i, we add a link (vt+1, vi) to the network. We make m independent
random experiments.
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Let the random value ξt+1
i be such that it selects the value i if ξt+1 takes i in at least

one of the m experiments at time t + 1.
di(t) denotes the degree of node vi at iteration t. si(t) denotes the sum of all neighbor

degrees of node vi at iteration t. Then, αi(t) := si(t)
di(t)

is the average degree of all neighbors
of node vi at time t.

The time evolution of these characteristics can be represented as non-stationary
Markov processes, i.e., processes for which their random values at time moment t de-
pend only on the network state at the previous moment. Asymptotic estimates of their
expected values and variations at iteration t are found in [24,30,31]:

E(di(t)) = m
(

t
i

) 1
2
, Var(di(t)) = m

(
t
i
−
(

t
i

) 1
2
)

, (1)

E(si(t)) ∼
m2

2

(
t
i

) 1
2
(log t + C), Var(si(t)) ∼

m3

4

(
log2 t

i
− 6 log i log t

)
t
i
, (2)

E(αi(t)) ∼
m
2

log t + a, Var(αi(t)) ∼ const. (3)

The aim of this paper is to investigate the asymptotic behavior of stochastic processes
over time for networks generated by the NPA model. In this paper, we focus on estimating
the first two moments, i.e., the expectations and variances.

3.2. The Evolution of Barabási–Albert Networks with the NPA mechanism

It follows from the description of the iteration step in the Barabási–Albert model with
the NPA mechanism that:

• If ξt+1 = i, then di(t + 1) = di(t) + 1 and si(t + 1) = si(t) + m, since node vi links to
the newly born node vt+1 that has degree m.

• If ξt+1 = j and (vj, vi) ∈ Vt, then the newly born node vt+1 links to one of the
neighbors vj of node vi, and we have di(t + 1) = di(t) and si(t + 1) = si(t) + 1.

Let ξt+1
i and ηt+1

i be auxiliary random variables defined by

ξt+1
i =

{
1, (vt+1, vi) ∈ Vt+1

0, otherwise,

ηt+1
i =

{
1, (vt+1, vj) ∈ Vt+1 and (vj, vi) ∈ Vt,
0, otherwise.

We denote

µ(t, γ) :=
1

mt

t

∑
j=1

dγ
j (t).

Lemma 1. The value of µ(t, γ) satisfies 1
m < µ(t, γ) < 2 and asymptotically follows

µ(t, γ)→ µ(γ) = const, t→ ∞. (4)

Proof. Let us estimate ∑vj∈Vt dγ
j (t) from below and above. First, we should note that

∑vj∈Vt dj(t) = 2mt. Then, we get

lim
γ→0

∑
vj∈Vt

dγ
j (t) = t,

lim
γ→1

∑
vj∈Vt

dγ
j (t) = ∑

vj∈Vt

dj(t) = 2mt.
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Therefore, we have
1
m

< µ(t, γ) < 2.

Since µ(t, γ) is bounded for every fixed 0 < γ < 1 and increases over γ, there exists
limt→∞ µ(t, γ), which we denote by µ(γ) := limt→∞ µ(t, γ) (see Figure 7).

1000 50, 000 1× 105 1.6× 105

2

4

6

8

t

γ = 0.25
γ = 0.5
γ = 0.75

Figure 7. The dynamics of the ratio 1
t ∑vj∈Vt

dγ
j (t) in BA networks with t up to 160,000 iterations.

Networks are generated with m = 5 and γ = 0.25, γ = 0.5, and γ = 0.75.

Then, the expectations of ξt+1
i and ηt+1

i at iteration t + 1—conditional with respect to
the current network state Gt—are equal to

E(ξt+1
i |Gt) =

dγ
i (t)

tµ(t, γ)
, E(ηt+1

i |Gt) =
∑vj : (vi ,vj)∈Et

dγ
j (t)

tµ(t, γ)
. (5)

Lemma 2. The value of ∑vj : (vi ,vj)∈Et
dγ

j (t) is asymptotically equal to sγ
i (t):

∑vj : (vi ,vj)∈Et
dγ

j (t)

sγ
i (t)

→ 1, t→ ∞. (6)

Proof. By the definition of dj(t), we have dj(t)→ ∞ as t→ ∞. There are a neighbor vk of

node vi and an infinite subsequence {tl} such that
dj(tl)

dk(ti)
→ 0 as tl → ∞ for all j such that

(vj, vi) ∈ Vtl and j 6= k. Then, we have

lim
tl→∞

∑vj : (vi ,vj)∈Et
dγ

j (tl)(
∑vj : (vi ,vj)∈Etl

dγ
j (t)

)γ
(tl)

= lim
tl→∞

1 + ∑vj : (vi ,vj)∈Etl , j 6=k

( dj(tl)

dk(tl)

)γ

(
1 + ∑vj : (vi ,vj)∈Etl , j 6=k

( dj(tl)

dk(tl)

))γ = 1.

Since we are interested in the behavior of the network characteristics for sufficiently
large sizes of networks, we will use the asymptotic estimate (6) in our further reasoning.

It follows from Lemma 1 that

E(ξt+1
i |Gt) ∼

dγ
i (t)

tµ(γ)
. (7)

It follows from Lemmas 1 and 2 that

E(ηt+1
i |Gt) ∼

sγ
i (t)

tµ(γ)
. (8)
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4. An Investigation into the Dynamics of the Node Degree: The Evolution of Its
Expectation and Variance over Time
4.1. The Expectation of di(t)

Theorem 1. If 0 < γ < 1, then the expectation of di(t) asymptotically follows

E(di(t)) ∼
(

1− γ

µ(γ)
log
(

c1t
i

)) 1
1−γ

, (9)

where constant c1 is equal to

c1 = exp
(

µ(γ)m1−γ

1− γ

)
. (10)

If γ = 1, then the expectation of di(t) follows

E(di(t)) = m
(

t
i

) 1
2
. (11)

Proof. It follows from the analysis in Section 3.2 that the difference between values of di at
moments t + 1 and t is equal to

di(t + 1)− di(t) = (di(t) + 1)ξt+1 + di(t)(1− ξt+1)− di(t) = ξt+1.

Using Equation (7), we get the difference equation

∆di(t) ∼
dγ

i (t)
µ(γ)t

,

with the corresponding approximate differential equation (with f (t) = di(t))

d f (t)
dt

=
f γ(t)
µ(γ)t

,

from which we get its solution

f (t) = di(t) =
(

1− γ

µ(γ)
log
(

c1t
i

)) 1
1−γ

,

where c1 is a constant. Then, (10) follows from the initial condition f (i) = m.
Equation (11) is well known [11].

Let us now simulate the growth of NPA networks to illustrate the behavior of the
mean value of di(t)): T = 1000 independent simulations of BA networks with the NPA
mechanism were carried out, and each graph had N = 160,000 nodes. Then, we calculated
the means of the empirical values of di(t). We used the value of parameter m = 5 and three
different values of γ. The trajectories are shown in Figure 8.

4.2. The Variance of di(t)

Lemma 3. Let 0 < γ < 1 be a constant. Then, the asymptotic behavior of the expectation of dγ
i (t)

can be described as follows:

E(dγ
i (t)) ∼

(
1− γ

µ(γ)
log

c1t
i

) γ
1−γ

, (12)

where the constant c1 is defined in (10).
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Figure 8. Mean value of the node degree in networks generated by the BA model with nonlinear PA
for the node vi, i = 10, 50, 100, with t going up to 160,000 iterations. Networks were generated for
m = 5 and for the values of γ = 0.25 (a), γ = 0.5 (b), and γ = 0.75 (c).

Proof. We have

∆dγ
i (t + 1) := dγ

i (t + 1)− dγ
i (t) = (di(t) + 1)γξt+1

i + dγ
i (t)(1− ξt+1

i )− dγ
i (t) =(

1 +
1

di(t)

)γ

dγ
i ξt+1

i + dγ
i (t)ξ

t+1
i ∼

(
1 +

γ

di(t)

)
dγ

i ξt+1
i − dγ

i (t)ξ
t+1
i = γdγ−1

i ξt+1
i . (13)

Using Equation (7), we obtain the conditional expectation of ∆d2
i (t) at moment t + 1:

E(∆dγ
i (t)|Gt) =

γd2γ−1
i (t)
µ(γ)t

. (14)

If we denote E(∆dγ
i (t)|Gt) as ∆ f (t) and substitute ∆ f (t) with d f (t)

dt , then Equation (14)
can be approximated by

d f (t)
dt

=
γ f 2− 1

γ (t)
µ(γ)t

,

the solution of which is

f (t) =
(

1− γ

µ(γ)
log

ct
i

) γ
1−γ

,

where c is a constant that can be found using the initial condition f (i) = mγ. Thus, we get
Equation (12).

Lemma 4. If 0 < γ < 1, then the second moment of di(t) follows:

E(d2
i (t)) ∼ c2

(
1− γ

µ(γ)
log t

) 2
1−γ

, (15)
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where c2 = m2
(

1−γ
µ(γ)

log i
) 2

1−γ is a constant.
If γ = 1, then the second moment of di(t) follows:

E(d2
i (t)) = m(m + 1)

t
i
−m

(
t
i

) 1
2
. (16)

Proof. We have

∆d2
i (t + 1) := d2

i (t + 1)− d2
i (t) =

(di(t) + 1)2ξt+1
i + d2

i (t)(1− ξt+1
i )− d2

i (t) = (2di(t) + 1)ξt+1
i . (17)

Using Equation (7), we obtain the conditional expectation of ∆d2
i (t) at moment t + 1:

E(∆d2
i (t)|Gt) =

2dγ+1
i (t)

µ(γ)t
+

dγ
i (t)

µ(γ)t
. (18)

If we denote E(∆d2
i (t)|Gt) as ∆ f (t), substitute ∆ f (t) with d f (t)

dt , and change dγ
i (t)

in the second term with its expectation by using Lemma 3, then Equation (18) can be
represented by its approximate version as follows:

d f (t)
dt

=
2 f

1
2 (γ+1)(t)
µ(γ)t

+
1

µ(γ)t

(
1− γ

µ(γ)
log

c1t
i

) γ
1−γ

,

where c1 is defined in Equation (10).
The solution of the equation is

f (t) ∼ c2

(
1− γ

µ(γ)
log t

) 2
1−γ

−
(

1− γ

µ(γ)
log t

) 1
1−γ

,

where c2 is a constant. Thus, we get (15) if we take into account the initial condition,
d2

i (i) = m2.
Equation (16) is proved in [23].

Theorem 2. If 0 < γ < 1, then the variance of di(t) at moment t asymptotically follows:

Var(di(t)) ∼ (c2 − 1)
(

1− γ

µ(γ)
log t

) 2
1−γ

,

where c2 = m2
(

1−γ
µ(γ)

log i
) 2

1−γ .
If γ = 1, then the variance of di(t) at moment t is

Var(di(t)) = m

(
t
i
−
(

t
i

) 1
2
)

.

Proof. The definition of variance implies

Var(di(t)) = E(d2
i (t))−E2(di(t)). (19)

Then, Theorem follows from Lemma 4 and Theorem 1.
The case of γ = 1 is proved in [23].

Let us now simulate the growth of NPA networks to illustrate the behavior of the
standard deviation of di(t): T = 1000 independent simulations were carried out for BA



Systems 2022, 10, 249 13 of 20

networks with the NPA mechanism, and each graph consisted of N = 160,000 nodes. Then,
we calculated the square root of the means of the empirical values of (di(t)− E(di(t)))2

over 1000 realizations. We used the parameter value of m = 5 and three different values of
γ. The trajectories are shown in Figure 9.

In the case of 0 < γ < 1, the standard deviation of di(t), which is equal to
√

Var(di(t)),
is the same order of magnitude as E(di(t)):√

Var(di(t))
E(di(t))

→
√

c2 − 1 as t→ ∞.

If γ = 1, then the coefficient of variation is equal to√
Var(di(t))
E(di(t))

→
√

m
m + 1

as t→ ∞.

We can conclude that the distribution of di(t) is a high-variance one. The trajectories of
the empirical values of the variation coefficient in the BA networks with the NPA generation
mechanism are shown in Figure 10 for selected nodes of i = 10, 50, 100 as t was iterated
up to 160,000. The network in (a) was modeled with m = 5 and γ = 0.25, that in (b) was
modeled with m = 5 and γ = 0.5, and that in (c) was modeled with m = 5 and γ = 0.75.
The figures clearly show that the expectations and the standard deviations of di(t) are
commensurate and the dynamics of their ratio tend to a constant.
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a
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b

1000 50, 000 1× 105 1.6× 105

20

40

t

v10
v50
v100

c
Figure 9. The dynamics of the standard deviation of node degrees in networks generated by the BA
model with nonlinear PA for the node vi, i = 10, 50, 100, with t going up to 160,000 iterations. The
networks were generated with m = 5 and the values of γ = 0.25 (a), γ = 0.5 (b), and γ = 0.75 (c).
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Figure 10. The dynamics of the empirical values of the variation coefficient of the node degrees in
networks generated by the BA model with nonlinear PA for the node vi, i = 10, 50, 100, with t going
up to 160,000 iterations. The networks were generated with m = 5 and the values of γ = 0.25 (a),
γ = 0.5 (b), and γ = 0.75 (c).

5. The Evolution of si(t): Its Expectation and Variance

In this section, we study the behavior of the random variable si(t), i.e., the sum of the
degrees of the neighbors of node vi at moment t. Here, we find the characterizations of the
stochastic process of si(t) for BA networks with the NPA mechanism.

5.1. Dynamics of the Total Degree of Node Neighbors in BA Networks with the NPA Mechanism

Theorem 3. If 0 < γ < 1, then the expectation of si(t) asymptotically follows:

E(si(t)) ∼
(

1− γ

µ(γ)
log t

) 1
1−γ
(

m
1− γ

log log t + c4

)
, (20)

where c4 > 0 is a constant.
If γ = 1, then the variance of di(t) at moment t is

E(si(t)) ∼
m2

2

(
t
i

) 1
2

log t.

Proof. We estimate the change in the value of si(t) after one iteration t + 1, in which one
newly born vertex is added to the network. The analysis in Section 3.2 gives

∆si(t + 1) = si(t + 1)− si(t) =

(si(t) + m)ξt+1
i + (si(t) + 1)ηt+1

i + si(t)(1− ξt+1
i − ηt+1

i )− si(t) = mξ
(t+1)
i + η

(t+1)
i . (21)

Then, from (7), (8), and Lemma 2, we get the difference equation:
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E(∆si(t)|Gt) ∼ m
dγ

i (t)
µ(γ)t

+
sγ

i (t)
µ(γ)t

, (22)

which corresponds to the differential equation (if we denote E(∆s2
i (t)|Gt) as ∆ f (t) and

substitute ∆ f (t) with d f (t)
dt ):

d f (t)
dt

= m
dγ

i (t)
µ(γ)t

+
f γ(t)
µ(γ)t

. (23)

Using Lemma 3, we get the solution of (23) in the form of

f (t) =
(

1− γ

µ(γ)
log t

) 1
1−γ
(

m
1− γ

log log t + c4

)
, (24)

where c4 is a constant, and we obtain the theorem.
In the case of γ = 1, the expectation of this random variable E(si(t)) was obtained

in [30] (for m = 1) and [24] (for arbitrary m):

E(si(t)) =
m2

2

(
t
i

) 1
2
(

log t +
1
m

log i− 2
m

)
. (25)

To exhibit the results, we carried out T = 1000 independent repetitions; in each of them,
the BA graph was simulated for N = 160,000 iterations with m = 5 and three different
values of γ. Then, the empirical values of E(si(t)) were obtained. The results are pre-
sented in Figure 11, which depicts the trajectories of si(t) averaged over 1000 independent
simulations. The empirical behavior of si(t) followed the prediction of Equation (20).
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Figure 11. Dynamics of the sum of the neighbors’ degrees in BA networks with the NPA generation
mechanism for selected nodes vi, i = 10, 50, 100, as t grows to 25000. The network in (a) was modeled
with m = 3 and γ = 0.25, (b) was simulated with m = 5 and γ = 0.5, and (c) was simulated with
m = 5 and γ = 0.75.
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5.2. The Variance of si(t)

Lemma 5. If 0 < γ < 1, then the second moment of si(t) asymptotically follows:

E(s2
i (t)) ∼

c5m2

(1− γ)2

(
1− γ

µ(γ)
log t

) 2
1−γ

(log log t)2,

where c5 > 1 is a constant.
If γ = 1, then the second moment of si(t) is equal to

E(s2
i (t)) =

t
i

(
m3(m + 1)

4
log2 t−m3 log t + m2

(
(m + 1) log2 i

4
− log i + 1

))
.

Proof. If we take into account the reasoning in Section 3.2, then the difference between the
values of s2

i (t) at iterations t and t + 1 is

∆s2
i (t) := s2

i (t + 1)− s2
i (t) =

ξt+1
i (si(t) + m)2 + ηt+1

i (si(t) + 1)2 + (1− ξt+1
i − ηt+1

i )s2
i (t)− s2

i (t) =

ξt+1
i (2msi(t) + m2) + ηt+1

i (2si(t) + 1). (26)

If we find the conditional expectation at moment t, then we can get

E(∆s2
i (t + 1)|Gt) = E(ξt+1

i |Gt)(2msi(t) + m2) +E(ηt+1
i |Gt)(2si(t) + 1) =

2s1+γ
i

µ(γ)t
+ 2m

dγ
i (t)si(t)
µ(γ)t

+
sγ

i (t)
µ(γ)t

+ m2 dγ
i (t)

µ(γ)t
. (27)

Using the mean field approach, it can be proved that

E(dγ
i (t)si(t)) ∼

c5m
1− γ

(
1− γ

µ(γ)
log t

) 1+γ
1−γ

log log t, (28)

where c5 > 1 is a constant.
By using Equations (20) and (28), passing to the mathematical expectation of both

sides, and making the substitution f = E(s2
i (t)|Gt) for convenience, we get the following

approximate differential equation:

d f
dt
∼ 2 f

1
2 (1+γ)

µ(γ)t
+

2c5m2

µ(γ)(1− γ)t

(
1− γ

µ(γ)
log t

) 1+γ
1−γ

log log t. (29)

Then, f asymptotically follows:

f (t) ∼ c5m2

(1− γ)2

(
1− γ

µ(γ)
log t

) 2
1−γ

(log log t)2,

where c5 > 1 is a constant.
The case of γ = 1 was considered in [23]. Thus, we get the lemma.

Theorem 4. If 0 < γ < 1, then the variance of si(t) asymptotically follows:

Var(si(t)) =
(c5 − 1)m2

(1− γ)2

(
1− γ

µ(γ)
log t

) 2
1−γ

(log log t)2.
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If γ = 1, then the variance of si(t) is

Var(si(t)) =
m3

4

(
log2 t

i
− 6 log i log t

)
t
i
.

Proof. Since Var(si(t)) = E(s2
i (t)) − E2(si(t)), the statement is the consequence of

Theorem 3 and Lemma 5.

To exhibit the results, we carried out T = 1000 independent repetitions; in each of
them, the BA graph was simulated for N = 160,000 iterations with m = 5 and three
different values of γ. Then, the empirical values of

√
mean(si(t)−mean(si(t)))2 were

obtained. The results are presented in Figure 12, which depicts the trajectories of the
standard deviations of si(t) averaged over 1000 independent simulations.
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Figure 12. Trajectories of empirical values for

√
mean(si(t)−mean(si(t)))2 in BA networks with the

NPA mechanism for selected nodes i = 10, 50 as t was iterated up to 160,000. The network in (a) was
modeled with m = 5 and γ = 0.25, that in (b) was modeled with m = 5 and γ = 0.5, and that in (c)
was modeled with m = 5 and γ = 0.75.

In the case of 0 < γ < 1, the standard deviation of si(t), which is equal to
√

Var(si(t)),
tends to infinity with the same rate as E(si(t)):√

Var(si(t))
E(si(t))

→
√

c2 − 1 as t→ ∞.

If γ = 1, then the coefficient of variation tends to a constant as well:√
Var(si(t))
E(si(t))

→ 1√
m

as t→ ∞.

The trajectories of the empirical values of the variation coefficient for si(t) in BA
networks with the NPA generation mechanism are shown in Figure 13 for selected nodes
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i = 10, 50, 100 as t is iterated up to 160,000. The network in (a) was modeled with m = 5
and γ = 0.25, that in (b) was modeled with m = 5 and γ = 0.5, and that in (c) was modeled
with m = 5 and γ = 0.75. The figures clearly show that the expectations and the standard
deviations of si(t) are commensurate and the dynamics of their ratio tend to a constant.
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Figure 13. Trajectories of empirical values for the variation coefficient of si(t) in BA networks with
the NPA mechanism for selected nodes i = 10, 50 as t iterates up to 160,000. The network in (a) was
modeled with m = 5 and γ = 0.25, that in (b) was modeled with m = 5 and γ = 0.5, and that in (c)
was modeled with m = 5 and γ = 0.75.

6. Conclusions and Discussion

In this paper, we investigated the dynamics of some local characteristics in complex
social networks over time. At a particular moment of a network’s evolution, every vertex
can be characterized by its degree, as well as the total degree of its neighbors, among other
attributes. As networks evolve, these qualities are adjusted as new links are attached to
a vertex or its neighbors. We analyzed the evolution of these qualities over time in three
real social networks. This empirical evidence showed that in real networks, the ratio of the
average degree of neighbors to the variance remains at an almost constant value for groups
of nodes that appear in sequential iterations.

Then, we studied the presence of this phenomenon in networks generated on the basis
of the nonlinear preferential attachment mechanism. We proved that the asymptotics of
their expected values and the characteristics of their spread around the mean are of the
same magnitude. Therefore, we found out that the mechanism of preferential attachment
explains the phenomenon that is seen in real networks.

The obtained conclusions are heuristic for the digital humanities—first of all, for its
directions, with a concentration on the mechanisms of popularity of social media content.
The algorithms of the most popular mass social networks are not transparent to researchers,
although the political and marketing agenda of the last decade has increasingly demon-
strated their manageability and controllability. If the principle of distribution of popularity
is justified as a mathematical regularity, it becomes possible to “calibrate” an observed
situation and demarcate situations of “natural” and “controlled” content popularity.
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The second perspective is related to the study of social media agendas, which are
usually considered in analogy with media agendas, where the structuring of the content
of an agenda is usually interpreted as a competition of expected and extraordinary events
and is enhanced by various forms of institutional censorship. These findings are significant
for the understanding of the influence of a node’s activity on the popularity of the content
that it produces.

The third perspective is related to the study of digital historical memory. In memory
studies, the question of if historical knowledge is a background for the media environment,
is present in certain quantities in the agenda in any period, or competes with any other
content for popularity and is updated when the subject matter of the agenda allows
remains unresolved.
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