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Abstract: The electroencephalogram (EEG) can objectively reflect the emotional state of human
beings, and has attracted much attention in the academic circles in recent years. However, due
to its weak, non-stationary, and low signal-to-noise properties, it is inclined to cause noise in the
collected EEG data. In addition, EEG features extracted from different frequency bands and channels
usually exhibit different levels of emotional expression abilities in emotion recognition tasks. In this
paper, we fully consider the characteristics of EEG and propose a new model RSRRW (retargeted
semi-supervised regression with robust weights). The advantages of the new model can be listed as
follows. (1) The probability weight is added to each sample so that it could help effectively search
noisy samples in the dataset, and lower the effect of them at the same time. (2) The distance between
samples from different categories is much wider than before by extending the ε-dragging method
to a semi-supervised paradigm. (3) Automatically discover the EEG emotional activation mode
by adaptively measuring the contribution of sample features through feature weights. In the three
cross-session emotion recognition tasks, the average accuracy of the RSRRW model is 81.51%, which
can be seen in the experimental results on the SEED-IV dataset. In addition, with the support of the
Friedman test and Nemenyi test, the classification of RSRRW model is much more accurate than that
of other models.

Keywords: electroencephalogram (EEG); robustness; semi-supervised classification; emotion recognition;
emotional activation pattern mining

1. Introduction

As a complex psychological state, emotion plays a key role in human cognition,
including rational decision-making, perception, interpersonal communications and human
intelligence [1]. Therefore, emotion recognition has attracted the attention of researchers
from various disciplines. Usually, researchers investigate emotion recognition from the
data sources of language, body movements, speech, and facial expressions. However, these
patterns have certain drawbacks. (1) When subjects deliberately disguise their emotions,
the performance of the method may be significantly affected by the deceptive data collected
from the subjects based on the above data model. (2) The previous mode is impractical
for people with physical disabilities (deafness, aphasia and etc.) Therefore, we need a
more objective mode of emotional recognition. Firstly, considering that emotion is hard to
measure as the result of spontaneousness, thus it can be observed by the accompanying
physiological reactions in the central nervous system and periphery [2,3]. Secondly, EEG
is a signal from the central nervous system, which has several advantages, such as large
amounts of information, simple operation and low-cost [4]. So, together with the rapid
development of non-stationary signal processing and analysis techniques, EEG-based
emotion recognition has become a research hotspot [5].
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In recent years, emotion recognition based on EEG signals has aroused the discus-
sion of researchers. Li et al. [6] summarized preceding research results, including tradi-
tional machine learning works [7], deep learning based works [8], transfer learning based
works [9,10] and ensemble learning based works [11]. Considering that it is weak and
unstable, noise can interfere with the EEG data during the data acquisition process, there-
fore, the quality of different EEG samples may vary accordingly. In addition, due to the
multi-channel and multi-rhythm properties of EEG data, features from different frequency
bands and channels should have different correlations with emotional effects. However,
existing studies either ignore both the issues of sample and the importance of feature or
only consider one of them.

Therefore, we establish the Retargeted Semi-supervised Regression with Robust
Weights model (RSRRW). Firstly, to improve the robustness of the model, we introduce
the probability weight factor, which has clear physical meaning. When the weight is 0, it
means that the corresponding sample is a noise point, otherwise, it is a normal point. If a
certain sample deviates from the entirety too much, the RSRRW model will choose to skip
absolutely over the error as well as its contribution to noise points, thus ensuring that the
model does not skew toward these outliers. In order to maintain the good discriminative
ability of the model, the ε-dragging method is introduced to widen the gap between differ-
ent classes. Additionally, feature weight factor is taken into consideration for the purpose
of exploring the extent to which different dimensions of feature weight contribute to the
emotion recognition task.

Consequently, the main contributions of this work to available data can be summed up.

• A new factor, probability weight, is added to each sample in the model. With the help
of probability weight, the model can differentiate noise in the samples and remove the
negative effects of noise. At the same time, the value of this variable also has a clear
physical meaning.

• Innovatively apply the ε-dragging technique to the semi-supervised paradigm. It
is aimed at estimating the direction matrix by gradually optimizing the label of the
unlabeled samples during the learning process, which effectively increases the margin
between classes.

• Compared with similar models, RSRRW has higher recognition accuracy. With the
help of the feature weight factor, RSRRW can discover EEG activation patterns relating
to the task, and resultantly determine comparatively significant frequency bands and
predominant leads of the EEG under the current task.

Notations. In this paper, the frequency bands of EEG will be denoted by Delta, Theta,
Alpha, Beta, and Gamma. Greek letters, such as η, λ, γ, represent the model parameters
(e.g., α represents the confidence level). Matrices and vectors are respectively identified by
boldface uppercase and lowercase letters, respectively. The `2,1-norm of matrix W ∈ Rd×c

is defined as ‖W‖2,1 = ∑d
i=1

√
∑c

j=1 w2
ij = ∑d

i=1
∥∥wi

∥∥
2. wi is the i-th row of W and wj is the

j-th column of W. The � is a Hadamard product operator of matrices.
The main body of this article is organized as follows. Section 2 briefly reviews the back-

ground about EEG-based emotion recognition and some related techniques. In Section 3, we
introduce the formulation and optimization of the RSRRW model in detail. In Section 4, we
conduct experimental studies to illustrate the performance of RSRRW. Section 5 concludes
the whole paper.

2. Related Work
2.1. EEG-Based Emotion Recognition

A typical EEG-based emotion recognition process includes three stages, data prepro-
cessing, feature extraction and model training.

Since the EEG signals are easily disturbed during acquisition, in order to provide
quality data, preprocessing is necessary in the experiment. EEG data preprocessing usually
includes sampling and artifact removal. In general, the sampling frequency of EEG is
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usually 128∼1024 Hz [12]. The higher the sample rate, the more detail the EEG can
capture in the data, but it also produces more noise. Noises, in other words, the causes
of interference, mainly contain electrooculography, electrocardiogram, electromyography,
vascular waves and so on. Common processing methods include principal components
analysis, independent component analysis, and various filtering algorithms.

Feature extraction occupies an important position in the EEG emotion recognition
task, and the way of feature extraction will directly have a great impact on the performance
of emotion classification. EEG feature extraction methods can be classified into four
categories, namely feature extraction based on time domain, feature extraction based
on frequency domain, feature extraction based on time-frequency domain and feature
extraction based on spatial domain. To be specific, the feature extraction methods based on
time domain include histogram analysis method [13], Hjorth parameter [14], event-related
potential [15] and so on. Time domain-based analysis methods often obtain information
by analyzing the geometric features of EEG signals, and the rate of information loss is
very low. The frequency domain-based method mainly performs feature extraction by
transforming the EEG signal from the time domain to the frequency domain, and dividing
the acquired spectrum into multiple sub-bands. Its general methods include power spectral
density [16], higher-order crossover [17], differential entropy (DE) [18] and higher-order
spectrum [19] and so on. EEG feature extraction based on time-frequency includes short-
time fourier transform [20], wavelet transform [21], wavelet packet transform [22], Hilbert–
Huang transform [23] and more. Feature extraction based on spatial domain is mainly to
explore the correlation features between EEG signals at different locations. The methods
include common spatial patterns [24], sub-band common spatial pattern [25], rational
asymmetry [26], etc. Some review studies summarized the feature extraction methods in
EEG-based emotion recognition [23,27].

As for the model training process, a lot of efforts were made in the past decades.
Roughly, existing models can be categorized into linear and nonlinear models. In recent
studies, deep learning has attracted much attention due to its powerful nonlinear learning
ability. Thammasan et al. utilized the deep belief network (DBN) to classify the EEG
emotions based on the handcrafted features extracted from EEG (fractal dimension, power
spectral density, etc). [28]. Li et al. used the differential entropy features of EEG to
build 2D-images, and used CNN network to complete the task of emotion recognition,
and achieved good results [29]. On account of the previous study, some deep learning
models further unify feature extraction and recognition to form an end-to-end learning
model [30,31]. Although the above deep learning models have achieved relatively good
results in EEG emotion recognition tasks, most of their models stay at the stage of black-box
training modes, the outcomes are poorly interpretable, and the underlying mechanism is
relatively abstract [32]. Furthermore, to improve the interpretability of the model, Peng et al.
proposed a unified framework named GFIL for discovering feature importance in EEG
emotion recognition tasks [33]. In [34], GFIL was extended to a semi-supervised graph
learning framework. Recent advances in EEG-based emotion recognition can be found
in [6].

2.2. Related Techniques
2.2.1. Emotion Models

According to the existing research, affective models can be roughly divided into two
categories, one is the discrete affective state model, and the other is the dimension-space
affective model. In the discrete model, the emotional space covers a limited number of
basic emotions. The six basic emotions are generally recognized as anger, disgust, surprise,
sadness, happiness and fear, based on which other emotions are mostly considered as
their combinations [35,36]. In typical dimensional space models, emotion is considered to
be distributed in two-dimension or three-dimension space, and the attributes of different
dimensions provide evidence for locating positions of emotions. Among these spacial
models, it is common for researchers to employ valence-arousal model (VA) [37] and
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valence-arousal-dominance model (VAD) [38]. In VA, the valence axis is used to measure
the positive-negative degree of emotions while the arousal axis is used for measuring the
intensity of emotions, as exemplified in Figure 1a. Compared with VA, VAD in Figure 1b
adds the dominance axis to measure the degree to which emotions can be controlled.

(a) (b)

Figure 1. Emotion models VA (a) and VAD (b). (a) The VA model consists of the dimensions
named valence and arousal, (b) The VAD model consists of the dimensions named valence, arousal
and dominance.

2.2.2. Rescaled Least Squares Regression

Given a data matrix X = [x1, x2, · · · , xn] ∈ Rd×n where d is the feature dimension, n is
the number of samples. We use Y = [y1, y2, · · · , yn] ∈ Rc×n to denote the binary indicator
matrix. Specifically, if sample xi belongs to the j-th class and yi is the i-th column of Y, then
the j-th element of yi is 1 and all the others of yi are 0. Its mathematical form is

yij =

{
1, xj belongs to the i-th emotion;
0, otherwise.

(1)

Least squares regression is a typical statistical analysis technique, which has high va-
lidity for data analysis. It has been favored in previous researches, and its semi-supervised
general form is as follows

min
W,b,Yu

∥∥∥WTX + b1T − Y
∥∥∥2

2
+ γ‖W‖2

F,

s.t. Yu ≥ 0, YT
u 1 = 1,

(2)

where Yu are unlabeled samples.
In the EEG emotion recognition task, considering that EEG data has the natural

characteristic of multi-channel, the importance of data from different channels can be of
difference from each other in the classification task, however, objective function (2) fail
to meet the requirements of differentiated feature contribution. Thus Chen et al. [39]
constructed the following model,

min
W,b,Θ,Yu

∥∥∥WTΘX + b1T − Y
∥∥∥2

2
+ λ‖W‖2

F,

s.t.Yu ≥ 0, YT
u 1 = 1, Θ = diag(

√
θ), θ ≥ 0, θT1 = 1,

(3)

where Θ is a diagonal matrix, Θjj =
√

θj, θj describes the significance of the j-th feature.
Performing a simple transformation of the objective function (3), we obtain

min
W̃,b,Yu

∥∥∥W̃TX + b1T − Y
∥∥∥2

2
+ λ

∥∥∥W̃
∥∥∥2

2,1
,

s.t.Yu ≥ 0, YT
u 1 = 1,

(4)

where W̃ = ΘW.
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2.2.3. Discriminative Least Squares Regression

The traditional LSR method is usually employed for data fitting. When it is used for
data classification, the regression target yi of sample xi will be represented as a discrete
value (such as +1 for the first category, −1 for the second category) or represented by
one-hot encoding. In classification, data points from different classes are expected to be
farther apart; however, traditional LSR cannot achieve the goal.

Therefore, Xiang et al. proposed the Discriminative Least Squares Regression (DLSR)
method [40]. By introducing the ε-dragging technology, the class label information is
embedded in the LSR framework and then the regression targets from different categories
of samples move to the opposite direction, which can expand the distance between sample
points from different classes. Specifically, for a positive slack variable εij, if yij = 1,
the output will become 1 + εij; if yij = 0, the output will become −εij. This method can be
naturally extended to multi-class classification task. The mathematical form of DLSR is,

min
W,b,M

∥∥∥XTW + 1bT − Y− B�M
∥∥∥2

F
+ λ‖W‖2

F,

s.t. M ≥ 0.
(5)

The matrix B is defined as,

Bij =

{
+1, yij = 1,
−1, yij = 0,

(6)

which is used to determine the target dragging direction. Variable M is the traction matrix
and its elements are iteratively updated in model learning.

In the optimization process, ε-dragging constructs the loss function into two types of
piecewise function, for the purpose of increasing the sample distance between different
categories. Below is an example to explain it. Considering that we have a four-class
classification problem, and the sample label vectors are in one-hot encoding. It is advisable
to set its label of a sample from the first class as [1, 0, 0, 0]T , and set the predicted value
of the model under each category as WTx + b = [ŷ1, ŷ2, ŷ3, ŷ4]

T . For its category (the first
category, #1), if its predicted value ŷ1 > 1, ε will be updated as ŷ1− 1, so that the error of the
sample under the category is 0. For the other categories (the second, third, fourth category,
#2 #3 #4), if its predicted value is ŷj < 0 (j 6= 1), ε will be updated as −ŷi. Accordingly,
it makes the error of this sample under other categories be 0. The detailed mathematical
principle will be explained in the third step of optimization process in Section 3.2.

Table 1 graphically illustrates the purpose of the ε-dragging method. For a four-class
dataset with eight sample points, the regression targets of the models (2) and (5) can be
found respectively in the third and fourth columns in the Table 1.

Table 1. Illustration to the ε-dragging method.

Sample Class LSR Targets DLSR Targets Constraint

x1 1 [1, 0, 0, 0]T [1 + ε11,−ε12,−ε13,−ε14]
T ε11, ε12, ε13, ε14 ≥ 0

x2 1 [1, 0, 0, 0]T [1 + ε21,−ε22,−ε23,−ε24]
T ε21, ε22, ε23, ε24 ≥ 0

x3 2 [0, 1, 0, 0]T [−ε31, 1 + ε32,−ε33,−ε34]
T ε31, ε32, ε33, ε34 ≥ 0

x4 2 [0, 1, 0, 0]T [−ε41, 1 + ε42,−ε43,−ε44]
T ε41, ε42, ε43, ε44 ≥ 0

x5 3 [0, 0, 1, 0]T [−ε51,−ε52, 1 + ε53,−ε54]
T ε51, ε52, ε53, ε54 ≥ 0

x6 3 [0, 0, 1, 0]T [−ε61,−ε62, 1 + ε63,−ε64]
T ε61, ε62, ε63, ε64 ≥ 0

x7 4 [0, 0, 0, 1]T [−ε71,−ε72,−ε73, 1 + ε74]
T ε71, ε72, ε73, ε74 ≥ 0

x8 4 [0, 0, 0, 1]T [−ε81,−ε82,−ε83, 1 + ε84]
T ε81, ε82, ε83, ε84 ≥ 0

3. Method

In this section, we present the model formulation of RSRRW firstly and then its detailed
optimization procedure.



Systems 2022, 10, 236 6 of 23

In EEG-based semi-supervised emotion recognition problem, we use the matrix
X = [x1, x2, · · · , xn] ∈ Rd×n to represent the EEG data. X consists of two subsets, one
is labeled samples Xl ∈ Rd×nl , corresponding to the labels Yl ∈ Rc×nl . The other one is
unlabeled samples Xu ∈ Rd×nu , correspondingly to the labels Yu ∈ Rc×nu . d is the feature
dimension of EEG samples, c is the number of emotion categories, nl is the number of
labeled samples, nu is the number of unlabeled samples and n = nl + nu.

The target of this algorithm is to accurately predict Yu using the given data X = [Xl , Xu]
and Yl .

3.1. Model Formulation

The RSRRW model framework is shown in Figure 2, in which the model part mainly
includes four components, namely sample weight learning, feature weight learning, ε-
dragging process, coefficient matrix learning. The functions of each part are summarized as
follows. (1) Based on sample weight learning, add a probability weight to each sample point
in the data. When the sample is a normal point, its probability weight is 1, otherwise, its
probability weight is 0. (2) Based on feature weight learning, differentiate the contributions
of features. (3) In the ε-dragging process, the regression targets of different categories
are forced to move in opposite directions, expanding the distance between categories.
(4) Coefficient matrix learning, using the least squares method to learn W and b.

Figure 2. The general framework of RSRRW model.

The ε-dragging strategy was proposed in [40], and its mathematical form is shown in

min
W,b,M

∥∥∥VTX + b1T − Y− B�M
∥∥∥2

F
+ λ‖V‖2

F,

s.t.M ≥ 0,
(7)

where V is original coefficient matrix.
Considering that EEG data is a multi-channel time series data, features from different

frequency bands and leads have different contributions to specific tasks, and the objective
function (7) cannot distinguish the importance of different features, which is defective.
Therefore, we introduce the sample feature weight representation matrix Θ to describe the
importance of sample features, and construct the following objective function,

min
W,b,M

∥∥∥VTΘX + b1T − Y− B�M
∥∥∥2

F
+ λ‖V‖2

F,

s.t. M ≥ 0, Θ = diag(
√

θ), θ ≥ 0, θT1 = 1.
(8)
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Considering the weak and unstable characteristics of EEG data, the quality of different
samples varies greatly. In order to improve the robustness of the model to samples, we
introduce the sample probability weight s, so that the model can automatically filter outliers
during the training process. The optimized objective function is

min
n

∑
i=1

si

∥∥∥VTΘxi + b− yi − di �mi

∥∥∥
2
+ λ‖V‖2

F,

s.t. sT1 = k, 0 ≤ si ≤ 1, Θ = diag(
√

θ), θ ≥ 0, θT1 = 1, mi ≥ 0.

(9)

In model (9), s is the sample weight, k is the number of normal points in the sample, di
is the i-th column of B. However, model (9) can only be used in a supervised setting, here
we extend it to a semi-supervised setting,

min
n

∑
i=1

si

∥∥∥VTΘxi + b− yi − (2yi − 1)�mi

∥∥∥
2
+ λ‖V‖2

F,

s.t. sT1 = k, 0 ≤ si ≤ 1, Θ = diag(
√

θ), θ ≥ 0, θT1 = 1,

Y = [Yl ; Yu], Yu ≥ 0, YT
u 1 = 1, mi ≥ 0.

(10)

By setting W = ΘV, we have V = Θ−1W and then the above objective function can
be rewritten as

min
n

∑
i=1

si

∥∥∥WTxi + b− yi − (2yi − 1)�mi

∥∥∥
2
+ λ

∥∥∥Θ−1W
∥∥∥2

F
,

s.t. sT1 = k, 0 ≤ si ≤ 1, Θ = diag(
√

θ), θ ≥ 0, θT1 = 1,

Y = [Yl ; Yu], Yu ≥ 0, Yu1 = 1, mi ≥ 0.

(11)

When s, W, b, M are fixed, because Θ = diag(
√

θ) and θT1 = 1, the second term of
objective function (11) can be rewritten as

min
θ≥0,θT1=1

d

∑
j=1

∥∥wj
∥∥2

2
θj

. (12)

According to the Lagrange multiplier method, we write the Lagrangian function of (12)
about θj and set its derivative to θj to 0, then we can get

θj =

∥∥wj
∥∥

2

∑d
l=1
∥∥wl

∥∥
2

. (13)

With the above solution to θ, objective function (12) is equivalent to

min
θ≥0,θT1=1

‖W‖2
2,1. (14)

Now model (11) can be rewritten as

min
n

∑
i=1

si

∥∥∥WTxi + b− yi − (2yi − 1)�mi

∥∥∥
2
+ λ‖W‖2

2,1,

s.t. sT1 = k, 0 ≤ si ≤ 1, Y = [Yl ; Yu], Yu ≥ 0, Yu1 = 1, mi ≥ 0.

(15)

3.2. Model Optimization

There are five variables in model (15) that need to be optimized, namely W, b, Yu, s,
M. For this problem, we designed a joint iterative optimization algorithm, which divides
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the above problem into four sub-problems to solve them separately and performs multiple
iterations until convergence.

• Update W, b by fixing Yu, s and M.

Performing simple variable substitution on objective function (15), we can get

min
W,b

n

∑
i=1

siµ(ei) + λ‖W‖2
2,1, (16)

where ei =
∥∥WTxi + b− zi

∥∥2
2, zi is the i-th column of Z, Z = Y + (2Y− 11T)�M and µ is

the function of e, µ(e) = e
1
2 .

We introduce an effective algorithm [41] to solve objective function (16). The general
problem is as follows

min
x∈C

∑
i

hi(gi(x)) + f (x). (17)

The form of x and g(x) could be scalar, vector or matrix. Algorithm 1 describes the
detailed procedures. By comparison of (16) and (17), we can find µ(e), ei(W, b), λ‖W‖2

2,1 in
problem (17) as h(x), gi(x), and f (x) in (17), respectively.

Algorithm 1 Solution of (17).

Input: Initialize x ∈ C
Output: The optimal x

1: while not converged do
2: Calculated di = h′i(gi(x));
3: Solve the following minimization problem minx∈C ∑i Tr(dT

i gi(x)) + f (x);
4: end while

Firstly, we need to calculate di. The formulation of di is

di = µ′(ei) =
1

2‖WTxi + b− zi‖2
. (18)

Secondly, we need to solve

min
W,b

n

∑
i=1

sidi

∥∥∥WTxi + b− zi

∥∥∥2

2
+ λ‖W‖2

2,1. (19)

To facilitate subsequent calculations, we rewrite (19) into matrix form

J = Tr
(
(WTX + b1T − Z)Λ(WTX + b1T − Z)T

)
+ λ‖W‖2

2,1, (20)

where Λ = SD, S = diag(s1, s2, · · · , sn), D = diag(d1, d2, · · · , dn). Considering that (19)
is an unconstrained optimization problem, we use gradient descent to solve it. Take the
partial derivative of J with respect to b, we have

∂J
∂b

= 2
(

WTX + b1T − Z
)

Λ1. (21)

Let (21) take 0, we can get the optimization formula of b as

b =
ZΛ1−WTXΛ1

1TΛ1
. (22)
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Replacing b in (20) with the result obtained in (22) and simplifying it, we can get

J = Tr
(
(WTX− Z)K(WTX− Z)T

)
+ λ

d

∑
i=1

√∥∥wj
∥∥+ δ. (23)

where K =
(

I− Λ11T

1TΛ1

)
Λ
(

I− Λ11T

1TΛ1

)T
and K = KT . Similarly, (23) is also an unconstrained

optimization problem, so we take the partial derivative of (23) in terms of W, then we
can get

∂J
∂W

= 2(XKXTW− XKZT + λQW), (24)

where Q ∈ Rd×d is a diagonal matrix whose i-th diagonal elements is

qii =

d
∑

i=1

√∥∥wi
∥∥2

2 + δ√∥∥wi
∥∥2

2 + δ
, (25)

and δ is a fixed minimal constant value. By making the partial derivative value 0, the ex-
pression of W is obtained

W = (XKXT + λQ)−1XKZT . (26)

• Update s by fixing Yu, W, b and M.

The corresponding objective function in terms of variable s is

min
s

n

∑
i=1

siei s.t. s ≥ 0, sT1 = k. (27)

where ei measures the approximation error on sample xi by the `2-norm. It is interesting
that parameter k and the variable s are closely related in model (27). To be specific, the value
of k represents the number of elements of one in s, corresponding to the number of normal
samples involved in model training. By calculating and ranking the loss ei for each sample,
the optimal s can be obtained, in which the weights of the first k samples with the smallest
errors are all set as one and the remaining values are zeros. This regularity is depicted by
the following Theorem 1.

Theorem 1. The optimal s in problem (27) is a binary vector, in which the corresponding weights
of the first k samples with the smallest errors are one and the others are zero.

Proof 1. Suppose there is another weight vector s′ that satisfies

k

∑
j=1

s′j +
n

∑
j=k+1

s′j = k, (28)

s.t.
n

∑
j=1

s′jµ(e
(j)) ≤

n

∑
j=1

s′jµ(e
(j)) . (29)

Firstly, we sort each sample in ascending order of error, i.e.,

µ(e(1)) ≤ µ(e(2)) ≤ · · · ≤ µ(e(j)) ≤ · · · ≤ µ(e(n)). (30)

After a simple split on (29), we get

k

∑
j=1

s′jµ(e
(j)) +

n

∑
j=k+1

s′jµ(e
(j)) ≤

k

∑
j=1

µ(e(j)) . (31)
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By moving the first term to the left of the inequality sign to the right, we have

n

∑
j=k+1

s′jµ(e
(j)) ≤

k

∑
j=1

(1− s′j) µ(e(j)). (32)

According to (30), we can get

n

∑
j=k+1

s′iµ(e
(j)) ≥ (1− s′j)µ(e

(k+1)). (33)

After combining (32) and formula (33), we can get

k

∑
j=1

(1− s′j)µ(e
(k+1)) ≤

k

∑
j=1

(1− s′j)µ(e
(j)). (34)

When inequality signs in (30) are not taken equal at the same time, Equation (34)
obviously does not hold, so the assumption is logically impossible. Therefore, the optimal s
in problem (27) is a binary vector, in which the corresponding weights of the first k samples
with the smallest errors are one and the others are zero.

• Update M by fixing Yu, W, b and s.

From problem (15), the objective function in terms of variable M is

min
M≥0

∥∥∥WTX + b1T − Y− (2Y− 11T)�M
∥∥∥

2

, ‖P− B�M‖2,
(35)

where P , WTX+ b1T −Y and B , 2Y− 11T . It is easily verified that matrix B is similar to
the one defined in [40] in supervised learning. Considering that in the optimization process
of (35), the optimization process of each element is independent of each other, therefore,
for an element in the matrix, we can convert (35) into the following form

min
Mij≥0

(Pij − Bij Ṁij)
2. (36)

Obviously, the solution to the above optimization problem is

Mij = max(
Pij

Bij
, 0). (37)

Then, the solution to (35) is

M = max(P./B, 0). (38)

In the formula (38), we find that the ε-dragging method essentially encourages the
predicted value ŷ to migrate towards 1 + εij or −εij by constructing the loss function as a
two-class piecewise function. Below we will use an example to detail the updating method
during the optimization process. One point to note is that in the algorithm, we have
implemented the ε-dragging method through matrix M and matrix B, and the elements in
M can be regarded as εij. To maintain the consistence of symbols, the element is represented
as Mij.

For the sample xi, we set the emotional label as yi = [1, 0, 0, 0]T . In the model (35),
its predicted value is ŷi = WTxi + b = [ŷ1, ŷ2, ŷ3, ŷ4]

T . In order to distinguish it from b
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in the LSR, we set the i-th column of the direction matrix B to be B = [b̃1, b̃2, · · · , b̃n].
The direction vector of xi is b̃i = [1,−1,−1,−1]T . The error generated by the sample is,

error 2
i =

∥∥∥ŷi − yi − b̃i �mi

∥∥∥2

2
= (ŷ1 − (1 + M1,i))

2 + (ŷ2 + M2,i)
2 + (ŷ3 + M3,i)

2 + (ŷ4 + M4,i)
2.

(39)

Based on (39), the error2
i consists of four items, which can be divided into two cat-

egories. One is the error generated by the predicted value of the category to which the
sample belongs, corresponding to the first item in (39); the other is the error generated
by the predicted value of other categories, corresponding to the second, third, and fourth
items in (39). We can easily conclude the following findings.

There are two steps in the calculation of the error of the category of the sample (that is,
the first item in (39)). Firstly, M1,i can be represented by the following piecewise function,

M1,i =

{
ŷ1 − 1 ŷ1 ≥ 1
0 ŷ1 < 1

(40)

Then the corresponding error is calculated as,

error2
1,i =

{
0 ŷ1 ≥ 1
(ŷ1 − 1)2 ŷ1 < 1

(41)

The formula (41) indicates that when the predicted value ŷ1 of the category to which
the sample belongs is greater than 1, the error generated by ŷ1 is 0. However, in the
traditional LSR, an error will still be generated at this time, and its value is (ŷ1 − 1)2. The ε-
dragging method uses the no-negative slack variable M1,i, offsetting the corresponding
error. Thereby it encourages the predicted value ŷ1 of the category to move in the direction
1 + ε.

Similarly, for the samples of the other categories (i.e., items 2, 3, and 4 in (39)), the anal-
ysis is presented below. The variable Mcj ,i (cj 6= 1) can be represented as

Mcj ,i =

{
0 ŷcj ≥ 0,
−ŷcj ŷcj < 0,

(42)

Secondly, the corresponding error is calculated as,

error2
cj ,i =

{
ŷ2

cj
ŷcj ≥ 0,

0 ŷcj < 0.
(43)

The formula (43) indicates that when the predicted value ŷcj of other categories is less
than 0, the error generated by ŷcj is 0. However, in LSR, an error will still be generated at
this time, and its value is (ŷcj − 1)2. The ε-dragging method uses the no-negative slack
variable Mcj ,i to offset the corresponding error. Thereby it encourages the predicted value
of other category ŷcj to move in the direction −ε.

• Update Yu by fixing s, W, b and M.

Rows in Yu are independent of each other, and then we can optimize Yu in a column-
wise manner. To be specific, for i = l + 1, l + 2, · · · , l + u, the corresponding objective
function in terms of yi is

min
yi≥0,yT

i 1=1

∥∥∥WTxi + b + mi − yi � (1 + 2mi)
∥∥∥

2

, ‖ai − yi‖2,
(44)
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where a , (WTxi + b + mi)./(1 + 2mi). To simplify the derivation, we optimize the
equivalent form of problem (44) as

min
yi≥0,yT

i 1=1

1
2
‖ai − yi‖2

2. (45)

Problem (45) can be solved by the Lagrange multiplier method combined with KKT
condition. The corresponding Lagrangian function is

L =
1
2
‖yi − ai‖2

2 − η(yT
i 1− 1)− βTyi, (46)

where η and β ∈ Rc are the Lagrangian multipliers respectively in scalar and vector forms.
Assume that ỹi is the optimal solution and the associated optimal Lagrangian multipliers
are η̃ and β̃. According to the KKT condition, we have

ỹj ≥ 0,
β̃ j ≥ 0,

ỹj β̃ j = 0,
ỹj − aj − η̃ − β̃ j = 0,

(47)

for each j ∈ {1, 2, · · · , c}. The last expression in (47) can be written in vector form as

y− a− η̃1− β̃ = 0. (48)

Because yT1 = 1, the parameter a in (48) can be written as

η̃ =
1− 1Ta− 1T β̃

c
. (49)

Substituting (49) into (48), we have

ỹ = a− 11T

c
a +

1
c

1− 1T β̃

c
1 + β̃. (50)

Denote β̃ = 1T β̃
c and g = a− 11T

c + 1
c 1, (50) can be rewritten as

ỹ = gj + β̃ j − β̃1. (51)

Therefore we have
ỹj = gj + β̃ j − β̃. (52)

Through (47) and (52), we can get gj + β̃ j − β̃ = (gj − β̃)+, where

( f (·))+ =

{
0 f(·)<0,
f (·) otherwise.

(53)

Therefore, (52) can be written as

ỹj = (gj − β̃)+. (54)
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At this time, if the optimal β̃ can be determined, according to (54), the optimal ỹ can
also be determined. Similar to (54), (52) can be rewritten as β̃ j = ỹj + β̃ − gi such that

β̃ j = (β̃− gi)+. Therefore, β̃ can be calculated as

β̃ =
1
c

c

∑
j=1

(β̃− gj)+. (55)

According to the constraint yT1 = 1 and (54), we can define the following function

f (β) =
c

∑
j=1

(gj − β)− 1, (56)

and the optimal β̃ should satisfy f (β̃) = 0. When (56) equals 0, the optimal β̃ can be
calculated by the Newton method

βk+1 = βk −
f (βk)

f ′(βk)
. (57)

Finally, the optimization procedure to sub-problem (44) is listed in Algorithm 2 and
the procedure to solve problem (15) is summarized in Algorithm 3.

Algorithm 2 The algorithm to solve sub-problem (45).

Input: vector ai ∈ Rc

Output: variable x ∈ Rc

1: Compute g = ai − 11T

c + 1
c 1;

2: Use Newton’s method to obtain the root β̃ of (56);
3: Obtain the optimal solution by (54);

Algorithm 3 The optimization algorithm of RSRRW.

Input: Labeled EEG data Xl ∈ Rd×nl and its corresponding label matrix Yl ∈ Rc×nl ,
unlabeled EEG data Xu ∈ Rd×nu , parameters λ;

Output: The estimated label Yu ∈ Rc×nu .
1: Initialize W randomly. Initialize each element of Yu as 1

c . Initialize each element of M
as 0. Initialize each element of s as 1;

2: while not converged do
3: Update b via (22);
4: Update W via (26);
5: Update s by solve (27);
6: Update M via (38);
7: Update Yu by solving (45) for each i|nl+nu

nl+1 ;
8: end while

3.3. Discussion on RSRRW

In this section, we will discuss the variable s and ε-dragging methods in RSRRW.
In addition, the complexity of the RSRRW model will also be briefly analyzed.

• We know that si|ni=1 reflects the importance level of the i-th sample. Through proof
in Section 3.2, we can know that s is a binary vector. When sample i is a noise point,
the loss caused by it is 0, that is, sample xi will not get involved in the training process.
On the contrary, when the sample xi is a normal point, its weight is 1, meaning that it
contributes to the training. Therefore, with the help of the sample weight s, RSRRW
can automatically find outliers in the data and remove them, thereby preventing the
model from skewing towards outliers. Comparison experiments suggests that RSRRW
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performs better than DLSR. At the same time, through the visualization of s in the
time dimension, we can intuitively observe the time distribution of outliers during the
experiment, which can also provide some references for future experimental design.
We will elaborate on this in Section 4.3 below.

• In [40], the ε-dragging method was applied to supervised learning tasks and B was ob-
tained by calculating the label of the training set samples, so as to obtain the dragging
direction of each sample and achieve the purpose of expanding the distance between
classes. Considering that in the EEG emotion recognition task, there are usually few
labeled data samples, and the distribution of data from different sessions is quite
different. Therefore, it may be hard to obtain ideal results by wholly relying on the
supervised learning paradigm to complete the emotion recognition task. Therefore,
we extend the ε-dragging method to the semi-supervised learning process and esti-
mate the dragging direction of each sample through the unlabeled sample category
probability obtained in the optimization process, realizing semi-supervised ε-dragging
method. Ideally, if Yu can be estimated accurately, then we can get the exact dragging
direction of each sample. In the following experiments, we will intuitively show the
performance of ε-dragging method.

• We analyze the asymptotic time complexity of our model in this section. Firstly,
in the optimization of b, the asymptotic time complexity is O(n2c + ndc + n2c). Sec-
ondly, in the optimization of W, the asymptotic time complexity of (XKXT + λQ)−1 is
O(n2d + d2c + d3), the asymptotic time complexity of XKZT isO(n2d). To calculate K,
considering that it depends on the operation of the diagonal matrix and the unit matrix,
so its time complexity is obviously lower than O(n2d). Then, as for the improvement
of s, its asymptotic time complexity is O(n log n). Finally, in the optimizing process of
M, its asymptotic time complexity is O(dcn). In the optimization process of Yu, since
WTX has been completed in the process of updating M, its asymptotic time complexity
is O(uc), where u is the number of unlabeled samples. In general, n ≈ u > d � c.
Therefore, the overall asymptotic time complexity of the RSRRW algorithm model is
O(n2dt), where t is the number of iterations.

4. Experiments
4.1. Data Sets

The SEED-IV dataset contains EEG signals collected from subjects while they’re watch-
ing movie clips. It selects 72 film clips with highly emotional contents as signals for
emotional induction. A total of 15 healthy right-handed subjects (including 7 males and
8 females) participated in the experiment, and each one needed to take exams in three
different sessions on different days. The four emotional states evoked by the video are
happy, fearful, neutral, and sad. In each session, one affective state corresponds to six trials.
The experimental process of each session is shown in Figure 3. There will be a 5 s start
prompt before each video clip is played, and the subjects will get a 45 s self-assessment
after the playback ends.

Figure 3. Experimental protocol for SEED-IV [42].

The EEG acquisition equipment used during the experiment included the ESI Neu-
roscan system and a 62-electrode cap that conforms to the international 10–20 placement
standard. In the experiments mentioned in this paper, we used differential entropy (DE)
features extracted from five frequency bands, namely Delta (1–3 Hz), Theta (4–7 Hz), Alpha
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(8–13 Hz), Beta (14–30 Hz) and Gamma (31–50 Hz). The sample xi is formed by concatenat-
ing the values of the 62 leads in each of the 5 frequency bands, resulting in a dimension of
310. More details can be found in [42].

4.2. Experimental Settings

During the experiments, we performed the cross-session emotion recognition task
in chronological order. In other words, each subject is supposed to complete three tasks,
including “session 1–session 2”, “session 1–session 3”, “session 2–session 3”. In the “session
1–session 2” task, the samples in session 1 are labeled data, and the samples in session 2
are unlabeled data. During the model training process, the samples from session 2 will be
gradually labeled.

We compare the RSRRW algorithm with five closely related models, including the
traditional semi-supervised linear square regression model (sLSR), semi-supervised support
vector machine model (sSVM), the optimized rescaled linear square regression model
(RLSR) [39], discriminative linear square regression model (DLSR) [40], and robust semi-
supervised least squares regression model (RSLSR) [43]. RLSR is an optimization of sLSR,
which adds a feature weight factor to describe feature importance on the basis of sLSR.
DLSR is another optimization of sLSR. On the basis of LSR, it adds the ε-dragging method
to increase the distance between categories. In sSVM, we use a linear kernel. RSLSR
adds sample weights on the basis of sLSR, which can filter out outliers in samples. In the
above five methods, there are hyperparameters that need to be adjusted (λ in sLSR, sSVM,
RLSR, DLSR, RSLSR, RSRRW; k in RSRRW, RLSR). In this experiment, the adjustment
range of λ is {2−10, 2−9, · · · , 210}. For the RSSLS and RSRRW, the adjustment range of
k is {b0.8ac, b0.81ac, · · · , a }, where a is the number of samples. The iteration stopping
condition is that the number of iterations reaches 100 or the rate of change of the objective

function objδ = obj(t+1)−obj(t)

obj(t)
is less than or equal to 1 × 10−5. The typical number of

iterations of RSRRW is around 70.

4.3. Results and Analysis

Tables 2–4 shows the recognition accuracy of the above models in the cross-session
EEG emotional states recognition tasks. Among them, Table 2 shows the experimental
results with session 1 serving as labeled data and session 2 as unlabeled data. Table 3 shows
the experimental results with the labeled data in session 1 and the unlabeled data in session
3. Table 4 shows the experimental results with session 2 as labeled data and session 3 as
unlabeled data. The highest accuracy in each group is marked in bold.

Table 2. Cross-session emotion recognition results (%) of session 1–session 2.

Subject sLSR sSVM RLSR DLSR RSLSR RSRRW

subject 1 60.22 72.72 75.60 62.50 77.04 76.20
subject 2 79.21 82.45 83.53 76.44 83.53 86.78
subject 3 65.26 71.39 77.88 79.21 77.88 78.00
subject 4 68.39 55.29 68.51 72.24 68.51 80.65
subject 5 61.78 72.60 54.33 66.83 56.85 73.44
subject 6 56.97 64.66 53.25 57.93 58.29 75.36
subject 7 73.80 70.19 80.89 79.33 82.33 89.90
subject 8 75.36 67.55 74.76 68.99 74.76 88.70
subject 9 60.82 68.63 62.38 63.70 70.55 70.91
subject 10 45.55 52.76 47.00 54.33 59.74 66.83
subject 11 54.33 54.69 59.74 52.40 61.30 68.15
subject 12 69.23 56.01 56.49 63.58 62.14 75.00
subject 13 63.10 62.38 58.77 71.15 60.58 73.80
subject 14 84.01 87.62 85.22 78.85 85.22 90.26
subject 15 72.60 92.79 98.56 97.36 98.56 98.56

Avg. 66.04 68.78 69.13 69.66 71.82 79.50
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Table 3. Cross-session emotion recognition results (%) of session 1–session 3.

Subject sLSR sSVM RLSR DLSR RSLSR RSRRW

subject 1 73.84 81.02 80.78 81.63 83.09 92.58
subject 2 80.29 86.86 91.00 86.13 92.21 92.34
subject 3 41.12 53.65 57.06 37.47 61.68 63.38
subject 4 81.39 60.58 80.29 92.94 80.29 74.21
subject 5 68.86 79.93 72.51 82.60 74.33 82.73
subject 6 74.70 74.45 77.13 82.48 79.93 83.45
subject 7 61.31 84.91 80.66 82.12 87.23 92.34
subject 8 86.25 54.87 83.21 84.55 84.91 92.46
subject 9 65.33 54.87 53.77 57.91 63.75 66.79
subject 10 45.01 60.83 41.85 39.90 64.48 66.55
subject 11 61.19 54.74 71.65 63.38 73.72 80.54
subject 12 55.60 58.39 67.64 61.92 70.92 76.28
subject 13 47.57 52.31 60.95 55.47 63.99 71.41
subject 14 70.92 71.05 79.44 67.76 90.88 87.23
subject 15 72.87 80.54 93.07 85.04 95.01 96.47

Avg. 65.75 67.27 72.73 70.75 77.76 81.25

Table 4. Cross-session emotion recognition results (%) of session 2–session 3.

Subject sLSR sSVM RLSR DLSR RSLSR RSRRW

subject 1 56.20 70.92 71.41 71.90 70.92 82.24
subject 2 80.29 77.37 86.73 85.89 86.01 91.50
subject 3 59.85 65.09 70.81 69.83 71.78 78.59
subject 4 83.09 72.14 77.65 77.74 76.76 87.71
subject 5 73.84 69.49 71.90 77.37 78.95 82.70
subject 6 88.32 65.69 87.43 79.56 87.10 91.73
subject 7 82.60 87.83 88.59 83.45 88.93 93.80
subject 8 77.98 75.30 77.11 70.32 81.39 85.85
subject 9 50.24 51.19 49.78 42.09 59.85 69.95
subject 10 66.91 60.34 73.27 65.94 72.87 76.28
subject 11 47.93 61.68 49.36 52.55 52.31 60.71
subject 12 80.41 66.79 72.74 85.28 79.56 81.27
subject 13 54.50 56.33 53.01 46.47 67.03 79.44
subject 14 91.48 94.89 90.69 91.00 94.04 95.86
subject 15 88.08 78.71 92.88 90.39 94.89 98.91

Avg. 72.12 70.25 74.22 72.65 77.49 83.77

Through the observation of the above data, we found the following meaningful points.

• Although the EEG data from different sessions have significant differences in dis-
tribution, our RSRRW model still achieves high recognition accuracy. Specifically,
the average accuracies of RSRRW in the three cross-session tasks are 79.50%, 81.25%,
and 83.77%, respectively, which are 7.68%, 3.49%, and 6.28% higher than the runner-up.

• Compared with sLSR, the RSLSR model adds the sample weight factor s. From the
average performance of the model, in the three cross session tasks, RSLSR is 5.78%,
12.01%, and 5.37% higher than sLSR, which shows that the method of dynamically
screening samples by using the sample probability weight s has a good effect. That is,
when the sample error is too large, we can discard these samples to ensure that the
model will not shift to noise.

• Compared with sLSR, the RLSR model adds the feature weight factor Θ. From the
average performance of the model, RLSR is 3.09%, 6.98%, and 2.10% higher than
sLSR, respectively, indicating that the model performance has been improved to a
certain extent through adaptive feature weight learning. That is, for the EEG emotion
recognition task, the EEG contribution of different frequency bands and different leads
will be different.
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• Compared with sLSR, the DLSR model adds ε-dragging method. From the average
performance of the model, DLSR is 3.62%, 5.00%, and 0.53% higher than sLSR, re-
spectively. It can be found that the ε-dragging method can effectively improve the
model performance.

In order to illustrate the performance advantages of the RSRRW model compared to
other models as far as possible, we use Friedman test [44] and Nemenyi test method [45] for
significance testing. Firstly, we put forward the null hypothesis H0 that “the experimental
results of each group come from the population with no significant difference in numerical
value”. Obviously, the alternative hypothesis H1 is “the experimental results of each
group come from the population with obvious differences in numerical value”. Secondly,
determine the number of models k = 6, and the groups of cross-subject EEG emotion
state recognition tasks N = 45. Thirdly, we rank the accuracy under each cross session
emotional state recognition task (the higher the recognition accuracy, the higher the ranking).
After sorting, the average rank ri of each model is calculated separately, and the result is
shown in Table 5.

Table 5. The average rank of each model.

Model RSRRW RSLSR RLSR DLSR sLSR sSVM

r 1.22 2.77 3.96 3.98 4.60 4.48
r: Average rank.

Fourthly, we calculate the variable

τF =
(N − 1)τX 2

N(K− 1)− τX 2
, (58)

where

τX 2 =
12N

K(K + 1)

(
K

∑
i=1

r2
i −

K(K + 1)2

4

)
. (59)

In this experiment, considering that the number of models k = 6 and the number of
datasets N = 45 are relatively large, it can be considered that τX 2 ∼ X 2(k− 1). Calculated
by MATLAB, τF = 39.9503, which is much larger than the critical value 2.2551 of the F
test when k = 6, n = 45. Therefore, it can be accepted that in the case of confidence level
α = 0.05, reject the null hypothesis H0 and accept the alternative hypothesis H1 (that is,
the probability of error in the judgment of rejecting the null hypothesis is 5%).

Based on this, in order to further distinguish the performance of each model, we
performed post hoc test detection based on the Nemenyi test on the above experimental
results. First, we calculate the critical distance (CD) of average ranking difference under
this set of data through

CD = qα

√
K(K + 1)

6N
, (60)

where qα represents the critical value in the Nemenyi test. In the case of k = 6, α = 0.05,
the critical value is qα = 2.850. By calculation, CD = 1.1241. According to the above
experimental results, we have drawn Figure 4. In the figure, we use a vertical line to
represent the critical region, and the midpoint of the line is the average rank of the model.
If two lines do not overlap, then we can draw into the conclusion that these two model differ
from each other significantly, otherwise, the former bears some resemblance to the latter.
For example, the rank value of RSRRW is 1.22, and the rank value of RSLSR is 2.77. Their
corresponding vertical lines do not overlap, so there is a significant difference between the
two at the confidence level of 0.05. Therefore, RSSRW significantly outperforms RSLSR in
the cross-session emotion recognition task.
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Figure 4. Nemenyi test result.

4.4. EEG Spatial-Frequency Activation Patterns Mining

For the feature weight Θ obtained in our experiment, we can determine the contribu-
tion of each frequency band and lead in emotion recognition according to the corresponding
relationship between spectral features and EEG frequency bands and channels [33]. The av-
erage band importance for all 45 experiments is shown in Figure 5a, from which we can
find that the Gamma band contributes the most in distinguishing different emotional states.
Based on the consensus that brain regions may correlate differently with the occurrence
of affective effects, we can also determine the importance of different EEG channels by
feature weights Θ. As shown in Figure 5b, we show channel importance on the EEG
topography and find that channels in the temporal and parietal lobes have higher impor-
tance. In Figure 6, we show the weight values of the top 10 channels. We believe that
P7, CP2, TP8, CZ, FC5, TP7, F8, T7, FPZ and P8 have high importance for the cross
session emotion recognition task. The layout of the 10 key leads is shown in Figure 7.

(a) Importance of bands (b) Importance of channels

Figure 5. The average importance of EEG channels (a) and frequency bands (b) obtained by RSRRW.
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Figure 6. Top 10 EEG channels.

Figure 7. Top 10 EEG channels.

4.5. Effect of the Dragging-Matrix

For samples from different categories, we want to embed the labels of the samples into
the objective function to achieve the purpose of increasing the distance between categories.
Therefore, we introduce the ε-dragging method to drag the regression targets from different
classes in opposite directions by matrix M and B. The dragging-matrix M can significantly
expand the distance between categories, and each column can be regarded as a binary
regressor. For samples grouped into class j, their corresponding labels become 1 + mij,
and for samples that do not belong to class j, their labels become −mij, where mij ≥ 0.

To observe the performance of the ε-dragging method, we selected data from subject
15: session 1–session 2, subject 5: session 2–session 3 to plot the Y value of unlabeled
samples. In Figure 8, we plotted certain columns of predicted labels Y for the above
experiments. Then, modify the order of the samples, put the samples belonging to the
same category together, so as to observe the distance between samples under each emotion
category. Each color represents an affective state, with dashed lines for negative samples
and solid lines for positive samples. It can be found that this method can significantly
increase the distance between samples.
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(a) neutral state vs. the others (b) sad state vs. the others

(c) fear state vs. the others (d) happy state vs. the others

Figure 8. Examples to show the effectiveness of the ε-dragging.

4.6. Effect of the Sample Probability Weight

In the RSRRW algorithm, we add the weight factor s to the objective function. Dur-
ing the learning process, all samples are sorted according to the error after training. The k
samples with the smallest error are marked as 1, and the others are 0. Through the above
process, outliers will be automatically located and eliminated, avoiding the loss of accuracy
caused by the deviation of the model from these values.

Below, we have selected EEG data from subject 1: session 3, subject 9: session 2,
and subject 10: session 2 to plot the distribution of noisy samples. In Figure 9, the back-
ground color represents the real emotion category, the horizontal axis represents time,
and the vertical axis represents the s values of different samples. Due to the large number
of actual samples, so we merely focus on the position of noisy samples. Each point in this
figure does not exactly correspond to one sample in reality. The blue points indicate that
the sample is normal, and the red points represent abnormal samples.

(a) subject 1: session 3

Figure 9. Cont.
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(b) subject 9: session 2

(c) subject 10: session 2

Figure 9. Visualization of sample weights s.

In the experimental paradigm of SEED-IV, each subject only had 45 s to evaluate and
rest between trials. We believe that such short time cannot make some subjects completely
recover from the previous emotional state. Therefore, in the follow-up EEG emotion experi-
ment, the rest time of the subjects after each video clip should be appropriately extended to
ensure that the subjects can get enough rest before the next experiment. Alongside this, it
can also improve the quality of samples to a certain extent and ensure that the samples and
labels have better consistence.

5. Conclusions

In this paper, we propose a model of Retargeted Semi-supervised Regression with
Robust Weights Self-learning (RSRRW). We will summarize this paper from two aspects:
Advantages and Results.

Advantages: (1) Compared with the DLSR method, the robustness of the model is
fully considered, and binary weights are added to each sample to determine whether the
sample is a noise point, which can ensure the performance of the model when some labels
are inaccurate. Compared with the traditional LSR method, RSRRW introduces feature
weights Θ to distinguish the weights of different features in the EEG emotion recognition
task, thus obtaining the emotional activation mode. (2) Compared with the traditional
LSR method, RSRRW introduces feature weight variable Θ to distinguish the weights
of different features in the EEG emotion recognition task, thus obtaining the emotional
activation mode. (3) RSRRW implements the ε-dragging method under the semi-supervised
learning paradigm to expand the sample distance between different categories and improve
the model performance. (4) The model has achieved good experimental results on the SEED-
IV emotion recognition dataset, the average accuracies of RSRRW in the three cross-session
tasks are 79.50%, 81.25%, and 83.77%, respectively, which are 7.68%, 3.49%, and 6.28%
higher than the runner-up.

Results: (1) The RSRRW model greatly improves the accuracy of emotion recognition.
(2) It is much more important to consider Gamma and Delta EEG frequency bands and
the EEG channels locating within the temporal and (central) parietal lobes in emotion
recognition tasks.
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