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Abstract: Globally, the COVID-19 pandemic bought devastating impacts to multiple economic sectors,
with a major downfall observed in the tourism sector owing to explicit travel bans on foreign and
domestic tourism. In Nelson Mandela Bay (NMB), South Africa, tourism plays an important role;
however, negative effects from the pandemic and resulting restrictions has left the sector dwindling
and in need of a path to recovery. Working together with local government and stakeholders, this
study applied system dynamics modelling to investigate the impacts of COVID-19 on coastal tourism
in NMB to provide decision-support and inform tourism recovery strategies. Through model analysis,
a suite of management interventions was tested under two ‘what-if’ scenarios, with reference to the
business-as-usual governance response scenario. Scenario one specifically aimed to investigate a
desirable tourism recovery strategy assuming governance control, whereas scenario two investigated
a scenario where the effects of governance responses were impeded on by the exogenous effects from
the virus. Results suggest that uncertainty remained prevalent in the trajectory of the infection rate
as well as in associated trends in tourism; however, through the lifting of travel restrictions and the
continual administration of vaccines, a path to recovery was shown to be evident.

Keywords: COVID-19; tourism recovery; public policy; system dynamics; participatory modelling

1. Introduction

The COVID-19 pandemic, and its subsequent lockdowns, was a severe shock to the
global economy. After the initial spread of the virus from its origin in China, governments
around the world started to respond, some more cautiously and hastily than others, in
an effort to combat the spread of the virus. Despite interventions, a continual rise in
infection rates led to the declaration of a global pandemic by the World Health Organisation
(WHO) in March 2020. Thereafter, stricter government interventions through national
lockdowns were introduced to assist in ‘flattening the infection curve’. Though the national
lockdowns were introduced with good intent to help ‘save lives’, the strict restrictions
caused devastating impacts on the global economy. This effect was exacerbated in South
Africa (SA) and locally in Nelson Mandela Bay (NMB), the focus area of this study, where
the economy was previously strained by slow economic growth and social imbalances [1].
Multiple sectors have been devasted by the impacts of COVID-19, with many countries
experiencing large contractions in Gross Domestic Product (GDP) and a consequential
decline in employment levels [2]. It has been projected that the tourism sector will be one of
the most affected by the pandemic, with devastating impacts that have never been observed
before. Globally, COVID-19 caused a ~70% decrease in international tourism, return to the
levels of 30 years ago, a significantly greater reduction than what was observed during the
SARS virus in 2003 or the global economic recession in 2009, which resulted in contractions
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of ~0.4% and ~4%, respectively [2,3]. Economies slowly started to recover in 2021 owing to
the lift of ‘lockdown’ restrictions in response to the administration of vaccines; however,
sectors such as tourism, that were less resilient to the exogenous shock of the pandemic,
are still experiencing negative effects, with remaining uncertainty concerning the rate of
recovery to pre-pandemic levels.

In SA, and at a local scale, in NMB, uncertainty around recovery has manifested
throughout in the tourism sector. Tourism plays an important role in the metro, with a
total economic contribution (direct and induced) of ~R14 billion in 2019 (~11% of GDP),
and employs a total of 98,000 persons, with the largest contribution coming from domestic
tourism [4]. As a result of the pandemic, in reference to 2019, the metro experienced a
72% and 45% contraction in foreign and domestic tourists, respectively, followed by a
61% decrease in bednight sales and a 37% decline in direct tourism spend [4]. To ‘control’
COVID-19 transmission in SA, the government adopted an adaptive risk reduction strategy
based on a five-level alert system, with level five corresponding to the strictest level of
restrictions (i.e., national lockdown). The restrictions, particularly those associated with
public movement, drastically impacted domestic and foreign tourism, where provincial
travel was only permitted for levels one and two, and foreign travel only at level one,
notwithstanding individual country’s travel ban thresholds. Additional restrictions in-
cluding beach closures and accommodation capacity limitations further affected coastal
tourism in the bay. Moreover, the trajectory of COVID-19 infections influenced travelers’
behaviour patterns through changes in the perception of the susceptibility and severity of
the situation [5]. This study therefore highlights the need for tourism stakeholders and
related government authorities to understand the knock-on effects arising from COVID-19
and associated feedback processes to facilitate and enable sustainable tourism recovery.

The temporal nature underlying the impacts of COVID-19 on tourism, and the associ-
ated uncertainty regarding tourism recovery, makes it particularly amenable to the method
of system dynamics modelling (SDM). SDM is a structured approach to systems thinking
that involves mapping, modelling, and managing complex and dynamic problems [6].
The method has proven to be advantageous for policy makers to gain a holistic overview
of the problem and recognise key feedback effects and time delays through analytical
decision support. SDM has been widely applied in the field of epidemiology [7] and re-
cently used to explore questions related to COVID-19 and the underlying social responses
and consequential impacts. Different models have been applied to different regions and
contexts and to address different questions. For example, SDM was applied to investigate
the evolution of COVID-19 infection waves and societal responses at a global scale [8,9].
Similarly, Ibarra-Vega [10] and Sy et al. [11] assessed COVID-19 outbreak responses to vari-
ous containment policies. SDM as a method has also been proven suitable for application
in tourism management and planning [12–15]. In combination, a few simulation-based
studies have been applied to explore tourism re-opening strategies amid COVID-19 [16,17]
and specifically to investigate the impacts on coastal tourism [18]. The application of SDM
has therefore proven to be particularly useful to explore the complex infection dynamics
and to understand impacts on tourism over time by providing a virtual environment to
simulate and test recovery strategies.

This study aimed to develop a system dynamics model to simulate the impacts of
COVID-19 on coastal tourism in NMB, in order to provide decision-support and to inform
recovery strategies. This entailed:

• Exploring the implications of COVID-19 on the tourism sector by mapping the cause-
and-effect problem dynamics;

• Identifying key model variables that could serve as leverage points for potential
management interventions;

• Simulating scenarios of how different management interventions can facilitate sus-
tainable recovery of the tourism sector.
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2. Methods: System Analysis and Simulation Design

System dynamics modelling (SDM) was applied in this study. Model development
consisted of conceptualisation, model formulation, and model testing, in line with SDM
best practices [19,20]. Model conceptualisation involved desktop research and stakeholder
engagement, where Causal Loop Diagramming (CLD) was applied as a tool to facilitate
stakeholder engagement and to capture multiple perspectives. The stakeholders involved
in the process included representatives from the tourism sector, local government, accom-
modation groups, and local tourism operators. The meeting process was divided into
three stages held between September 2021 and February 2022. The processes consisted
of individual stakeholder meetings (to capture stakeholders’ ‘mental models’) and two
group modelling workshops: the first aimed at presenting the model results and discussing
relevant scenarios and the second focused on discussing leverage points and management
interventions from the stance of the local municipality. A more comprehensive overview
of the stakeholder engagement process is available in [21]. Thereafter, model formulation
entailed formulating the stock–flow diagrams (SFDs) with associated algebraic equations
and parameters values. Finally, model testing was performed through a series of validation
tests to build confidence in the model structure and behaviour (see Section 2.3).

2.1. Model Boundary

The model boundary was drawn by collating information from the literature and
stakeholder conversations into a holistic CLD. This included identifying and mapping the
common causal links that capture the dynamics associated with the impacts of COVID-19
on coastal tourism in the bay. The boundary map shows the causal links and feedback
loops between the key model variables. These feedback loops are described in more detail
below (Figure 1 and Table 1).
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Figure 1. Casual map (or Casual-Loop-Diagram) illustrating the key model variables and feedback
loops making up the model structure. Positive arrows (in green) represent a positive polarity and
negative arrows (in red) represent a negative polarity; ‘B’ represents a balancing (negative) loop and
‘R’ represents a reinforcing (positive) loop. Orange variables show the suggested leverage points.
Grey boxes illustrate areas of input from different stakeholder groups.
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Table 1. Description of the balancing and reinforcing feedback loops affecting model behaviour. The
sequence of variables in each loop is described, where a plus corresponds to a positive polarity and a
minus a negative polarity.

Feedback Loop Feedback Loop Description

Balancing Feedback Loops

B1 “virus running out of fuel”
(infected − susceptible + risk of infection + infected)

The “virus running out of fuel” balancing loop explains how the
infection population decreases as the susceptible population
decreases, thus limiting the number of infection cases. More

susceptible persons, more infections, more infections, less
susceptible people.

B2 “stay safe”
(infected + hospitalised + healthcare strain + social restrictions − risk

of infection + infected)

“Stay safe” demonstrates how a reduction in social contacts
through lockdown and social distancing regulations reduces the
risk of infection, which decreases the infected population. More
infections, more social restrictions, lower risk of infection, lower

infected population.

B3 “vaccination relief”
(infected + hospitalised + healthcare strain + perceived severity

+vaccination demand + vaccinated − susceptible + risk of infection
+ infected)

This loop shows that more infected cases result in a higher
vaccination demand, which in turn may increase the number of
vaccinated persons, which reduces the susceptible population

vulnerable to being infected.

B4 “vaccination immunity”
(hospitalised + healthcare strain + perceived severity + vaccination

demand + vaccinated − infection severity + hospitalised)

The “vaccination immunity loop” captures the effects of
decreased severity and hospitalisations as the vaccinated

population increases.

B5 “foreign travel lock-down”
(infected + international travel ban − foreign tourists + infected)

The foreign and domestic tourism lockdown loops explain how
the number of infected cases decreases the number of foreign
and domestic tourists due to various travel restrictions. This
results in less movement from tourists and, hence, the risk of

infection transmission.

B6 “domestic travel lock-down”
(infected + perceived severity + travel risk − tourism attractiveness +

domestic tourists + infected)

B7 “too much room at the inn”
(accommodation occupancy − closures − capacity − occupancy)

This loop explains how a low accommodation occupancy can
result in more accommodation closures, which in turn decreases

tourism accommodation capacity, which increases the
accommodation occupancy fraction across the metro.

Reinforcing feedback loops

R1 “contact spreading”
(infected + risk of infection + infected)

Contact spreading explains that more infected persons can
increase the risk of infection, transmission of the infection, and,

hence, the number of infections. However, this loop is
counteracted on by the ‘virus running out of fuel’

balancing loop.

R2 “reinfections”
(infected + recovered + herd immunity + susceptible + risk of infection

+ infected)

The “reinfections loop” shows the reinforcing effect, where
those who have recovered from infection or who were
vaccinated become susceptible again after the assumed

immunity delay.

R3 “tourism infrastructure investment”
(tourism attractiveness + tourists + revenues + public infrastructure +

tourism attractiveness)

The tourism infrastructure investment loop shows that an
increase in tourism can increase the tourism budget, which can
result in higher investment in public and tourism infrastructure,
which can increase the attractiveness of tourism and hence the

number of tourists.

R4 “marine aesthetic beauty”
(coastal and marine attractiveness + marine tours + tourist

participation + marine health awareness + marine health
+ attractiveness)

“Nature showing off” explains how a healthy marine
environment can increase the level of participation in coastal

and marine activities, which can result in a higher awareness of
the natural value of the bay and a greater awareness of the need

to protect this natural value.
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2.2. Model Structure

The model is divided into three sub-models: (1) COVID-19 infection dynamics;
(2) tourism dynamics of NMB; (3) coastal tourism impacts (Figure 2). Figure 2 shows
that COVID-19 affects tourism, which in turn affects COVID-19 infection dynamics. Sim-
ilarly, tourism affects coastal tourism activities, which in turn affects the attractiveness
of tourism in NMB. A simplified overview of the sub-model structures is shown below
(Figures 3–5). The model was built in Stella® Architect software [22]. It simulates the
dynamics over a five-year period, from January 2019 to December 2023, using a daily
time scale and the Euler integration method. The model was parameterised with data
and information obtained from scientific literature, news articles, and stakeholders. Addi-
tional information on model documentation is available in the supplementary materials
(Tables S1 and File S1).
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Figure 3. Simplified stock–flow diagram showing the main model variables that were formulated
to simulate the COVID-19 infection dynamics at a national scale. Encircled variables represent
the key output variables of interest, which were chosen based on their importance for decision-
making and policy analysis. Variables in pink are those connected to another sub-model, and orange
variables are applied in scenario analysis or in the visual user interface. This structure also applies to
Figures 4 and 6 below.
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Figure 5. Stock–flow diagram showing the main model variables that were formulated to capture the
impacts of COVID-19 on coastal and marine tourism activities.

2.2.1. COVID-19 Sub-Model Structure
COVID-19 Infection Dynamics

The COVID-19 sub-model captures the infection dynamics at a national scale, given
that government decisions regarding the pandemic were initially based on country-level
statistics, which in turn were enforced in provincial and local regions (Figure 3). The
model is based on the Susceptible–Exposed–Infected–Recovered (SEIR) structure, which
is commonly applied in epidemiology [7–9]. The COVID-19 infection is initiated by an
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imported infection at the beginning of 2020 through foreign tourists. Thereafter, the
infection dynamics are formulated such that the Susceptible Population (60 million persons)
flows into the Exposed Population depending on the infectivity of the virus, which can depend
on the variant of the virus. In the model, the infectivity is estimated to be 0.0125 dmnl,
so as to obtain a reproduction factor between 3 and 5 dmnl, depending on the number of
social contacts (~14 persons/person/day) and duration of the infection (~14 days) [23].
After an incubation delay of approximately ~5 days [8,10], the exposed population then
becomes either symptomatically or asymptomatically infectious. According to [24], it has been
found, based on seroprevalence estimates (i.e., SARS-CoV-2 antibody positivity among the
population), that, for every reported, case there are approximately nine asymptomatic cases
(and hence unreported). This has particularly increased uncertainty regarding transmission
of the virus among asymptomatic infectious and susceptible persons. Depending on the
infection duration, asymptomatic and symptomatic persons recover, except for the severe
symptomatic cases (~15–20% [25]) that are admitted to hospital. Further, depending on the
fatality of the virus (~3–5% [10]), the hospitalised population can recover or become deceased,
where the fatality fraction is subject to the level of healthcare strain, defined by hospital
capacity (i.e., intensive care (ICU) beds = 3000 persons; [1,26]). Based on the level of health
care strain, decisions are made based on the severity of the infection trend and hence the
level of social restrictions, which, in turn, are intended to decrease the number of social
contacts to slow transmission of the virus. In order to ‘control’ infection trends in the model
(i.e., decrease transmission), the process of vaccination is introduced, which ultimately
‘drains’ the susceptible population stock, at least for the period of vaccine efficacy. The model
does not differentiate between different types of vaccines or differences in vaccine efficacy,
though this may be important to consider for future work. Nor does the model differentiate
between the effectiveness of infection-induced immunity against vaccination immunity, as
suggested in [27], but rather assumes that the recovered and vaccinated population may
become susceptible again after 180 days (6 months) [28,29] in the absence of an immune-
escaping variant. Therefore, the effects of vaccination are formulated with the purpose of
decreasing the level of hospitalisations and fatalities, and to achieve ‘heard immunity’ (i.e.,
~70% of the population with immune response either from vaccination or recovery from
previous infection as defined by WHO) such that the likelihood of mutation and infection is
decreased. The rate of vaccination is affected by a daily (initial) vaccination goal of ~300,000
persons/day [30], which is formulated through a step function starting in March 2021 and
changes depending on vaccination demand, which is dependent on the perceived severity
induced through the level of healthcare strain. Lastly, the rate of vaccination is constrained
by vaccination hesitancy, which has been shown to range between 50 and 70% [31] on the
basis of cultural grounds, or from being unaware, apathetic, or misinformed [32].

Effects of COVID-19 on Tourism Behaviour

The national infection trends and wave severity further impact tourism demand in
NMB, with different effects for foreign and domestic tourism behaviour (Figures 3 and 5).
Foreign travel risk is formulated by applying the formula that was developed by the Centres
for Disease Control and Prevention (CDC). This calculates the travel health threshold, which
is based on the cumulative infection incidence per 100,000 individuals of the population
over a consecutive 28-day period [33]. Then, according to the four-level system criteria
of the CDC, reported numbers above 500 persons categorise countries on the red list and
prohibit travel, whereas reported figures below 500 gradually lowers restrictions. Therefore,
in the model, foreign tourism depends on the number of tourists that normally visit SA per
year (10.2 million in 2019 [34]), subject to the current travel restriction level. In contrast,
domestic tourism in SA is formulated through a domestic tourism pool, which is represented
by the populations that are assumed to have ‘herd immunity’, as they are assumed to
be more willing to travel. The portion of the population that are less likely to travel are
those that remain susceptible and are therefore still affected by the perceived risk of travel
emanating from trends in healthcare strain, which is expected to delay travel decisions
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by ~365 days. This logic was derived from an investigation conducted by [5], whereby
changes in the infection rate directly affected the perceived severity of the situation, hence
decreasing attractiveness of travel, whereas, understanding the chances of contracting
the virus affected perceived susceptibility and the willingness to travel. This theory is in
line with the concept of “risk habituation” by [35], whereby perceived risk decreases as
threats decrease or becoming increasingly familiar. Variables associated with the effects of
socio-economic uncertainty on one’s willingness to travel are additionally considered to be
relevant to the problem context but have been excluded from the model boundary during
the current analysis and can be considered for future adaptations.

2.2.2. Tourism Sub-Model Structure
NMB Tourism and Accommodation

In NMB, there are two stocks of tourists, namely domestic and foreign tourists, initialised
to 2019 data (Figure 4). The number of tourists, both foreign and domestic, is dependent
on the attractiveness of NMB as a tourist destination, which depends on factors such as
seasonality, tourism infrastructure, the attractiveness of coastal and marine activities, and,
finally, the effects on travel emanating from the COVID-19 infection rate (Figures 3 and 4).
Regardless of the purpose for travel, tourists are typically in the bay for short trips (~3 days
for domestic tourists and ~2 days for foreigners [36]). The number of tourists staying in
paid accommodation at any time (~36% for domestic tourists and 50% for foreign tourists),
relative to the number of accommodation facilities (~400 facilities) and accommodation
capacity (~15,000 persons), determines the level of accommodation occupancy. The number
of bednights sold multiplied by the average rate per night (~R600 person/day) further
contributes to local tourism revenue, in addition to those obtained from daily tourist
spending (~R800–R1500/person/day [36]) and revenue from coastal and marine activities.
It is then assumed that a fraction of total tourism revenues (~20%), collected through
tourist taxes and levies, contributes towards the local municipal tourism budget. A higher
tourism budget is required to increase tourism attractiveness through local investments
in public and tourism infrastructure; however, degrading infrastructure simultaneously
increases expenditure, in addition to operational costs and costs associated with COVID-
relief funding during the periods of travel restriction. Lastly, tourism labour is assumed
to increase in relation to the number of tourists visiting the bay, assuming 1 employee for
every 40 tourists, calculated according to the number of employees in the sector obtained
from [37,38]. In the tourism sub-model, the main variables of interest are the total number
of bednights sold; accommodation occupancy; the total number of tourists; the tourism budget;
tourism employees; and the state of tourist infrastructure. These variables have been identified
in the literature, as well as by stakeholders, to be particularly important as indicators with
which to measure the impacts of COVID-19 on the tourism sector (Figure 4).

Coastal Tourism Dynamics

The coastal tourism sub-model specifically aims to capture the knock-on effects on
beach recreation and marine tour participation and associated revenues (Figure 5). As
reported in [38,39], coastal and marine tourism attracts approximately 55% of visiting
tourists through beach recreation alone. The normal coastal and marine attractiveness
factor is largely dependent on the marine aesthetic value of the bay, which is formulated
through a stock variable “Marine health”. Marine health is, however, subject to changes in
the rate of cumulative pressure from other marine developments in the bay [40] (Figure 5).
Next, marine wildlife tours are considered an attractive marine activity [41], with the
number of tour participants affected by the attractiveness of marine wildlife tours [42] and
tour costs. The number of tourists engaging in coastal and marine activities and a portion
of the revenues obtained can be considered valuable in creating marine awareness and
funding conservation activities aimed at conserving marine health. All the same, the impacts
that arose directly from the pandemic included beach closures and the closure of beach
establishments [43]. This decreased the overall attractiveness of coastal and marine tourism,
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largely decreasing the number of tourists visiting the bay, with consequences on tourism
accommodation, revenue, and labour (Figure 5).

2.3. Model Testing

As the study was undertaken simultaneous to the evolving dynamics of the COVID-
19 pandemic, model validation was a continuous and iterative process. This involved
comparing the model data to available observational data to determine the ‘goodness of fit’
and assisted in manually calibrating the model to verify the estimated model parameters.
To verify the model behaviour, infection data for South Africa were sourced from Johns
Hopkins University and compared to model results (Figure 6a). To calculate the ‘goodness
of fit’ between the observed and model data, the model data were exported and the
coefficient of determination, a measure of the data variance, was calculated in Microsoft
Excel. According to the final baseline run, the model explains 73% of the data variance of
the observed COVID-19 infections, measured according to the seven-day-moving average
(Figure 6a). The model was first validated in October 2021, before the onset of the fourth
wave associated with the Omicron variant. According to the outdated model run (October
version), the projected simulation suggested that SA may experience a fourth wave over the
December 2021 holiday period, albeit with a smaller amplitude (Figure 6b). This projection
was consistent with the projection from the SA COVID-19 Ministerial Advisory Committee,
which reported that “the fourth wave will likely be a small mini wave”, and that the severity
of the fourth wave depends on a balance between the prospects of a new immune-escaping
variant versus vs. the rate of vaccination by this time [24]. After observing changes in the
reported infections during the fourth wave, the model structure and assumptions were
re-evaluated and adjusted accordingly.Systems 2022, 10, x FOR PEER REVIEW 8 of 20 
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Figure 6. Behaviour over time graphs of the seven-day-moving average of infections in South Africa
(persons/days) over the reference period (January 2020–November 2021 or 664 days) (a) and for the
projected model period (December 2023 or 1444 days) (b). Model results are shown in orange and
observed data obtained from Our World in Data are shown in blue.

To validate trends in tourism at a local scale, observed data in accommodation occu-
pancy from 2019 to 2021 were compared with the modelled occupancy data. Stakeholders
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specifically suggested the validation of trends in tourism one-year prior to the onset of the
pandemic to verify the model against trends observed ‘normally’. The data were made
available to the study by the Nelson Mandela Bay Municipality (NMBM), the Department of
Economic Development, Tourism and Agriculture, and were recommended as an effective
indicator with which to measure tourism variability at a local scale [4].

Baseline results show that the modelled accommodation occupancy captures 71% of
the variance of the observed data (Figure 7). Additional testing included running extreme
parameter tests and ensuring that the model was dimensionally consistent and structurally
robust. Finally, a multivariate sensitivity analyses, using the Latin Hypercube Sampling
method, was performed over 50 runs to investigate changes in model behaviour under a
combination of parameter values. The parameter values of the included model variables
were varied by 50% of the baseline value, as suggested in [19] (Table A1). Results of the
multivariate sensitivity analysis are shown in Appendix A (Figure A1). As expected, the
extreme conditions tests and multivariate sensitivity analysis revealed variability in the
model results, though the results remained robust and behaviourally sound.
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Figure 7. Nelson Mandela Bay accommodation occupancy levels as observed (in orange) and
simulated in the model (in grey) from January 2019 to December 2021.

3. Results
3.1. Model Scenarios

Once the model was considered to be sufficiently robust (i.e., it performed the right
behaviour for the right reasons), scenario planning was performed. This consisted of
testing the model results under two scenarios compared to the baseline (or business-as-
usual (BAU)) scenario. The BAU scenario captures the infection trends and projected
tourism recovery under current governance decision-making strategies as formulated in
the model. As for the two exploratory scenarios, scenario one investigates a desirable
tourism recovery strategy, assuming that the government has control of the situation,
through enabling a rapid vaccination rollout process, securing efficacious vaccines, and
ensuring effective tourism management. In contrast, scenario two portrays a situation
of governance instability, whereby uncertainty regarding the infection trajectory, owing
to high levels of vaccination hesitancy, risks of an immune-escaping variants, and a lax
tourism response strategy leads to a less desirable recovery trajectory.

Table 2 shows the variables and associated parameter values that were varied during
the scenario analysis. ‘Vaccination acceptance’ corresponds to the fraction of the population
accepting the vaccination, and ‘vaccination efficacy’ corresponds to the probability of
losing immunity after the assumed period of 180 days (or 6 months) [28]. The intervention
‘government response time’ corresponds to the time delay for government to respond to
the severity of the pandemic and implement social restrictions, and changes to the ‘ICU
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capacity’ can affect the level of healthcare strain and, ultimately, fatalities. In the tourism
sub-model, the ‘CDC travel limit’ corresponds to the threshold by which foreign travel
becomes prohibited, and ‘marketing intensity’ refers to a change in marketing campaigns.
Then, the ‘fraction of funds to COVID relief’ is the portion of the tourism budget that is
diverted towards COVID-related costs, implementation, and business support and, lastly,
‘infrastructure upgrade costs’ refers to the minimum costs associated to small infrastructure
upgrades that can contribute towards tourism attractiveness.

Table 2. Key variables and associated parameter values applied in the scenario analysis.

Model Parameter and Unit Base Value–Business as
Usual

Scenario 1–Governance
Control

Scenario 2–Governance
Instability

COVID-19 Interventions

Vaccination acceptance (dmnl)
(opposite to hesitancy) 0.50 0.80 0.40

Vaccination efficacy (immunity
duration) (dmnl) 180 270 90

Government response time (days) 30 15 40
ICU capacity (persons) 3000 4000 2500

Tourism Interventions

CDC travel limit (persons) 500 1000 800
Marketing intensity (%) 1 1.2 1

Fraction of tourism budget to
COVID relief (%) 1 0.3 0.4

Infrastructure upgrade costs (R) 3 × 106 2 × 106 4 × 106

For the COVID-19 sub-model, the results of the scenario analysis were specifically
investigated in terms of the COVID-19 infection rate and the number of vaccinated persons
in SA (Figure 8). Furthermore, to investigate the impacts of COVID-19 on coastal tourism,
results were analysed in terms of the total number of bednights sold in NMB, accommo-
dation occupancy, tourism infrastructure condition, and coastal tourism attractiveness
(Figure 9). Though other indicators such as tourism revenues and tourism employment
are also important, these results are not shown; however, it is expected that changes in
these indicators are primarily driven through changes in the number of tourists. Under the
baseline simulation, the model shows three consecutive infection peaks corresponding to
the results showed in the observed data, in addition to a fourth peak around December
2021, with a maximum of ~25,000 persons/days (Figures 6 and 8a). Moreover, Figure 8b
shows the number of vaccinated persons (assuming full vaccination) to reach approxi-
mately 18 million by February 2022, though this tends to level off, as the portion of the
population that is willing to accept the vaccine becomes vaccinated and, due to decreasing
vaccination demand.
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Figure 9. Model results of the total number of tourist bednight sales in NMB (people.days/years)
(a) and associated tourism indicators: accommodation occupancy (dmnl) (b), tourist infrastructure
condition (dmnl) (c) and coastal marine attractiveness (dmnl) (d) under three model scenarios. The
baseline run (or business-as-usual scenario) is shown in solid-blue, scenario one in dashed green lines
and two in dot-dashed red.

Trends in NMB tourism show a sharp decrease in the numbers of bednights sold
during the ‘midst’ of the pandemic, when foreign and domestic travel was prohibited, as
well as when NMB was declared a national COVID-19 hotspot in December 2020, leading
to subsequent beach closures (Figure 9a) [44]. Similarly, the trend in accommodation
occupancy decreased to as low as 1% in April 2020 and is slowly recovering to levels
around 35–40% from mid-2021, in line with observed results and stakeholder perspectives
(Figures 7 and 9b). Figure 9c,d shows the projected impacts of the pandemic on public
and tourism infrastructure condition, which is shown to decreases over the period of the
pandemic owing to a lack of tourism revenue and a diminishing tourism budget. The
condition of tourist infrastructure is, however, projected to increase as tourists slowly return;
however, this is dependent on the magnitude of upgrades, associated costs, and delays in
initiating upgrades. Lastly, Figure 9d shows the level of participation in coastal tourism,
with two evident dips in attractiveness corresponding to the time of beach closures, which
drastically reduced the attractiveness of beach recreation during this time.

Results from scenario 1 illustrate a more desirable recovery trajectory, as shown in
terms of the infection rate as well as in NMB tourism, with the former showing smaller
infection peaks from February 2022 to December 2023 and the latter showing a visible
increase in the number of tourists and bednights sold from October 2021 onwards, with
trends in occupancy recovering to pre-pandemic levels in early 2022 (Figures 8 and 9a,b).
Figure 9c,d show that tourist infrastructure condition is also expected to recover with the
return of tourists, and that no more beach closures can be expected, possibly owing to
the adaptations to the levels of social restrictions due to increasing immunity. The results
from scenario 2,show an increase in wave peaks, with a fifth peak expected over June 2022,
followed by additional waves owed to low levels of immunity among the population as
well an increased risk of breakthrough infections (Figure 8a,b). Trends in NMB tourism and
accommodation concurrently take a longer time to recover to levels observed in 2019 in
this scenario, with projected knock-on effects on the state of local tourism infrastructure
further inhibiting future tourism growth (Figure 9a–d). Both scenarios show how the
beach closures drastically impacted coastal tourism attractiveness during the periods of
infection peaks; however, as social restrictions were relaxed, coastal and marine tourism
attractiveness recovered (Figure 9d). Furthermore, the effect of marine health on coastal
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tourism attractiveness is less evident in the results, owing to a longer delay associated with
changes in marine health.

3.2. Model Interface

An additional output from the study is the model visual user interface (VUI) (Figure 10),
which provides a ‘user-friendly’ portal to engage with the model. Decision-makers or
stakeholders can unravel the cause-and-effect model structure and explore model scenarios
by adjusting the model variables through ‘levers’ on the interface. Additional variables
(e.g., variant infectivity, variant introduction time) are additionally included to investigate
the impacts of future variants on the resilience of tourism recovery strategies. The VUI
can additionally be used in a collaborative stakeholder setting, whereby stakeholders
representing different institutions or areas of the problem can implement alternative man-
agement interventions to investigate tourism recovery strategies in NMB, similar to what
was demonstrated during the group stakeholder workshops.
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Figure 10. Central control panel in the visual user interface to enable additional scenario analyses.
The interface is accessible through the following link: https://exchange.iseesystems.com/public/
esteevermeulen/nelson-mandela-bay-covid-19---coastal-and-marine-tourism-recovery-tool (ac-
cessed on 8 July 2022).

4. Discussion: Recommendations and Policy Design

The scenario analysis that was performed to investigate the impacts of COVID-19
on coastal tourism in NMB highlighted the complexity and uncertainty that existed, and
remains to exist, around projected infection trends, recovery delays, and vulnerabilities
of the tourism sector to the effects of the COVID-19 pandemic (Figures 8 and 9). During
the time of writing, the baseline simulation suggested that, under current governance
response and vaccination rates, subsequent waves are expected with lower infection peaks
and levels of severity in terms of healthcare strain and fatalities (Figures 8 and 9). While
this may be logical, the projection relies on the assumption that current vaccinations are
sufficiently effective against existing variants, though skepticism exists regarding the
length of the immunity of current vaccinations (i.e., waning immunity) [45], as well as
existing controversy surrounding mandatory vaccination protocols to overcome vaccination
hesitancy [32,46]. Moreover, the analysis reveals that, even though government can adopt
different means to respond, there can be scenarios where even strong response strategies
may be weakened by factors beyond their control, such as by breakthrough infections
owing to the introduction of immune-escaping variants, as shown by the recent Omicron
variant [47].

https://exchange.iseesystems.com/public/esteevermeulen/nelson-mandela-bay-covid-19---coastal-and-marine-tourism-recovery-tool
https://exchange.iseesystems.com/public/esteevermeulen/nelson-mandela-bay-covid-19---coastal-and-marine-tourism-recovery-tool
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Nonetheless, the model is an analytical tool with which to investigate uncertainty,
such that governments could ‘test’ their strategies through ‘what-if’ scenarios in order to
evaluate the resilience of their responses and, hence, the knock-on effects on the tourism
sector. Moreover, the model demonstrated how the rate of tourism recovery is dependent
on various feedback effects and the effectiveness of management interventions under
alternative governance scenarios. The analysis has additionally highlighted that there is
not necessarily only one response with which to assist in the recovery of coastal tourism in
NMB, but rather multiple interventions, each with a different degree of leverage that could
simultaneously be applied to achieve a more desirable trajectory. Such interventions could
include, but are not limited to, the following:

• Rapid vaccination procurement and administration;
• Vaccination awareness and campaigns to address vaccination hesitancy;
• Research and development into vaccination efficacy;
• Adaptations to international travel limit thresholds recognising the need for personal

responsibility and well-being relative to situational awareness;
• Allowing tourists to return to enhance tourism cash flow and the recovery of the

tourism budget;
• Redirecting and possibly increasing the tourism budget towards public and tourism

infrastructure to increase tourism attractiveness;
• Funding diversion towards tourism marketing to stimulate demand;
• Collaboration among local government directorates (tourism, public health, safety and

security, infrastructure and engineering) to establish a consensus regarding depart-
ments’ recovery mandates.

Lastly, there has been confusion regarding the levels of restrictions, which has con-
tributed to the levels of social and sectoral adherence fatigue. Though the government
has opted towards adaptive, risk-adverse strategies (as is required for a rapid response),
adverse and sudden changes to COVID-19 regulations and decision-making thresholds has
made it difficult for sectors to adapt. Therefore, governments should remain transparent
about their decision-making criteria and develop decision frameworks that are informed
through scientifically robust models and datasets.

5. Conclusions

This study highlights the importance of exploratory simulation to support decision-
making. Using system dynamics modelling, this study investigated the impacts of COVID-
19 on coastal tourism in Nelson Mandela Bay (NMB), South Africa, with the aim to devise
and simulate the effects of potential recovery pathways. The model provided the means
to simulate stakeholder’s mental models under alternative scenarios to demonstrate how
feedback behaviour and time delays can affect tourism recovery. Though the model
boundary may be limited to this specific problem, the boundary may be adapted, and
the assumptions adjusted, to explore similar policy questions in the future. This can
include downscaling the model to investigate infection trends at a more local scale and
the transmission of COVID-19 among tourists and the local population in NMB, as well
as incorporating localised socio-economic impacts into the model boundary. Additional
scenarios can also be tested to investigate the effectivity of recommended tourism policies
to future variants. Finally, additional behavioural validation with updated tourism data
could further improve the analysis. This study concludes that there are various levels
of uncertainty that need to be considered during the development of a recovery plan for
the tourism sector or any other economic sector in this regard, but that small changes in
multiple interventions could result in more sustainable recovery pathways.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/systems10040120/s1. Table S1. Model Documentation. File S1.
Model Equations.

https://www.mdpi.com/article/10.3390/systems10040120/s1
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Appendix A

Table A1. Model variables and associated parameter values applied in the multivariate sensitivity
analysis. Parameter values were varied by ±50% of the base value and simulated using a UNI-
FORM distribution.

COVID-19 Sub-Model

Asymptomatic contacts [7; 14; 21]
Infectivity [0.00625; 0.0125; 0.01875]

Immunity duration [90; 180; 270]
Vaccination hesitancy [0.50; 0.70; 0.80]

Hospital capacity (change for scenarios) [1500; 3000; 4500]
ICU fraction [0.10; 0.20; 0.30]

Travel risk perception delay [180; 365; 545]
Governance reaction time (time to perceive severity) [15; 30; 45]

NMB Tourism & Accommodation Sub-Model

Fraction of tourism revenues to NMB tourism budget [0.10; 0.20; 0.30]
Operational costs fraction [0.15; 0.3; 0.45]

Public and Tourist Infrastructure costs [1.5 × 106; 3 × 106; 4.5 × 106]
Public and Tourist Infrastructure condition (t0) [0.6; 0.8; 1]

Fraction of tourism budget to COVID-relief [0.25; 0.5; 0.75]

Coastal Tourism Sub-Model

Marine heath (t0) [0.6; 0.8; 1]

https://ourworldindata.org/explorers/coronavirus-data-explorer
https://ourworldindata.org/explorers/coronavirus-data-explorer
https://exchange.iseesystems.com/public/esteevermeulen/nelson-mandela-bay-covid-19---coastal-and-marine-tourism-recovery-tool
https://exchange.iseesystems.com/public/esteevermeulen/nelson-mandela-bay-covid-19---coastal-and-marine-tourism-recovery-tool
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