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Abstract: Making the correct maintenance strategy decision for industrial multistage machines
(MSTM) is a constant challenge for industrial manufacturers. Preventive maintenance strategies
are the most popular and provide interesting results but cannot prevent unexpected failures and
consequences, such as time lost production (TLP). In these cases, a predictive maintenance strategy
should be used to maintain the appropriate level of operation time. This research aims to present a
model to identify the component that failed before its mean time to failure (MTTF) and, depending on
whether the cause of the failure is known, propose the use of a predictive maintenance strategy and
further decision-making to ensure the highest possible value from operating time. Also, it is necessary
to check the reliable value of MTTF before taking certain decisions. For this research, a real case
study of a MSTM was characterized component by component, setting the individual maintenance
times. The initial maintenance strategy used for all the components is the preventive programming
maintenance (PPM). If a component presents an unexpected failure, a method is proposed to decide
whether the maintenance strategy should be changed, adding a predictive maintenance strategy to
monitor said component. The research also provides a trust level to evaluate the reliable value of
MTTF of each component. The authors consider this approach very useful for machine manufacturers
and end users.

Keywords: predictive maintenance; multistage machine; sensorisation; decision-making; mean time
to failure; algorithm; system

1. Introduction

Multistage machines (MSTM) are quite common in the manufacturing processes
industry. These machines are more complex than single-stage machines. The diversity of
components and coordinated steps or successive transformations they perform entails the
need to establish an adequate maintenance strategy for each component.

It is very important to bear in mind that a failure in one of the components of a
multistage industrial machine can lead to a failure in the whole machine. Due to this
condition, the best maintenance policy must combine the most suitable strategies for each
component. Different components of the same multistage machine may well have different
maintenance strategies depending on their maintenance parameters that affect their mean
time to repair (MTTR). Once the component has been repaired or substituted, the machine
must return to its normal work rhythm and needs time to restart the line (TTLR).

The success in the use of these machines is to meet high demands without unexpected
failures that involve the loss of production in progress and a high operation recovery time.
Due to this, it is very important that the components of the machine are reliable. If these
components have an individual MTTF, this time must be reliable to establish maintenance
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policies that allow for optimizing the stop-operation time; it is necessary to have the
right components, and reliable MTTF. Also it is very important that the main devices and
location components used in the MSTM are correct, in order to eliminate avoidable failures.
If the MTTF is reliable, it is therefore possible to program the preventive maintenance,
so it is necessary to establish the adequate time to maintenance that does not affect the
scheduled production.

Preventive maintenance is the most popular strategy in industrial manufacturing
systems. Therefore, there must be an adequate level of stocks of components based on
a mathematical model proposed in the decision-making strategy. The optimal decision
process for setting time to production and time to maintenance programming is studied by
A. Gharbi [1], namely, how to develop a mathematical model based on the cost for optimal
decision making. A. Gharbi’s [2] research also found the most appropriate production rate
and preventive maintenance schedule that minimizes the total cost of maintenance and
inventory/backlog in periodic preventive maintenance.

As already known, for established scheduled preventive times, is important to define
what to do in these times. MTTR considers time to provisioning, time to replacement or
removal of component, time to configuration or setting and time to mechanical adjustments.
H. Jun-Hee [3] proposed in his research that periodic machine maintenance for single
machines and flow-shop scheduling models should be based on an algorithm, minimizing
the total weighted completion time. His work defines two principal maintenance actions,
setup operations and removal operations, in a production system based on a sequence
of single-stage machines. If a removal or setting time is required, a lateness time must
be considered. As an in-line process needs to be functioning with stage coordination, is
very important to measure the operation times and make the maintenance decisions. If
the functioning of the MSTM requires setting maintenance operations during the times of
normal operations, this can affect the cycle operation time of the whole machine, and some
lateness times must be studied before the maintenance of the machine begins. Other studies
have proposed how to realize the appropriate preventive maintenance with imperfect
actions, while continuing the normal operation condition, as J. Zuhua [4] showed how
to create function blocs in a Programming Logic Controller (PLC) with a previous data
acquisition system.

But the important question for preventive maintenance is how to accomplish it, and
what might be the appropriate procedure, depending on the system’s definition and its
complexity. Hernández, D.R. [5] modeled a discrete-time infinite horizon Markov Decision
Problem, and F. Chiacchio [6] a stochastic-hybrid reliability model. Other studies, such
as M. Fujishima [7], have calculated the optimal time to start preventive maintenance
before an unexpected failure. A recent study by A. Irfan [8] modelled a series-parallel
system, proposing a reliability model using a Lagrangian optimization method to guarantee
MTTF values and avoid unexpected failures. Also, when an unexpected failure occurs,
some essential information should be known. For example, the cause of the failure is
important, whether the cause stems from a poor design of the machine or an incorrect
location of the component, or whether the cause can be eliminated altogether to restore the
machine’s functioning with a higher level of availability and security. Also, it is important
to determine whether the cause is a normal or an occasional (infrequent) situation.

All the components of a machine are always subject, at least, to the laws of degradation.
Therefore, even working in its ideal operating conditions, the component will end up
failing. In this sense, it would be appropriate to be able to calculate the reliability, as in D.M.
Frangopol [9], of the component in the whole machine. However, this study is very complex
and normally the manufacturer of the components only defines normal working conditions
and sometimes the operating time. Therefore, it is necessary to study models that evaluate
whether the component is suitable for the machine and if it is, whether it is so in the
normal operation of the machine. G. Silva [10] proposes a model to decide on the most
suitable maintenance strategy for the obsolescence of electronic components by creating
a decision-making tool, and analyzing the risks, the obsolescence of the components and
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the consequences of a failure. Recent research by Garcia, F.J.Á. and Salgado, D.R. [11] has
proposed a matrix to decide the optimal preventive maintenance strategy based on the
individual maintenance times of all the components, their approximate location (global
operation condition (GOC)) in the machine, and two key performance indicators (KPIs).
The results of both papers describe situations where the component may have different
maintenance strategies. If a component fails multiple times, a failure mode and effect
analysis (FMEA) can be the solution for finding a design error in the machine, in the
component, or an inadequate component selection for the normal operation condition
required by the machine. In this way, T. Yuk-Ming [12] has highlighted the importance of
product design in the future reliability of the components that must work within certain
operating conditions. Product design and functional performance have been shown to be
the main research foci in this area.

Predictive maintenance strategies have been shown to be able to avoid unexpected
failures by monitoring the operation of the machine using sensors (P. Ponce [13]) and
machine learning algorithms to know the normal behavior of the components or of the
machine. Dolatabadi, S.H. [14] has provided an overview of past articles highlighting the
major expectations, requirements, and challenges for small and medium-sized enterprises
(SMEs) regarding the implementation of predictive maintenance (PdM). Normally, the PdM
based on algorithms have several steps: data acquisition, data manipulation, configuration,
aggregation, and prediction model (the condition monitoring sub-model); and maintenance
decision-making, scheduling, and status (the maintenance sub-model). Sometimes, the
main algorithm or calculating process is embedded in a PLC, as discussed in Cavalieri,
S. [15] and Bouabdallaoui, Y.S. [16].

The study by Garcia, F.J.Á. and Salgado, D.R. [17] described a way to present the
available strategies for multistage industrial machines. Their paper describes preventive
strategies (with or without stock) and developed predictive strategies like digital behavior
twin (DBT), composed of an algorithm with no need to learn normal behavior. S. Giv-
nan [18] studied the normal behavior of the components of an industrial machine for
early failure detection by using a machine learning model based on feed-forward neuronal
networks trained to identify normal and abnormal behavior. One of the best advantages of
the algorithms and the machine learning models is the time necessary to train the model
to identify the normal behavior of the machine. Industries need, to the degree possible,
simple, fast and reliable systems to take decisions about the availability of their machines
in order to avoid unexpected failures. M.M.L. Pfaff [19] developed and tested an adaptive
algorithm in a real environment. This algorithm created a dynamic limit value using an
adaptive characteristic value segmentation. The paper also studied the location of the
sensors for predictive maintenance and confirmed that location can significantly affect the
measurement result and, thus, has a direct impact on the outcome of the data analysis.
One of the advantages of this research is that there is no need to train the algorithm; the
application does not require in-depth process knowledge.

As the technical decisions to take maintenance actions can be provided by the analy-
sis of technical data, normal behavior trained, or not trained, by the adopted predictive
algorithm, some authors have mixed the machine learning study with the cost of the
maintenance to take global predictive maintenance decisions, as in E. Florian [20] and
S.Arena [21], by using, in this case, the Decision Tree technique (DTs) process of implement-
ing predictive maintenance (PdM) and also detecting potential failures (identified through
FMEA analysis) and evaluating direct and indirect maintenance costs. It is very important
to evaluate a FMEA analysis where a possible failure design of the machine can be the
reason of repeated failures.

The digital twin (DT) concept, based on cyber physical systems (CBS) (C. Stary [22]),
is a good way to study predictive maintenance and the behavior of the machine if it works
under different operating conditions. J. O’Sullivan [23] studied the adoption of digital
twins by the maintenance engineering industry to aid in predicting problems before they
occur. The algorithm used provided three alarm levels to identify action before a failure.



Systems 2022, 10, 175 4 of 20

But not all MSTM can be modelled with a digital twin, due to the fact that these machines
normally are highly customized and adapted to the needs of each end user, and therefore
since they are not mass-produced, they would require the development of their specific
digital twin.

New models embedded in industry 4.0 and created to control corrective maintenance
actions are based on a system built on the augmented reality (AR) or computer vision (CV).
These systems are used when the machine must be maintained with non-expert operators,
and the support of the system can drive the maintenance action with the most success, and
in the optimal time. As it can understand the machine, this supporting system minimizes
the MTTR and lets the availability of the machine remain in the highest degree possible.
Similarly, the work of Konstantinidis, F.K. [24] and Z. Haihua [25] also attempts to solve
unexpected failures that are not stored in the maintenance-experience database.

Little of the literature focuses on the simultaneous study of different preventive and
predictive maintenance strategies at the same time in the same system. In the case of
the MSTM, such studies are non-existent. An interesting paper of H. Wang [26] focuses
on a DT-enabled integrated optimization problem of flexible job shop scheduling and
flexible preventive maintenance (PM), considering both machine and worker resources.
This approach is interesting, particularly if it is possible to open a flexible window to
preventive maintenance actions and let the system constantly work with the monitoring of
predictive maintenance policy. The architecture of a DT-enhanced job shop is developed,
and then the end user has a method to take decisions for the maintenance actions.

This research aims to present a model to identify the component that has failed
before its MTTF and, depending on whether or not the cause of the failure is known and
the time to restart the normal functioning of the machine, propose the use of a predictive
maintenance strategy and further decision-making to ensure the highest possible value from
the machine’s operating time. For this research, a real case study has been characterized
component-by-component, studying the individual maintenance times to obtain the time
lost production (TLP) for each component. Figure 1 shows the features of a multistage
machine and the conditions on which the proposed maintenance strategies are based.

Figure 1. Features of a MSTM and main conditions of maintenance policy.

This approach determines the focus of the maintenance strategies, which are always
aimed at rapid response, and calculated to avoid unexpected failures, and minimize TLP.

2. Materials and Methods

The machine worked for a year with a preventive maintenance system based on
the previously characterized components. An algorithm for predictive maintenance was
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adopted in the beginning, but only to advise if a component had failed before its MTTF.
The authors used a digital behavior twin algorithm [17] for predictive maintenance in this
case. A comparison of the components that presented failures before their MTTF is given
below. The results allow future users to add predictive maintenance for the components
needing supervision to avoid unexpected failures and probable industrial costs for lost
production time and quality production.

Below is the methodology used in this research, ordered by steps:

• Step One: The multistage thermoforming machine was selected as the case study. This
machine was characterized, and all the components were identified and classified by
type. See Section 2.1.

• Step Two: Reliable maintenance times were defined for each component. Importantly,
an adequate MTTF was established for each component. See Section 2.2.

• Step Three: Possible preventive maintenance strategies were defined, and predictive
maintenance strategies adopted. See Section 2.3.

• Step Four: The components that presented a failure before their MTTF after a year of
working were studied. See Section 2.4.

• Step Five: For all of the components, the advice shown by the DBT predictive algo-
rithm was presented to ascertain which failures could be identified before occurring
unexpectedly. The advice does not entail a change of maintenance strategy. The only
purpose of these dates was for use in data logging. See Section 2.5.

• Step Six: The authors proposed a procedure to make decisions for possible mainte-
nance strategy changes in the components studied by looking for the cause of the
failure and then by evaluating two key performance indicators (KPIs). See Section 2.6.

The results, discussion, conclusions, and future research are shown in Sections 3–5.

2.1. The Case Study: A Multistage Thermoforming Machine

Thermoforming and tub filling machines are one of many cases, and this study covers
this type of machine. Figure 2 shows the MSTM and the placement of the components. The
seven steps are identified, together with the main operation in each of them.

Figure 2. A multistage thermoforming machine of six terrines per cycle and its type of components.
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This machine has a cycle time of 4 s, and the thermoforming mold allows the manu-
facture of 6 terrines for each cycle time. So, for each cycle time, seven steps constantly work
in coordination.

The proper sequence of steps depends on the programmable logic controller (PLC)
inside the electrical panel. The PLC receives all the information provided by sensors and
takes decisions for all the actuators at the correct moment.

All the steps may have electrical, electronic, mechanical, and pneumatic components
distributed for the whole industrial multistage machine. The adequate state of all the
components allows for the correct functioning of the machine and avoids unexpected
failures. It is easy to understand that the accumulated work time may affect the state of
the components. Due to this and other considerations such as ambient conditions, power
supplier events, normal degradation of mechanical components, compressed air system
failure or jams in the peristaltic pumping system (step 4), unwanted mechanical shocks can
be the origin of unexpected failures in the components and consequently in the industrial
multistage machine.

The components of this machine and their type can be seen in Table 1. Many compo-
nents may have a number greater than one. Also, the figure indicates the possible failure
source and the consequences of the failure event.

Table 1. List of components in the industrial multistage machine.

Type of Component Component Cause of Failure Failure Event

Electrical

Master power switch Ambient condition, Power supplier event Stop
Plug-in relay Ambient condition, Power supplier event, Unexpected hit Malfunction Stop

Command and signalling Ambient condition, Power supplier event Stop
Safety limit switch Ambient condition, Power supplier event, Unexpected hit Stop

Electronic

PLC Ambient condition, Power supplier event Stop
HMI Ambient condition, Power supplier event Stop

Chromatic sensor Ambient condition, Power supplier event Stop
Safety relay Ambient condition, Power supplier event Stop

Temperature controller Ambient condition, Power supplier event, Unexpected hit Stop
Solid state relay Ambient condition, Power supplier event Stop

Belt drive Ambient condition, Power supplier event Malfunction
Pressure sensor Pressure failure, Global fatigue Malfunction

Servo drive peristaltic
pump Ambient condition, Power supplier event Stop

Absolute encoder Global fatigue, Mechanical hit Malfunction

Mechanical

Safety button Ambient condition, Power supplier event Stop
Thermal resistance Ambient condition, Power supplier event Malfunction

Thermocouple sensor Global fatigue Malfunction
Belt motor Global fatigue Stop
Bronze cap Global fatigue Malfunction
Linear axis Global fatigue Malfunction

Linear bearing Global fatigue Malfunction

Peristaltic pump Ambient condition, Power supplier event, compressed air
system failure Stop

Terrine cutter Global fatigue Malfunction

Pneumatic Pneumatic valve Global fatigue Malfunction
Pneumatic cylinder Pressure failure, Failure valve Malfunction

2.2. Maintenance Times for Each Component

Once the industrial thermoforming machine has been characterized, the individual
maintenance times required for each component must be studied to adopt the most ap-
propriate preventive maintenance strategy policy accordingly. For this purpose, many
individual times and equations are used and presented in this study, which has been
provided by J. Jiři [27] and G. Liberopoulos [28].

• TTRP Time to replace a component
• TTC Time to configure
• TTMA Time to mechanical adjustment
• TTPR Time to provisioning
• MTTR Mean time to repair
• MTTF Mean time to failure
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• MTBF Mean time between failure
• TTLR Line restart time, defined by expert knowledge
• TLP Time lost production

MTTR (1), TLP (2), and MTBF (3) can be calculated with these equations. Efficiency
and availability are used as indicators of success in preventive maintenance.

MTTR = TTRP + TTC + TTMA + TTPR (1)

TLP = MTTR + TTLR (2)

MTBF = MTTR + MTTF (3)

After defining the times and expressions, Table 2 presents the individual maintenance
times in seconds for each component in this research. For this machine, the end users and
original equipment manufacturer (OEM) have suggested, with their knowledge based on
the experience of use, manufacture and maintenance, the fixing of individual maintenance
as its shown in Table 2 and global TTLR at 14,400 s.

Table 2. Individual maintenance times in s for all the components in the industrial multistage machine.

Component MTTR TTPR MTTF TLP

Master power switch 14,400 10,800 9,999,999 28,800
PLC 435,600 345,600 9,999,999 450,000
HMI 435,600 345,600 9,999,999 450,000
Chromatic sensor 176,520 172,800 5,000,000 190,920
Plug-in relay 14,400 10,800 5,000,000 28,800
Command and signalling 14,400 10,800 5,000,000 28,800
Safety limit switch 14,400 10,800 9,999,999 28,800
Safety relay 14,400 10,800 9,999,999 28,800
Safety button 14,400 10,800 9,999,999 28,800
Temperature controller 435,600 345,600 9,999,999 450,000
Solid state relay 176,400 172,800 5,000,000 190,800
Thermal resistance 25,500 10,800 3,700,800 39,900
Thermocouple sensor 14,700 10,800 3,700,800 29,100
Belt drive 435,600 345,600 9,999,999 450,000
Belt motor 187,200 172,800 5,000,000 201,600
Bronze cap 288,000 172,800 7,750,000 302,400
Linear axis 288,000 172,800 7,625,000 302,400
Linear bearing 288,000 172,800 7,500,000 302,400
Pneumatic valve 176,400 172,800 9,999,999 190,800
Pneumatic cylinder 176,400 172,800 9,999,999 190,800
Pressure sensor 176,700 172,800 5,000,000 191,100
Servo drive peristaltic pump 435,600 345,600 9,999,999 450,000
Peristaltic pump 547,200 518,400 5,000,000 561,600
Terrine cutter 288,000 172,800 9,999,999 302,400
Absolute encoder 360,000 172,800 5,000,000 374,400

For this type of machine, both components used at the beginning, as well as those
that have presented failures, are completely new units, not ones restored by the technical
service of each component manufacturer. For necessary components replacements, only in
the case of the pneumatic cylinder is it possible to repair the unit by substituting internal
components for new components. All other components are replaced by new units.

2.3. Maintenance Strategies

In this section, two preventive maintenance strategies are presented, and one predic-
tive maintenance strategy is used:

• Preventive maintenance, based on the MTTF of each component, to avoid unexpected
failures during the work process.
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• Improved preventive maintenance, based on the above but minimizing the TTPR of
each component.

• Digital behavior twin (DBT) for predictive maintenance.

2.3.1. Preventive Programming Maintenance (PPM)

This strategy is based on the MTTF of each component and proposes inspecting and
replacing the component once the worked time reaches the MTTF. This is the maintenance
strategy adopted for all the components at the beginning of this study.

Once the decision to replace a component is taken, a decision based on its MTTF, lost
production time is necessary for the corresponding maintenance operation. As shown by
Equation (1), if the MTTR is higher than the value of TTPR, a new maintenance policy can
be used to minimize the MTTR. This policy entails an increase in security stocks. Figure 3
shows the ratio TTPR/MTTR in this machine. The values are provided by the machine
manufacturers and shown in [17].

Figure 3. Comparison between TTPR and MTTR for the components of the case study.

The significant influence of TTPR value in MTTR is notable. The authors consider
this ratio interesting. In Section 2.6, KPI1 and KPI2 will be defined by using TTPR value to
propose a change in preventive maintenance strategy.

2.3.2. Improved Preventive Programming Maintenance (IPPM)

This strategy is based on the PPM strategy. When a component has a higher value of
TTPR, this strategy can be used to minimize the TLP of the industrial multistage machine. In
this case, the TTPR is replaced by a residual time fixed in 300s, which is the time it takes the
end user of the machine to collect it from its replacement stock. Garcia, F.J.Á. and Salgado,
D.R. [11] proposed a matrix to decide on the most appropriate preventive maintenance
strategy but not on the component that needs a predictive maintenance strategy.
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2.3.3. Digital Behaviour Twin (DBT)

This strategy is based on the sensors placed on the machine. These sensors give their
values to a PLC, and the PLC uses an algorithm that triggers maintenance recommendations
to avoid unexpected failures. A human interface machine (HMI) is used to show these
recommendations.

This algorithm uses the signals received from the sensors and refers them to the
position of a central axis by means of an absolute encoder. Since the normal operating
condition is known, the algorithm detects normal operation without the need for learning,
provides warnings of possible faults, and can provide the number of work cycles performed
without faults.

Figure 4 shows the conceptualization of this strategy in the cited industrial
multistage machine.

Figure 4. Conceptualization of the DBT predictive maintenance strategy.

Garcia, F.J.Á. and Salgado, D.R. [17] described this predictive maintenance strategy in
detail. The objective of their research was not to define the predictive algorithm but to use
it to propose a method to decide on a change of maintenance strategy from preventive to
predictive.

This strategy has already been tested in this industrial multistage machine and allows
the detection of potential failures within each cycle of operation of the whole machine.

2.4. Recovered Data after a Year of the Machine Working

The industrial multistage machine worked without stopping, 8 h per day, Monday to
Friday, for one year, with the PPM in place and the DBT functioning only for data logging
advice. Table 3 shows the list of components with the corrected MTTF if the component
had failed before its MTTF and whether the cause of the failure was known or unknown.
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Table 3. Individual component failures occurring within one year of the machine’s working. Times in s.

Component Fails before MTTF Cause of Failure Corrected MTTF

Chromatic sensor 1 Known 3,998,750
Plug-in relay 1 Known 4,056,010
Temperature

controller 1 Known 7,934,710

Solid state relay 1 Known 4,678,034
Thermal resistance 1 Unknown 3,067,090

Thermocouple sensor 1 Unknown 2,890,760
Bronze cap 1 Unknown 6,500,453

Linear bearing 1 Unknown 6,375,010
Pressure sensor 1 Unknown 4,575,102
Peristaltic pump 1 Known 4,434,090

Terrine cutter 1 Unknown 8,750,778
Absolute encoder 1 Known 4,756,002

Table 3 shows that many components have presented failures before their MTTF.
Figure 5 shows the results by type of component. The pneumatic components have not
presented failures before their MTTF, unlike the rest of the components.

Figure 5. Component failures before their MTTF.

Table 4 shows the description of the cause of the failure of the components that
presented a failure before their MTTF and also indicates, for these components, whether
the cause is due to an occasional (infrequent) situation or a normal situation.

In the case of the plug-in relay, the authors believe that this component was not
completely new at the beginning of the experiment. To verify this, a quality test was
carried out. The rest of the components shown in Table 4, presented a failure-for-occasional-
situation. In Section 2.6 a procedure to avoid the same situation is proposed.

These failures were registered. The DBT algorithm used only for data logging the
advice for an unexpected failure will be compared below.
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Table 4. Registered known causes of failure in components that presented a failure before their MTTF.

Component Situation Description of the Known Cause of Failure

Chromatic sensor Occasional situation
The supplier of the film for the terrine lid changed the color without
prior notice and made it darker and more reflective. This caused the

sensor to stop seeing the mark correctly.
Plug-in relay Normal situation The number of commutations exceeded the mechanical endurance.

Temperature controller Occasional situation Mixed events of voltage RMS and high level of humidity.
Solid state relay Occasional situation The higher level of humidity and air dust caused a short circuit.
Peristaltic pump Occasional situation A higher density of fluid dosed in the terrine caused a jam.
Absolute encoder Occasional situation Accidental mechanical shock.

2.5. DBT Predictive Algorithm Warnings of Failure Recovered

The DBT algorithm matched the real failures that occurred when the machine was
working. Table 5 shows the warning of failures obtained for the DBT predictive maintenance
strategy. This table only shows components that presented failures.

Table 5. DBT warnings of failures by components within the operation time studied.

Component DBT Warning of Failures

Chromatic sensor 1
Plug-in relay 1

Temperature controller 1
Solid state relay 1

Thermal resistance 1
Thermocouple sensor 1

Bronze cap 1
Linear bearing 1
Pressure sensor 1
Peristaltic pump 1

Terrine cutter 1
Absolute encoder 1

The coincidence of warning of failures provided by DBT and shown in Table 5 and
components that failed before their MTTF, as shown in Table 3, suggests using the DBT algo-
rithm if a component requires predictive maintenance. Due to this coincidence, a scorecard
must be designed to make decisions about changes in the component maintenance strategy.

2.6. Method Proposal to Take Decisions for Maintenance Strategy Decisions

As Section 2.3.1 set forth, the PPM strategy had been adopted for all the components
at the beginning of the study. With all the accumulated dates compared to the actual event,
and the warning advice given by the DBT algorithm, this section explains how to make
decisions for a possible change of maintenance strategy.

The objective is to identify the components that need predictive maintenance. For this
purpose, there are two key questions:

• Has the component failed before its MTTF?
• Do we know why it failed?

Two key performance indicators are studied to ascertain whether the reason is known.
The expressions for KPI1 (4) and KPI2 (5) are the following:

KPI1 = (MTTR − TTPR)/MTTR (4)

KPI2 = TTPR /TLP (5)

KPI1 is used to ascertain the influence of TTPR in the MTTR for each component. If
this ratio presents a small value, the TTRP will be higher, which is considered an important
piece of information with reference to changing the maintenance strategy.

KPI2 is used to assess the influence of TTPR in Time TLP because this ratio shows the
availability and efficiency decrease for a higher value of TTPR.
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2.6.1. Procedure to Set KPI1 and KPI2 Values

The procedure to set initial values of KPI1 and KPI2 is the following:

• Calculate KPI1 interval between PPM and IPPM strategies.
• Calculate KPI2 interval between PPM and IPPM strategies.
• Calculate average value of KPI1 and KPI2, assuming PPM strategy.
• Calculate average value of KPI1 and KPI2, assuming IPPM strategy.
• Calculate average value of TTPR/MTTR ratio assuming PPM strategy.

Individual times for PPM strategy are shown in Table 2. In the case of IPPM strategy,
only TTPR is modified for a constant value fixed in 300s (see Section 2.3.2).

Table 6 shows all of the calculated values.

Table 6. Calculated ratios to define fixed values of KPI1 and KPI2.

Strategy Ratio Average KPI1 Average KPI2 Average TTPR/MTTR

PPM Value 22.92% 63.14% 77.08%
Interval [2.04–57.65%] [27.07–92.31%]

IPPM Value 96.04% 0.99% 3.96%
Interval [92.31–99.84%] [0.15–1.64%]

As can be observed, the intervals for KPI1 and KPI2 values in PPM and IPPM strategies
have no common points. For initial, fixed KPI’s points, we must be within the intervals
provided by PPM strategy. Whether KPI2 is considered the average ratio between TTRP
and MTTR due to the TLP depends on a constant value (TTLR equal to 14,400 s) and the
MTTR value (see Equation (2))

Figures 6 and 7 show the fixed KPI1 and KPI2 values for decision-making. A large
dispersion of KPI1 and KPI2 values is observed in the case study. The correct functioning of
the fixed values is evaluated by the minimization of TLP and stock cost in case of adopting
IPPM strategy. The final value fixed in the case of KPI1 is 25% and in the case of KPI2 is
70% (value obtained by comparing average KPI2 with average TTPR/MTTR).

Figure 6. Comparison of KPI1 values for each component in PPM and IPPM strategies, KPI1 interval
in PPM strategy and fixed value 25% of KPI1.
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Figure 7. Comparison of KPI2 values for each component in PPM and IPPM strategies, KPI2 interval
in PPM strategy and fixed value 70% of KPI1.

With the fixed values, decision-making to change maintenance strategy can be adopted. So:

• If KPI1 < 25% and KPI2 > 70%, the improved preventive maintenance strategy can be
proposed, with a previous GOC evaluating the component;

• If KPI1 > 25% and KPI2 < 70%, a preventive maintenance strategy change is unnecessary.

Of course, if a component presents a failure before its MTTF and the cause of the
failure is unknown, and the value of KPI1 < 25% and KPI2 > 70%, several changes must be
made in the maintenance strategy.

2.6.2. Proposed Method for Maintenance Strategy Adoption

Figure 8 shows the method proposed by a PPM strategy adopted for all the compo-
nents of the industrial multistage machine initially and the possible decisions to be taken
depending on the knowledge of the fault and the KPI values.

The proposed method can be used in this machine when assessing whether to change
the maintenance strategy if a component fails before its MTTF. However, feedback is useful
to control the real evolution of the machine in every possible way. The authors consider
that this feedback is only useful if the cause of the failure is known.

With the proposed method, all the components start operating with a PPM strategy,
and if any fail before their MTTF, a change to IPPM or IPPM with DBT may be appropriate.

As mentioned in Section 2.5, if it is necessary to use a predictive maintenance strategy,
DBT can be used, due to the good results offered with the advice shown in Table 5. In this
way if a component fails before its MTTF, and the cause is unknown, IPPM will be adopted
regardless of the value of KPIs. Later, an inspection of the location and other factors to find
the cause of the failure with DBT monitoring enables a new value of MTTF to be set. If the
cause of the failure is found, the method returns to starting point. If the component does
not fail before its new MTTF, the maintenance strategy will be PPM. Otherwise, the way
depends on the knowledge of the second failure.
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Figure 8. Proposed method to switch from a preventive maintenance strategy to a predictive strategy
with a DBT algorithm.

According to the proposed method it i considered that the principal object and benefit
of adopting a DBT predictive maintenance strategy is to determine the reason of a compo-
nent failure before its MTTF by using distributed sensors that are part of the DBT predictive
maintenance strategy. Also, when DBT monitoring is used, the behavior of the whole
machine is monitored to guarantee the correct functioning of the MSTM. So, as Figure 5
shows, if the cause of the failure is found, the replaced component returns to the starting
point of the proposed method and the DBT monitoring continues until the next failure of
the same component. Otherwise, the method does not continue towards the starting point,
and the model waits instead for a better result of the main actions proposed to find the
reason of the failure.

The final object of this dynamic method is the default selection of PPM strategy for
all components, and only IPPM if KPI1 < 25% and KPI2 > 70% at the same time if these
components fail before its MTTF. Nevertheless, the real situations involving these types
of machines, located in important factories and parts of a production process, indicates
to us the need for a predictive maintenance strategy if, due to an occasional (infrequent)
situation, a component fails before its initial MTTF.

3. Results

The application of the proposed method for possible maintenance strategy changes is
shown in Table 7. The initial maintenance strategy was PPM for all the components. The
next column shows the maintenance strategy to be adopted if the component fails before
its MTTF.

The results show different changes in maintenance strategies. The PPM strategy of all
the components that failed before their MTTF due to unknown causes was changed to IPPM
with DBT monitoring (pressure sensor, thermal resistance, thermocouple sensor, bronze
cap, linear bearing, and terrine cutter). The maintenance strategy of two components with
known causes of failure remained unchanged (plug-in relay and absolute encoder), and the
maintenance strategy of four components (chromatic sensor, temperature controller, solid
state relay, and peristaltic pump) was changed to IPPM.

Of course, the initial PPM strategy of components that did not fail remained the same.
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Table 7. Maintenance strategies for all components after a year in operation using the proposed method.

Component KPI1 KPI2
Maintenance Strategy after

a Year of Work

Master power switch 0.25 0.38 PPM
Plug-in relay 0.25 0.38 PPM

Command and signalling 0.25 0.38 PPM
Safety limit switch 0.25 0.38 PPM

PLC 0.21 0.77 PPM
HMI 0.21 0.77 PPM

Chromatic sensor 0.02 0.91 IPPM
Safety relay 0.25 0.38 PPM

Temperature controller 0.21 0.77 IPPM
Solid state relay 0.02 0.91 IPPM

Belt drive 0.21 0.77 PPM
Pressure sensor 0.02 0.90 IPPM + DBT monitoring

Servo drive peristaltic pump 0.21 0.77 PPM
Absolute encoder 0.52 0.46 PPM

Safety button 0.25 0.38 PPM
Thermal resistance 0.58 0.27 IPPM + DBT monitoring

Thermocouple sensor 0.27 0.37 IPPM + DBT monitoring
Belt motor 0.08 0.86 PPM
Bronze cap 0.40 0.57 IPPM + DBT monitoring
Linear axis 0.40 0.57 PPM

Linear bearing 0.40 0.57 IPPM + DBT monitoring
Peristaltic pump 0.05 0.92 IPPM

Terrine cutter 0.40 0.57 IPPM + DBT monitoring

Pneumatic valve 0.02 0.91 PPM
Pneumatic cylinder 0.91 0.91 PPM

4. Discussion

The proposed method for changing the maintenance strategy for all the components
that failed does not provide a static decision criterion. For example, the same component
can fail first due to an unknown cause, and again a second time due to a known cause.
The method allows taking different decisions according to whether or not the cause of the
failure is known.

The authors consider knowing the cause of the failure critical. An industrial multistage
machine must not operate with unknown failures. Also, once the cause is known, the
manufacturer must take action to avoid an unexpected failure due to the same cause. If
these actions are correct and there is feedback, the industrial multistage machine can restart
operating with adequate functionality guarantees.

The values of KPI1 and KPI2 are used to assess whether a change of preventive
maintenance strategy is required. As mentioned in Section 2.6, the extreme values of both
are fixed to show whether the preventive maintenance strategy should be changed from
PPM to IPPM. However, if the value of time to provisioning (TTPR) of a component goes
up or down, the value of its KPI1 and KPI2 will also change. In this scenario, if a failure
occurs in this component, the method will use another way to make decisions, in a further
evaluation.

A continuous application of this method for the same industrial multistage machine
will allow greater failure control and higher levels of operation time without failures.

If a component supplier is changed for market reasons, the proposed method must be
reassessed, and the KPIs and MTTR must be recalculated. Also, the value of MTTF must be
changed accordingly before the machine resumes its operation.

The authors consider the following assessment critical, ascertaining the trust level
in the component manufacturer by evaluating the ratio between the corrected and initial
MTTF of all the components that failed before their initial MTTF. Table 8 shows this ratio:
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Table 8. Trust levels in component manufacturers by comparing the initial and corrected MTTF in
components that failed before their initial MTTF.

Type of Component Component Trust Level

Electronic Chromatic sensor 79.98%
Electrical Plug-in relay 81.12%
Electronic Temperature controller 79.35%
Electronic Solid state relay 93.56%
Electronic Thermal resistance 82.88%
Electronic Thermocouple sensor 78.11%

Mechanical Bronze cap 83.88%
Mechanical Linear bearing 85.00%
Electronic Pressure sensor 91.50%

Mechanical Peristaltic pump 88.68%
Mechanical Terrine cutter 87.51%
Electronic Absolute encoder 95.12%

This assessment, therefore, allows for a long operating time with an adequate selection
of component manufacturers. Figure 9 shows the average trust level (ATL) by component
type. The authors consider that the compared values must be similar. This indicates that
the machine maintenance team is adequate for the whole machine. Obviously, the optimal
value of this ATL is 100%. As the pneumatic components did not fail before their MTTF,
they have not been included in Figure 9.

Figure 9. Average Trust level of components that failed before their initial MTTF.

The authors consider that one way to further this research would be if an ATL were to
be fixed for all the components for possible decisions to change component manufacturers.
Also, a new result would be obtained if the cost of the component were to be used in this
proposed future research.

5. Conclusions

The proposed method for possible maintenance strategy changes for components in
the same industrial multistage machine provides ways to change the maintenance strategy
for PPM to IPPM or IPPM with DBT monitoring. The authors consider that this method
will be useful for other industrial multistage machines.

The predictive maintenance strategy is used for constant component monitoring if an
unexpected failure has occurred, so if the cause is known and the measures for avoiding a
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new failure for the same cause are taken, the component will probably fail at its new MTTF
and will then go back to having preventive maintenance like PPM or IPPM.

If a component presents many consecutive failures before its initial MTTF and the
actions proposed by the method are taken, then the ATL of the component manufacturer
should be revisited to decide on whether to change the manufacturer with an objectively
higher quality in this component. In this case, this could be another way to start a failure
mode and effect analysis (FMEA) to redesign the function, location, and work of this stage
of the machine.

All the components can be included in the study of ATL by component type. In this
case, the average value will be higher than that shown in Figure 9. The authors only
included the components that failed to avoid wrong results in the machine maintenance
team’s evaluation.

As the trust level, or the ATL, depends on the ratio between initial MTTF and real
MTTF of the component or type of components, these values do not improve with a
maintenance strategy change; they only improve to 1 or 100% if the actions necessary to
take for avoid occasional (infrequent) situations that end with an unexpected failure work
correctly. In the case of trust level or ATL improvement up to 100% the authors suggest an
incorrect initial MTTF fixed at starting point of the machine’s use. The proposed method
suggests this way (see Figure 8)

Industrial multistage machines need a long working time without unexpected failures,
so a global method for taking the appropriate decisions for maintenance strategies is needed,
and adequate changes must be made to avoid such unexpected failures. The proposed
method allows reaching this objective. Nevertheless, some comments for its application in
the context of other multistage machines must be related:

• The case study is a multistage thermoforming machine. This machine has an absolute
encoder. Its position is constantly sent to the PLC for synchronization and management
of all the coordinated steps in the correct order. This encoder allows the use of a digital
behavior twin algorithm for predictive maintenance strategy. Not all of the multistage
machines have an encoder for this special function, so the normal behavior of the
machine must be referred to with a more precise physical analogue.

• Due to the fact that the cycle time is only 4 s, the algorithm for predictive maintenance
must be speedy and certain. Other machines with longer cycle times could use
predictive maintenance based on the time;

• As Figure 1 indicates, the preventive maintenance strategy depends upon the individ-
ual maintenance times. It would be interesting to evaluate the sensibility of the method
for an incipient change of TTPR in some components due to global market conditions.

The main contributions highlighted in this article are:

• Providing a method for deciding when to use predictive maintenance strategy and
when to stop it in different components of a MSTM.

• Providing a dynamic global method to establish the maintenance strategy of any
component of an MSTM.

• Providing a confidence level of a component or type of components in an MSTM that
indicates whether the MTTF of said component operating in said machine is reliable.

• Because of the above, obtaining information on the reliability of the components of a
MSTM to avoid unexpected failures during its operating time.

Table 9 shows the results of the comparison between the introduction citations and
the proposed method. Due to the singularity of this type of multistage machine, the cited
references are not alternative methods that can be used to provide other maintenance
strategies for the same machine in the same working conditions, with the same components
and the same evaluation time (1 year). Due to this, the comparison offered in the following
table focuses on the most significant aspects found in each citation that are related to the
methodology developed in this study. This comparison is, therefore, in qualitative terms,
and not able to offer numerical comparisons. The first column indicates the item or relevant
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aspect to be compared. The second column indicates the highlighted references compared.
The third column is a qualitative comparison between the cited item (column 1) in the
reference (column 2) and the method proposed in this article.

Table 9. Qualitative comments highlighted between the proposed method and the state of art.
(*) Improve options.

Item References Qualitative Comments after Comparison

Minimizing security stocks [1,2] Correct selection of fixed KPIs allows the optimization of stock
and provides the adequate preventive maintenance policy

Stops to settings, removal actions.
Imperfect maintenance [3,4]

Settings only at the start time of the machine functioning by the
temperature controller, thermal resistance,

and thermocouple sensor.
The maintenance actions must perform the machine functioning.

The system can evaluate if the actions in each component or
each type of component are imperfect by trust level or ATL.

Mathematical model for Preventive
maintenance [5–8] Complex, very theoretical and many variables to manage.

Simple, sensitive to variations of individual maintenance times.

MTTF reliable
Reliability and law degradation [9–11]

Initial MTTF fixed for all components;
reliability functions not used.

Possibility to change MTTF value if real MTTF lower or upper
than initial MTTF fixed.

Product design and operation conditions [12]
If a component exhibits repeated failures, an immediate FMEA

analysis procedure is initiated to find design errors or
component selection errors.

Mathematical model for Predictive
maintenance [13–18]

Uses PLC with embedded DBT algorithm. No need training
and learning time. Quick response

Very useful for a machine with fast cycle time.

Location components [19] (*) Possible improvement. Can be evaluated for this application

Mixed cost and technical analysis [20,21] (*) Possible improvement. Also is citated in future research.
Coincidence in the use of FMEAS analysis

Digital Twin [22,23]

The behavior of the machine always is the same and does not
need a real digital twin since the characterization is special for
each MSTM and operation conditions are always are the same.

Coincidence in the event failure advises, no training and
utilization of FMEAS analysis.

Augmented Reality and Computer Vision [24,25]

(*) Possible improvement. Not used.
ATL is used for evaluating the maintenance operator actions

required for maintenance policy. But it is used after a
maintenance action.

Preventive actions in flexible windows time.
Predictive maintenance always running

Method for decision-making
[26]

(*) Possible improvement to use flexible windows time for
preventive maintenance actions.

Predictive maintenance only works if a component fails before
its MTTF, and the cause of the failure is unknow.
Coincidence in the contribution of a method for

decision-making

Individual preventive maintenance Times [27,28] Used in the article and performed by developing KPIS for
preventive maintenance decisions

The method proposed is appropriate for the MSTM but can improve with respect to
some items.

Future research:

• Study the influence of a fixed ATL and cost assessment for possible component manu-
facturer changes;
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• Utilization of DBT monitoring for combined supervision in parallel of the same ma-
chine system to use Predictive Maintenance and use the advice for one machine to
start DBT monitoring in other machines of the system working in the same operating
conditions;

• Global cost analysis of the components, DBT monitoring system, and their influence
on possible maintenance strategies for all the components in an industrial multistage
machine;

• Mixed method for maintenance strategies using technical parameters and cost terms.

Author Contributions: Conceptualization, F.J.Á.G. and D.R.S.; methodology, F.J.Á.G.; software,
F.J.Á.G.; validation, D.R.S. and F.J.Á.G.; formal analysis, F.J.Á.G.; investigation, F.J.Á.G. and D.R.S.;
resources, F.J.Á.G.; data curation, F.J.Á.G.; writing—original draft preparation, D.R.S. and F.J.Á.G.;
writing—review and editing, F.J.Á.G. and D.R.S.; visualization, F.J.Á.G.; supervision, D.R.S.; project
administration, D.R.S.; funding acquisition, D.R.S. and F.J.Á.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This study has been carried out through the Research Project GR-21098 linked to the VI
Regional Research and Innovation Plan of the Regional Government of Extremadura.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank the European Regional Development Fund “Una
manera de hacer Europa” for their support of this research. This study has been carried out through
the Research Project GR-21098 linked to the VI Regional Research and Innovation Plan of the Regional
Government of Extremadura.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gharbi, A.; Kenne, J.P.; Beit, M. Optimal safety stocks and preventive maintenance periods in unreliable manufacturing systems.

Int. J. Prod. Econ. 2007, 107, 422–434. [CrossRef]
2. Gharbi, A.; Kenne, J.P.; Boulet, J.F.; Berthaut, F. Improved joint preventive maintenance and hedging point policy. Int. J. Prod.

Econ. 2010, 127, 60–72. [CrossRef]
3. Jun-Hee, H.; Tae-Sun, Y. Scheduling proportionate flow shops with preventive machine maintenance. Int. J. Prod. Econ. 2021, 231,

107874. [CrossRef]
4. Zuhua, J.; Jiawen, H.; Haitao, L. Preventive maintenance of a single machine system working under piecewise constant operating

condition. Reliab. Eng. Syst. Saf. 2017, 168, 105–115. [CrossRef]
5. Ruiz-Hernández, D.; Pinar-Pérez, J.M.; Delgado-Gómez, D. Multi-machine preventive maintenance scheduling with imperfect

interventions: A restless bandit approach. Comput. Oper. Res. 2020, 119, 104927. [CrossRef]
6. Chiacchio, F.; D’Urso, D.; Sinatra, A.; Compagno, L. Assesment of the optimal preventive maintenance period using stochastic

hybrid modelling. Procedia Comput. Sci. 2022, 200, 1664–1673. [CrossRef]
7. Fujishima, M.; Mori, M.; Nishimura, K.; Takayama, M.; Kato, Y. Development of sensing interface for preventive maintenance of

machine tools. Procedia CIRP 2017, 61, 796–799. [CrossRef]
8. Irfan, A.; Umar Muhammad, M.; Omer, A.; Mohd, A. Optimization and estimation in system reliability allocation problem. Reliab.

Eng. Syst. Saf. 2021, 212, 107620. [CrossRef]
9. Yang, D.Y.; Frangopol, D.M.; Han, X. Error analysis for approximate structural life-cycle reliability and risk using machine

learning methods. Struct. Saf. 2021, 89, 102033. [CrossRef]
10. Silva, G.; Ferreira, S.; Casais, R.B.; Pereira, M.T.; Ferreira, L.P. KPI development and obsolescence management in industrial

maintenance. Procedia Manuf. 2019, 38, 1427–1435. [CrossRef]
11. Álvarez García, F.J.; Rodríguez Salgado, D. Analysis of the Influence of Component Type and Operating Condition on the Selection

of Preventive Maintenance Strategy in Multistage Industrial Machines: A Case Study. Machines 2022, 10, 0385. [CrossRef]
12. Yuk-Ming, T.; Kai-Leung, Y.; Wai-Hung, I.; Wei-Ting, K.A. Systematic Review of Product Design for Space Instrument Innovation,

Reliability, and Manufacturing. Machines 2021, 9, 244. [CrossRef]
13. Ponce, P.; Meier, A.; Miranda, J.; Molina, A.; Peffer, T. The Next Generation of Social Products Based on Sensing, Smart and

Sustainable (S3) Features: A Smart Thermostat as Case Study. Science Direct. IFAC Pap. Line 2019, 52, 2390–2395. [CrossRef]
14. Hassankhani Dolatabadi, S.; Budinska, I. Systematic Literature Review Predictive Maintenance Solutions for SMEs from the Last

Decade. Machines 2021, 9, 191. [CrossRef]
15. Cavalieri, S.; Salafia, M.G. A Model for Predictive Maintenance Based on Asset Administration Shell. Sensors 2020, 20, 6028.

[CrossRef]

http://doi.org/10.1016/j.ijpe.2006.09.018
http://doi.org/10.1016/j.ijpe.2010.04.030
http://doi.org/10.1016/j.ijpe.2020.107874
http://doi.org/10.1016/j.ress.2017.05.014
http://doi.org/10.1016/j.cor.2020.104927
http://doi.org/10.1016/j.procs.2022.01.367
http://doi.org/10.1016/j.procir.2016.11.206
http://doi.org/10.1016/j.ress.2021.107620
http://doi.org/10.1016/j.strusafe.2020.102033
http://doi.org/10.1016/j.promfg.2020.01.145
http://doi.org/10.3390/machines10050385
http://doi.org/10.3390/machines9100244
http://doi.org/10.1016/j.ifacol.2019.11.564
http://doi.org/10.3390/machines9090191
http://doi.org/10.3390/s20216028


Systems 2022, 10, 175 20 of 20

16. Bouabdallaoui, Y.; Lafhaj, Z.; Yim, P.; Ducoulombier, L.; Bennadji, B. Predictive Maintenance in Building Facilities: A Machine
Learning-Based Approach. Sensors 2021, 21, 1044. [CrossRef]

17. Álvarez García, F.J.; Rodríguez Salgado, D. Maintenance Strategies for Industrial Multi-Stage Machines: The Study of a Thermo-
forming Machine. Sensors 2021, 21, 6809. [CrossRef]

18. Givnan, S.; Chalmers, C.; Fergus, P.; Ortega-Martorell, S.; Whalley, T. Anomaly Detection Using Autoencoder Reconstruction
upon Industrial Motors. Sensors 2022, 22, 3166. [CrossRef]

19. Pfaff, M.M.L.; Dörrer, F.; Friess, U.; Preedicow, M.; Putz, M. Adaptative Predictive Machine Condition assessment for resilient
digital solutions. Procedia CIRP 2021, 104, 821–826. [CrossRef]

20. Florian, E.; Sgarbossa, F.; Zennaro, I. Machine learning-based predictive maintenance: A cost-oriented model for implementation.
Int. J. Prod. Econ. 2021, 236, 108114. [CrossRef]

21. Arena, S.; Florian, E.; Zennaro, I.; Orrù, P.F.; Sgarboss, F. A novel decision support system for managing predictive maintenance
strategies based on machine learning approaches. Saf. Sci. 2022, 146, 105529. [CrossRef]

22. Stary, C. Digital Twin Generation: Re-Conceptualizing Agent Systems for Behavior-Centered Cyber-Physical System Development.
Sensors 2021, 21, 1096. [CrossRef] [PubMed]

23. O’Sullivan, J.; O’Sullivan, D.; Bruton, K. A case-study in the introduction of a digital twin in a large-scale smart manufacturing
facility. Procedia Manuf. 2020, 51, 1523–1530. [CrossRef]

24. Konstantinidis, F.K.; Kansizoglou, J.; Santavas, N.; Mouroutsos, S.G.; Gasteratos, A. MARMA: A Mobile Augmented Reality
Maintenance Assistant for Fast-Track Repair Procedures in the Context of Industry 4.0. Machines 2020, 8, 88. [CrossRef]

25. Haihua, Z.; Changchun, L.; Tang, D.; Nie, Q.; Zhou, T.; Wang, L.; Song, Y. Probing an intelligent predictive maintenance approach
with deep learning and augmented reality for machine tools in IoT-enabled manufacturing. Robot. Comput.-Integr. Manuf. 2022,
77, 102357. [CrossRef]

26. Hongfeng, W.; Qi, Y.; Fang, W. Digital twin-enabled dynamic scheduling with preventive maintenance using a double-layer
Q-learning algorithm. Comput. Oper. Res. 2022, 144, 105823. [CrossRef]
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