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Abstract

:

Simple Summary


COVID-19, caused by a novel coronavirus, SARS-CoV-2, first emerged in China in December 2019, and then spread around the globe with more than 29 million confirmed infections. Immunoinformatics and molecular modelling techniques are time-efficient methods that are used to accelerate the discovery and design of the candidate peptides for vaccine development against SARS-COV-2. Recently, the use of multiepitope vaccines has proved to be a promising immunization strategy against different viruses and other pathogens. In the current study a comprehensive in silico strategy was used to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins which include, spike, main protease, non-structural protein 12 (polymerase), and Nsp13 (helicase) with the help of adjuvants and linkers. Molecular dynamics studies revealed that the MVC displayed favourable molecular interactions with human Toll-like receptors (TLRs), which are known in triggering an innate and adaptive immune response. Furthermore, the MVC was checked for its recombinant production in Escherichia coli using a well-known expression system. The MVC showed a stable three-dimensional structure and could serve as a potential candidate for vaccine production, which warrant further experimental research for validation.




Abstract


The outbreak of 2019-novel coronavirus (SARS-CoV-2) that causes severe respiratory infection (COVID-19) has spread in China, and the World Health Organization has declared it a pandemic. However, no approved drug or vaccines are available, and treatment is mainly supportive and through a few repurposed drugs. The urgency of the situation requires the development of SARS-CoV-2-based vaccines. Immunoinformatic and molecular modelling are time-efficient methods that are generally used to accelerate the discovery and design of the candidate peptides for vaccine development. In recent years, the use of multiepitope vaccines has proved to be a promising immunization strategy against viruses and pathogens, thus inducing more comprehensive protective immunity. The current study demonstrated a comprehensive in silico strategy to design stable multiepitope vaccine construct (MVC) from B-cell and T-cell epitopes of essential SARS-CoV-2 proteins with the help of adjuvants and linkers. The integrated molecular dynamics simulations analysis revealed the stability of MVC and its interaction with human Toll-like receptors (TLRs), which trigger an innate and adaptive immune response. Later, the in silico cloning in a known pET28a vector system also estimated the possibility of MVC expression in Escherichia coli. Despite that this study lacks validation of this vaccine construct in terms of its efficacy, the current integrated strategy encompasses the initial multiple epitope vaccine design concepts. After validation, this MVC can be present as a better prophylactic solution against COVID-19.
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1. Introduction


The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an enveloped, non-segmented positive-sense RNA virus, causes severe respiratory infection [1]. The ongoing 2019–2020 outbreak of coronavirus disease 2019 (COVID-19) [2,3,4] has led to 727,435 deaths with 19,687,156 confirmed cases globally as per 10 August 2020, and the World Health Organization (WHO) has declared COVID-19 a global health emergency [5]. Coronaviruses are highly pathogenic viruses and are known to be contagious, which was revealed by the SARS and MERS (Middle East respiratory syndrome) outbreak in 2002 and 2012 [6,7]. The recent SARS-CoV-2 is considered as the seventh known human coronavirus (HCoV) from the same family after 229E, NL63, OC43, HKU1, MERS-CoV, and SARS-CoV [8].



Like other coronaviruses, SARS-CoV-2 is spherical, having a diameter of about 125 nm, and its genome (~30 kb) contains at least six open reading frames, which encode 16 non-structural proteins and 4 major structural proteins, namely, a spike protein (S), a form of glycoprotein; a membrane protein (M), which consists of the membrane; an envelope protein (E); and a nucleocapsid (N) protein, encoded by the ORFs near the 3′end of the genome. Among these structural proteins, the spike (S) glycoprotein binds to the cellular receptor angiotensin-converting enzyme 2 (ACE2), and is responsible for causing the viral infection [9]. The S precursor protein of SARS-CoV-2 can be proteolytically cleaved into S1 (685 amino acids) and S2 (588 amino acids) subunits [10]. Owing to the integral role of S protein between viral and host cell membrane interactions, it could be a potential target for developing new SARS-CoV-2 vaccines. Previous studies related to the development of anti-SARS-CoV vaccines and therapeutics that target S protein have already been reported [11,12,13,14]. Most of the non-structural proteins play an essential role in viral replication, mainly SARS-CoV-2 main protease (Mpro), also known as chymotrypsin-like protease (3CLpro) [15,16], Nsp13 helicase [17], and the Nsp12 RNA-dependent RNA polymerase [18]. These proteins are also highly conserved among coronaviruses [19].



Owing to the high mortality rate of patients, there is an urgent need to develop vaccines and anti-viral drugs to combat the COVID-19 outbreak. Although phenomenal efforts are in progress in developing vaccines and through repurposing studies [20,21,22], with the advancement in computational biology, it is now possible to accelerate the drug discovery pipeline and vaccine development [23,24,25], and these methods have surpassed the conventional methods [26,27]. Although Felipe and coworkers also reported a live attenuated vaccine using yellow fever 17D as a vector, that can induce SARS-CoV-2 neutralizing antibodies [28]. Numerous studies have been published related to the B- and T-cell epitope-based vaccine development using in silico immunoinformatics methods [29,30,31,32,33,34,35,36].



Keeping in view the urgency situation of the COVID-19 outbreak, developing an effective vaccine is, therefore, a prime research priority. There are some studies on the development of vaccines against SARS-CoV-2 and some vaccines reached have trial phase as well. It will still require 12 to 18 months to develop an effective vaccine [37]. The current study deals with the modelling of novel multiepitope vaccine for SARS-CoV-2 using a cost-effective integrated immunoinformatics approach. This approach has been proved to be promising against viral diseases caused by viruses like yellow fever [38], SARS-CoV [39], influenza [40], Zika [41], Congo Virus [42], and pathogens including L. donovani [43] and S. pneumoniae [44]. Few multiple epitope vaccine strategies proved to be effective against H. pylori infection in the BALB/c mice model [45,46], chronic hepatitis B virus infection [47], and foot-and-mouth disease virus (serotype A) in pigs [48].



In the present study, we effectively designed the multiepitope subunit vaccine construct (MVC) by considering the potential B- and T-cell epitopes of SARS-CoV-2 Spike, Mpro, Nsp-12 polymerase, and Nsp13 helicase proteins. The antigenicity, allergenicity, and physiochemical properties of B- and T-cell epitopes were also measured. Later, the structural analysis of MVC interaction with Toll-like receptors (TLRs) was analyzed through molecular dynamics (MD) simulations and binding free energies were estimated. TLRs establish an important link between innate and adaptive immunity. Engagement of TLR signaling pathways is a promising mechanism for accelerating vaccine responses and is involved in therapeutic immunization against infectious diseases [49]. Thus, the interaction of a multiepitope vaccine construct designed through an integrated modelling approach may trigger innate and specific adaptive immunity by activating TLR signaling pathways and may produce a promising immune response against SARS-CoV-2.




2. Materials and Methods


2.1. Coronavirus Protein Sequences and Structural Information


The primary amino acid sequences of SARS-CoV-2 main protease (Mpro) (306 amino acids), Nsp12 RNA dependent RNA polymerase (932 amino acids), spike (1237 amino acids), and Nsp13 helicase (601 amino acids) proteins were retrieved from GenBank ID: AHZ13508.1. For structural studies, the crystal structures of recently deposited SARS-CoV-2 Mpro (PDB ID: 6LU7) and spike (PDB ID: 6VYB) protein were obtained from PDB, while the homology models of SARS-CoV-2 Nsp12 RNA polymerase and Nsp13 helicase were obtained from our recent study [50]. These homology models were generated from templates that showed 99.83% and 96.08% identities with SARS-CoV Nsp12 (PDB ID: 6NUR) [18], Nsp13 (PDB ID: 6JYT) [17]. These models showed strikingly similar domain architecture with SARS-CoV and were found to be reliable enough to use in epitope identification studies.




2.2. Prediction of Linear and Conformational B-Cell Epitopes


The interaction between the antigenic B-cell epitope and B-lymphocyte causes the B-lymphocytes to differentiate into memory cells and antibody-secreting plasma [51]. B-cell epitope has two significant features, including accessibility to the flexible region and the hydrophilic nature of an immunogen [52]. As per the prediction of Parker hydrophilicity, for surface accessibility, Emini prediction [53], antigenicity scale for Kolaskar and Tongaonkar [54], and flexibility prediction for Karplus and Schulz [55], the analysis was employed arithmetically at IEDB (http://www.iedb.org/). Discontinuous (conformational) epitopes prediction for B-cell was performed using Ellipro from IEDB (http://tools.immuneepitope.org/toolsElliPro/) [56], which used three diverse algorithms such as residues’ protrusion index (PI) [57], adjoining clustering residues liable upon PI, and approximation of protein shape [58].




2.3. Prediction of Potential Cytotoxic T-Lymphocyte (CTL) Epitopes


NetCTL.1.2 server (http://www.cbs.dtu.dk/services/Net CTL) was used to predict the CTL epitopes [59], The eliciting of CTLs happened on the surface of antigen-presenting MHC (major histocompatibility complex) molecules. To assimilate the MHC class I binding, efficiency of TAP transport, and the cleavage of proteasomal C-terminal, NetCTL 1.2 server was employed. HLA (human leukocyte antigen) alleles and peptide lengths both were selected and submitted for prediction of T-cell epitopes as an output. For predicting the TAP transport efficiency, the weight matrix was utilized, while for cleavage of proteasomal C-terminal and MHC class I binding, the ANN (artificial neural network) was employed.




2.4. Epitope Prediction of Helper T-Cell


For the prediction of the epitope of helper T-cell, NetMHCII 2.2 Server was used, which gives a 15-mer epitope for human alleles. NetMHCII 2.2 Server uses an artificial neuron network for the prediction of a peptide with human alleles, that is, HLA-DP, HLA-DR, and HLA-DQ [60]. On the basis of receptor interaction, MHC II epitopes were predicted and deduced from IC50 values, as well as the assigned percentile ranks. The peptides that show a strong interaction have an IC50 value of <50 nM, while those having intermediate and low affinity have IC50 values of <500 and <5000, respectively. Therefore, the percentile rank has a direct relation with IC50 and inverts to the affinity for epitope.




2.5. Multiepitope Vaccine Designing


The MVC was designed by connecting the peptide sequences in a successive manner with the help of suitable linkers. The occurrence of overlapping residues amid the B-cell (BCL), HTL, and CTL epitopes was unwavering and epitopes with overlapping regions were used for multiepitope vaccine design. It has been established that human β-defensins have an important role in presenting the microbial peptides to antigen presenting cells and the inflammatory response, thus enhancing the immunogenicity of the bound antigen; therefore, β-defensins can be used as adjuvants [61,62,63]. Recently, mammals’ β-defensin was documented to have a possible role to confer HIV (human immunodeficiency virus) infection as a mucosal adjuvant; consequently, owing to its adjuvant characteristics against viral infection [64], it was chosen and added to the N- and C-terminal sequences of the vaccine construct. Adjuvants were joined with epitopes at the N- and C-terminal using the EAAAK linker, whereas intra-CTL epitopes were joined using the AAY linker. After the CTL epitope, HTL epitopes were added next to the CTL epitope using the GPGPG linkers, as used in a previous study [64].




2.6. Antigenicity and Allergenicity Estimation of the MVC


To be an effective and safe vaccine candidate, the vaccine candidate should be nonallergic with minimum off-targets effects. The nonallergenic and allergenic behaviors of the MVC were assessed by three servers, AllerTOP V2.0 (http://www.ddg-pharmfac.net/AllerTOP/), AlgPred (http://www.imtech.res.in/raghava/algpred/) and AllergenFP 1.0 [65]. Out of these, the latter categorizes the protein sequence (input) by a k-nearest neighbor algorithm (kNN; k = 3) on the basis of the training set comprising 2210 already known allergens from diverse species and nonallergens (n = 2210) from the similar species. The former assimilates the SVM module for the prediction of the allergenic nature of protein with high accuracy. The MAST/MEME allergen motif was examined with the help of MAST (Motif Allignment and Search Tool), and the allergenic nature was allocated if an identical motif was determined.



Evaluation of antigenicity of the MVC was done using two freely available servers, VaxiJen v2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) [66] and ANTIGENpro (http://scratch.proteomics.ics.uci.edu/), where the latter categorizes the antigen based only on the physio-chemical characteristics of the input protein sequence instead of the sequence placement algorithm. The correctness of the server is relatively high and differs between 70% and 89% based on the target organism. While the former envisages the entire protein antigenicity based on the results obtained by the protein microarray data analysis, it predicts the antigenicity as being independent of the pathogen, but this approach is sequence-based.




2.7. Physiochemical Parameters Evaluation


The vaccine construct sequence was used in ProtParam (http://web.expasy.org/protparam/) [67] to examine its physiochemical properties. The criteria on which the sequences of multiepitope vaccine were examined are theoretical PpI, half-life, instability index, aliphatic index, grand average, and stability profiling of hydropathy.




2.8. Tertiary Structure Prediction and Refinement of MVC


The final vaccine construct was submitted to structure prediction server known as RaptorX (http://raptorx.uchicago.edu/StructurePrediction/predict/) [68] and I-TASSER [69]. It is an exceptional server for protein 3D structures’ predictions on the ab initio method and is able to generate from the template that lies in the twilight zone (<30%). It utilizes an exclusive nonlinear context-specific alignment and prospective consistency algorithm. The generated models were evaluated through MolProbity for all-atom contacts and geometry [70]. The model was selected for further refinement through molecular dynamics simulations that showed reliable Ramachandran evaluations.




2.9. Stability Enhancement of MVC by Disulfide Engineering


Before moving towards the docking protocol, it is essential to enhance the stability of the model through disulfide engineering. It is a novel concept to introduce disulfide bonds to the modelled protein structure. Consequently, the multiepitope model was employed to the Disulfide by Design 2.0 server [71] to achieve disulfide engineering. The protein model was uploaded to identify the residue pairs, which can be utilized for disulfide engineering. To create the disulfide bonds, four residues were selected to mutate them with cysteine residue by the Disulfide by Design 2.0 server.




2.10. Molecular Docking of Vaccine Constructs with TLR4


In order to analyze the binary interaction of MVC with TLRs, protein–protein docking was performed using Cluspro [72,73].The PDB structures of TLR-4 (PDB: 4G8A) and TLR-3 (PDB: 1ZIW) were retrieved from PDB. The multiepitope vaccine model was used as a ligand. Both proteins were prepared accordingly, by removing heteroatoms, and the addition of hydrogens and charges. ClusPro is an automated protein–protein docking server, which generates root mean square deviation (RMSD)-based clustering of 1000 docked conformations. Each representative model is chosen from a cluster of docked models based on the scoring function it uses. The most representative docked conformation from the largest cluster was used for further structural analyses.




2.11. Molecular Dynamics Simulation for TLRs/MVC Complex


Molecular dynamics simulations were performed in two steps: (1) a 50 ns MD simulation was performed to optimize and refine 3D model of multiepitope vaccine construct before docking, and (2) a second 50 ns MD simulations to examine the backbone stability of TLRs/MVC complexes. After MD, MD clustering was performed, which typically takes the representative conformation from the largest cluster (within 1 Angstrom deviation). These clusters are generated based on the deviation over the course of total snapshots (in our case, after every 2 ps, which generated a total of 25,000 snapshots). This analysis considers all meaningful conformations over the time of simulation. All simulations were performed by AMBER simulation package 18 using the same protocol as described in previous immunoinformatics studies [30,32]. Briefly, with stepwise minimization and an equilibration procedure, the solvated system in explicit water molecules (TIP3P) was submitted to a production run at standard temperature (300 K) and pressure (1 bar). The trajectories were collected after every 2 ps for a complete production run, and the CPPTRAJ module was utilized to analyze trajectories. The MD simulation complexes were analyzed using Chimera 1.14.




2.12. Codon Adaptation and In Silico Cloning


The sequence of multiepitope vaccine construct was employed to the online server JCat for reverse translation, and cDNA was obtained, which was submitted for codon optimization [74]. The cDNA was evaluated by codon optimization according to the codon adaptation index (CAI) and GC content of the sequence. The acceptable range of the GC content is 30–70% and the value of CAI varies from 0 to 1. The higher value of CAI indicates a higher level of gene expression [75]. The maximum value of CAI is 1 and is considered ideal, whereas a value of more than 0.8 is also acceptable. After this step, the adapted and optimized sequence of the nucleotides consistent to the design of multiepitope vaccine construct was cloned using the restriction cloning module of SnapGene toll in the vector pET28a (+) of E. coli.




2.13. In Silico Immune Simulation


To check the immunogenic potential of the vaccine construct, an in silico immune simulation approach was employed using the C-immsim server [76]. The position specific scoring matrix approach was used by the server for the analysis. The server used three compartments of mammals for immune stimulation, that is, lymph node, thymus, and bone marrow [77]. The defaults constraints for simulation were employed, which are as follows: simulation volume (10), simulation steps (100), random seed (12345), host HLA selection (MHC Class I A0101 allele, B MHC class I B0702, DR MHC class II DRB1_0101 allele), and the time for the injection was set as 1.





3. Results


In the present research, plausible T-cell and B-cell epitopes (discontinuous and continuous) from SARS-CoV-2 Spike, Mpro, Nsp12 RNA polymerase (RdRp), and Nsp13 helicase proteins were recognized to design peptide vaccines to counter SARS-CoV-2 infection. Most potential epitopes were selected and joined together with appropriate linkers and adjuvant. The 3D model was generated using various online servers, and a reliable model was used for docking and MD simulation studies. Docking and immuno-informatics method are helpful for the prediction of the binding interaction between TLRs and ligand (multiepitope vaccine) complexes, and analysis was done as these are proven useful tools in identifying novel multiepitope vaccines [23,32].



3.1. Antigenic B-Cell Epitope Prediction


Depending on the physicochemical properties of amino acids, which have already been observed in practically determined antigen-based epitopes, Kolaskar and Tongaonkar’s approach was used for predicting antigenic epitopes of provided sequences. Seventy-five percent experimental precision has been reported for this approach [54]. Using this method, 11 antigenic peptides with 9–14 amino acid length were observed, including two heptapeptides from SARS-CoV-2 Mpro (Table 1). Likewise, out of 932 amino acids, 37 antigenic peptides were predicted in SARS-CoV-2 Nsp12 polymerase. For RdRp, the length of the antigenic peptides was 6–29 amino acid along, with ten heptapeptides and nine octapeptides (Table 2). For Nsp13 helicase, 18 antigenic peptides were predicted, and the length of the antigenic peptide was 6–38, with 7 hexapeptides (Table 3). For the spike protein, 46 antigenic peptides were predicted from 1273 amino acids (Table 4).



Moreover, Kolaskar and Tongaonkar’s approach also projected the highest residual score of each amino acid in all investigated proteins. In SARS-CoV-2 Mpro, 211 out of 306 amino acids have greater than 1.000 residual scores. From position 85 to 91, the antigenic peptide (CVLKLKV) having lysine at the 88th position was identified with a maximal residual score of 1.22. The Nsp12-RdRp has 686 residues out of 932 with a residual score above 1.000, and valine at position 473, in the peptide (LFVVEVV) from 470 to 476, has a maximum residual score of 1.246. Likewise, for Nsp13 helicase protein, 479 out of 601 amino acids were predicted with a residual score greater than 1.000, and lysine present at the 28th position in an antigenic peptide from 25 to 31 (LCCKCCY) has a maximum residual score of 1.284. For SARS-CoV-2 S protein, 958 out of 1273 amino acids were predicted to have a residual score higher than 1.000, and leucine at position 8 of the antigenic peptide from position 5 to 11 (LVLLPLV) showed a maximal residual score of 1.261.



A graphical depiction of peptides predicted for B cell from investigated SARS-CoV-2 proteins based on sequence position along the x-axis and antigenic propensity (AP) as the y-axis is shown in Figures S1–S4. Divergence in AP is related to the length of the sequence. The minimum AP score for Mpro was 0.844 and the maximum AP score was 1.22 (A), while the maximum and minimum AP scores of Nsp12, Nsp13, and S protein were 1.246, 1.284, and 1.261, respectively, and 0.858, 0.893, and 0.866, respectively.




3.2. Prediction of Cytotoxic T-Lymphocyte (CTL) Epitopes


An infected cell having antigen-presentation triggers the T-cell to turn out as an effector cell and kill the infected cells. Cell death or self-destruction is detected after the attack of CTLs on effected cells. The pathogen’s peptide fragment and molecule of MHC interact and are exposed on the cell surface of infected cells. CTLs identify the complex of peptide–protein; moreover, as a consequence, infected cells are killed. The processing of fragment of the peptide (antigen), along with its appearance to the T-cell, is achieved through different steps. Peptides are treated in the cytoplasm through proteasome and transferred to the endoplasmic reticulum (ER) later, where MHC is produced. Here, the peptide is transported to the MHC I molecule by the transporter associated with antigen processing (TAP). Afterwards, a complex of peptide–MHC-I is transferred to the surface of the cell. A varied array of peptides is attached to each allelic type of MHC-I protein. The molecule of MHC can interact with peptides strongly as the pathogens attempt to mutate the MHC molecule’s epitope. Therefore, the MHC molecule displays strong binding with a diversity of peptides [78].



Prediction of CTL epitope is a significant in silico tool in designing the vaccine as it decreases the time and necessity for in vitro trials. NetCTL 1.2 server [59] was used for the prediction of CTL epitope. For all investigated SARS-CoV-2 proteins, the peptide sequences were predicted as CTL epitopes based on three main factors, which include their MHC binding capacity, proteasomal cleavage of the peptide from C-terminal, and affinity for the TAP transporter with the default threshold prediction score being >0.75000. Among all the peptides, 11 peptide sequences from S protein, 4 peptides from Mpro, 19 from Nsp12, and 10 from Nsp13 were selected as CTL epitopes. These CTL epitopes were also predicted as an antigenic site. Hence, these peptides can be considered as potential vaccine candidates (Table 5, Table 6, Table 7 and Table 8). A complete list of peptides for these four proteins is also given in Tables S1–S4.




3.3. Structure-Based Epitope Prediction


ElliPro was used to predict the epitopes from the 3D structure of proteins [56]. This advanced program is web-based and used to study the correlation among antigenicity, flexibility, and solvent accessibility of proteins’ structure. Furthermore, differentiation of predicted epitopes based on interactions of protein–antibody is an essential property of this program. ElliPro measures the PI score (protrusion index), which shows the percent of atoms of proteins that spread beyond the molecular mass/bulk as well as those responsible for binding antibodies. On the basis of the PI score (>0.7), five, three, and two discontinuous epitopes were selected for SARS-CoV-2 S, Nsp13 helicase, and Nsp12 polymerase, respectively, while only one epitope was identified for Mpro that showed PI > 0.7. The graphical illustration of discontinuous epitopes is shown in Figure 1, while number of residues and epitope scores are tabulated in Table 9, Table 10, Table 11 and Table 12.




3.4. Epitope Prediction for (HTL) Helper T Lymphocytes


MHC class II epitope, which shows high binding affinity, was predicted for human alleles HLA-DP, HLA-DQ, and HLA-DR based on their IC50 values from Net MHC II 2.2 server. These epitopes were described as HTL epitopes. The epitopes with similar sequences were overlapped to get a single epitope. A total of 21 high binding HTL epitopes were selected for the spike (S), main protease, RdRp, and helicase for the novel multiepitope vaccine (Tables S5–S8).




3.5. Design and Construction of Final Multiepitope Vaccine


The overlapped and high scoring CTL and HTL epitopes found from SARS-CoV-2 S, Mpro, Nsp12 polymerase, and Nsp13 helicase were combined to form the multiepitope vaccine construct (MVC). To increase the immune response, human β-defensin 2 (hβD-2) (PDB ID: 1FD3), the sequence of GIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP and hBD-3 (PDB ID:1KJ6), the sequence of GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK were selected as adjuvants at the N- and C-terminals sequence of the vaccine construct, respectively, with linker EAAK [79,80]. After the adjuvant CTL epitopes were combined using appropriate AAY linkers, HTL epitopes were joined together with GPGPG linkers [81] as displayed in Figure S5. By combining potential CTLs, HTLs epitopes, and adjuvants, a multiepitope vaccine construct of 1057 amino acids was constructed.




3.6. Parametric Evaluation of Physiochemical Properties


By estimating the multiepitope vaccine construct (MVC) using ProtParam server to estimate physicochemical properties [67], it was found that MVC weighed 114.6 kDa. The hypothetical isoelectric point (pI) was 8.15, displaying the basic nature of the MVC, and the assessed in vitro half-life was 30 h in mammals’ reticulocytes [82]. The assessed half-life indicates the time acquired by the protein to remain half of the quantity as originally produced in the cell. The instability index was also predicted to be 35.56 and classified the MVC as stable in nature. The aliphatic index [83] was also examined, which displays the relative volume retained by the aliphatic side chain. It might be reflected as a positive variable for the extension of the thermostability of globular proteins. The attained values of the aliphatic index were found to be 80.93, indicating that, at varied temperatures, the protein is thermostable. The grand average value of Hydropathy [84] signifies the summation of the hydropathy rate and, along with sequence of amino acid, indicates the hydrophilic and hydrophobic nature of the protein. The observed grand average value of Hydropathy for the vaccine protein was found to be 0.158.




3.7. Assessment of Allergenicity and Immunogenicity


The designed subunit of the vaccine was assessed on the allergenic parameter through AllergenFP 1.0 and AlgPredand AllerTOP 2.0 servers. All these servers predicted the non-allergenic nature of MVC. The antigenicity connected to the vaccine subunit was projected through VaxiJen v2.0 servers. According to the outcome of VaxiJen, the antigenicity of the vaccine was 0.4259, displaying it as a plausible antigen. Thus, the attained outcome from servers exhibited a high possibility of the subunit vaccine’s antigenic and non-allergenic nature.




3.8. Structure Prediction and Validation of MVC


In order to analyze the 3D confirmation of MVC, the 1073 amino acid peptide sequence was utilized for the prediction of the 3D model. Multiple softwares were used for modeling, including RaptorX [85] and I-TASSER [86,87], in order to avoid biases. The information of the secondary structure result showed 34% helical, 19% E, and 45% coiled assembly. For homology modeling, the p-value is a good parameter to describe the relative quality of the model and a lower p-value indicates that the quality is good for the modeled structure. The p-value obtained for the MVC structure was 1.29 × 10-6, which is lower and significant. For I-TASSER modeling, the model with the highest C-score was selected. The models generated from both servers were compared and validated through the MolProbity server [70]. The structure with a better M-score (which combines the clash score, rotamer, and Ramachandran estimations into a single score) was utilized for extensive refinement through MD simulations. The refinement included optimizing bond lengths and angles and removing clashes in geometry [88,89,90]. The root mean square deviation (RMSD) was calculated for 50 ns. Figure 2A displays the MD refined 3D-model of MVC and the all-backbone RMSD trajectory is shown in Figure 2B. Initially, the RMSD trajectory of MVC model gradually expanded until 30 ns and reached a value of ~9.5 Å. Later, the RMSD value continued to converge until 50 ns, with a deviation <1 Å. This higher RMSD of the simulated model indicated protein expansion during simulation to attain a more stable conformation. The averaged conformation of the MVC model was extracted from the trajectory and compared with the initial model through Ramachandran evaluations. The MD optimized MVC model showed that 86.2% (924/1073) of all residues were in Ramachandran favoured (>98%) regions, while the initial homology model showed only 72.49% (778/1073 residues) in Ramachandran favoured regions. Moreover, residues placed in Ramachandran favoured regions (>99.8%) increased from 83.8 (901/1073 residues) with 172 (16.02%) outliers to 95.5% (1024/1073) with 49 outliers (4.1%) (Figure 2C).




3.9. Disulfide Engineering for Vaccine Stability


Disulfide engineering was done to stabilize the modelled structure of MVC, by Disulfide by Design v2.0 server [71]. In the evaluation based on other parameters like Chi3 and energy value, only 07 residues pairs were selected as their value came under the permissible range, that is, energy value must be smaller than 2.2 and Chi3 must be between −87 and +97 degrees. Hence, a total of eight mutations were formed at the pairs of residues, named VAL6-ALA157, TYR138-ALA163, VAL360-GLY730, LEU462-TYR474, ALA499-ARG519, SER814-GLY923, GLY816-SER927, and THR934-GLY946.




3.10. Molecular Docking of Vaccine Constructs with TLR3 and TLR4


Molecular docking is the best in silico approach to finding out interactions between protein–protein and protein–ligand complexes [91,92,93,94]. Molecular docking of MVC with TLR4 and TLR3 receptors was performed using ClusPro 2.0, and 30 models were produced [95]. Among these, the complex with the lowest energy was selected. The energy scores attained for TLR3 and TLR4 were –1327.2 and –1270.2, respectively, and subjected to MD simulations to analyze the complex stability. The interaction profile of TLR3 and TLR4 with the MVC showed significant interactions, including H-bonds, salt bridges, and disulfide contacts (Figures S6 and S7). Both hydrogen bonds and salt bridges are particularly important in determining binding specificity [96]. It was observed that MVC established 16 H-bonds with TLR3 and 12 H-bonds with TLR4 within the range of 3.00 Å (Tables S5–S8).




3.11. Molecular Dynamics Simulation for TLRs/MVC Complex


The stability of the TLRs/MVC docked complexes was further investigated by performing MD simulation for a period of 50 ns in an explicit solvent environment at 300 K. The potential energy of the simulation system was also found to be stable throughout the simulation period (data not provided). The MD refined MVC was utilized for docking, and both complexes showed relatively stable RMSD as compared with MVC alone (Figure 2). In the beginning, the MVC experienced small fluctuations, but remained interacted with the hydrophobic groove of TLR4 (Figure 3A) and TLR3 (Figure 3B), and showed consistent stability in the last ~25 ns. The radius of gyration (RoG) and solvent accessible surface area (SASA) analyses were achieved to determine the compactness [97,98] and protein solvent accessible surface area [99] of TLR3 and TLR4 and designed MVC throughout the MD run (Figure 3C–F). The results suggested similar trends in both complexes. The RoG plot (measured in nm) showed no conformational shift, except for small deviations that were evident owing to the flexible linkers utilized, and the overall structure remained stable between 31.5 and 33 nm. The compactness of TLR3 and TLR4 complexed with MVC suggested a strong binding interaction with the designed MVC. A similar description was revealed through SASA analysis (measured in nm2), representing the solvent accessible protein surface and its placement through folding, creating the adjustments in the exposed and buried regions of the surface area of proteins. SASA trajectories in both systems also showed a similar trend throughout the simulation period. The presented analysis suggested a stable structure with a significantly strong binding interaction with the vaccine construct, hence providing insights into the biological system’s stability [97,98].




3.12. Codon Adaptation and In Silico Cloning of the MVC


The reverse translation and codon optimization were performed for the sequence of MVC by the online JCat server [74]. The GC content and codon adaptation index (CAI) were determined out as output from the server. The GC content obtained for MVC was 54.39%, which lies in the acceptable range, that is, from 30% to 70%. Meanwhile, CAI value of MVC was 1, which indicates a high level of expression in the K12 strain of E. coli. Later, the restrictions sites of NdeI and XhoI were added and the MVC sequence was cloned in the pET28a (+) vector (Figure 4). The MVC sequence is represented in yellow with the restriction sites. The sequence of multiepitope vaccine construct was cloned between the 6-histidine residue on both sites, which will help in the purification of MVC.




3.13. Immune Simulation by MVC


The immune simulation response of MVC was determined by C-Immsim server. The MVC generated strong primary responses. It has been shown that the titer scale of combined antibodies, IgM and IgG, is approximate to 10,000/mL, and for the antibody, IgM is close to 7000 titer per ml (Figure 5A). The high level of immunoglobulin accomplishments was distinct with associated antigen reduction in both secondary and tertian responses. The level of soluble cytokine, interferon-gamma (IFN-g) was retained, and it was more than 400,000 ng/mL against the antigen, as shown in Figure 5B.





4. Discussion


The announcement of emergency by the World Health Organization (WHO) on the COVID-19 outbreak urged researchers to develop therapeutics, mainly the identification of drug candidates or vaccines [20]. The use of cost-effective and less time-consuming methods, especially immunoinformatics approaches, haas already assisted the researchers to predict potential antigenic epitopes for the multiepitope-based vaccine [38,39,40,44,75,100,101,102]. The multiple epitope vaccine has a distinctive design concept compared with classical single-epitope based vaccines [101,103,104,105]. The concept behind the scanning of the viral genome to find immunogenic epitopes leads to an elicited immune response without any reversal of viral pathogenesis [106].



To design a multiepitope vaccine, the research focused on the identification of epitopes for potential B and T cells using the immune-informatics approach. An in silico method can be employed using patho-genomics analysis on the genome on a vast scale to identify new vaccines [106,107]. Various limitations are there in the context of appropriate candidate antigens, their immunodominant epitopes, and experimental methods, which include the development of an effective delivery system [108,109]. Investigation of the whole spectrum of probable antigens is achievable through immunoinformatics and with the aid of molecular modelling to analyze the potential binding with host proteins [30,32,38,41,109]. Besides, the difficulty of culturing the pathogens as well as in vitro antigen expression problems can be avoided [102,110]. Some multiple epitope vaccines showed in vivo efficacy with promising protective immunity [45,46,48,103], while some have entered into phase-I clinical trials, including H2NVAC in patients with HER2-expressing ductal carcinoma in situ (DCIS) (NCT03793829), E1602 for patients with metastatic melanoma [111], EMD640744 in patients with advanced solid tumors [104], and TAB9 in non-HIV-1 infected human volunteers [112]. However, designing an effective multi-epitope vaccine remains a great challenge. Hence, estimation of B cell and CTL cell epitopes by different immune-informatics methods is considered to be a vital tool for designing a multi-epitope construct.



In the present research, potential T-cells and B-cell epitopes (discontinuous and continuous) were recognized from SARS-CoV-2 main protease, Nsp12 RNA polymerase, spike, and Nsp13 helicase proteins to design multi-epitope construct (MVC) using adjuvants (hβ defensins) and appropriate linkers. The employed linkers (GPGPG and AAY) were carefully selected because their length, composition, and structure may affect the activity of the domains and overall characteristics of the molecule [113]. For example, as being somewhat basic antigenic domains (isoelectric point pI > 8), a linker that contains more basic amino acids may increase the pI, such as KK [114]. Therefore, basic linkers were avoided and a glycine-rich linker, that is, GPGPG, was chosen for joining potential epitopes that usually improve solubility and allow the adjoining domains to be accessible and act freely [115]. Following this, a reliable MVC model was generated through molecular modeling and optimized accordingly. All-atom backbone stability of MVC was analyzed through molecular dynamics simulation over a period of 50 ns, because the optimal structural stability of MVC is considered a prime aspect in its efficacy [116], and to the trigger immune response by interacting Toll-like receptors (TLRs) signaling, as successful immunization results are accomplished through stimulation of the TLRs [49]. The resulting model showed fewer outliers, while rotamers were adjusted during the simulation. Molecular docking with TLR3 and TLR4 followed by 50 ns MD simulation revealed stability in the overall complex in the last ~20 ns. The designed MVC interacted with TLR3 and TLR4 directly and their molecular interactions were strengthened during MD simulation, which led to reducing the backbone RMSD fluctuation in both TLR/MVC complexes (Figure 3). However, the epitopes were estimated as non-allergenic, showed antigenicity, and predicted cloning in vector pET28a (+) of E. coli, but given the limitation of in silico tools, the expression and efficacy of the designed multiple vaccine construct should be further proven through in vitro and in vivo experiments.




5. Conclusions


COVID-19, after its first emergence in December 2019, widely spread to around 105 countries and the World Health Organization declared it as pandemic. This state of emergency urged to look for effective vaccine candidates and antiviral drugs. The immunoinformatics approach is fast and cost-effective to design and validate the candidate vaccines against such pathogens. In this study, a multiepitope vaccine using spike, Mpro, Nsp-12 polymerase, and Nsp13 helicase proteins of SARS-COV-2 was designed. The epitopes that can induce B- and T-cell mediated immune response were used to build the 3D model of the multiepitope vaccine, which was further validated for its stability and allergenicity. Molecular docking followed by molecular dynamics simulations of MVC with TLR3 and TLR4 was performed, which showed stable interactions of the candidate vaccine with these receptors. Overall, the MVC showed an overall stable structure and could serve as a potential candidate for vaccine production. Although present research is based on an integrated computational approach, further experimental research will be required to validate the effectiveness of the designed vaccine construct.
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Figure 1. 3D representation of discontinuous epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, Mpro, Nsp12 RNA polymerase, and Nsp13 helicase. 






Figure 1. 3D representation of discontinuous epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, Mpro, Nsp12 RNA polymerase, and Nsp13 helicase.



[image: Biology 09 00296 g001]







[image: Biology 09 00296 g002 550] 





Figure 2. Molecular modeling of vaccine construct. (A) Structural representation of multiepitope vaccine construct (MVC) is displayed with regions (helper T lymphocytes (HTL), cytotoxic T-lymphocyte (CTL) epitopes, linkers, and adjuvants) highlighted accordingly. (B) Root mean square deviation trajectory (RMSD) of MVC analyzed over a period of 50 ns molecular dynamics (MD) simulations. (C) Ramachandhran evaluations of MVC before and after refinement through MD simulations. 
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Figure 3. Toll-like receptor (TLR) complexed with a multiepitope vaccine construct (MVC). (A) Conformation of TLR4/MVC and (B) TLR3/MVC complex before and after 50 ns MD simulations, together with the RMSD plot at the bottom indicating the all-atom backbone deviation of TLR (in black) and MVC (in red). (C) Plot of radius of gyration (RoG) and (D) solvent-accessible surface area of TLR4/MVC complex throughout 50 ns MD simulation and TLR3/MVC (E,F). 






Figure 3. Toll-like receptor (TLR) complexed with a multiepitope vaccine construct (MVC). (A) Conformation of TLR4/MVC and (B) TLR3/MVC complex before and after 50 ns MD simulations, together with the RMSD plot at the bottom indicating the all-atom backbone deviation of TLR (in black) and MVC (in red). (C) Plot of radius of gyration (RoG) and (D) solvent-accessible surface area of TLR4/MVC complex throughout 50 ns MD simulation and TLR3/MVC (E,F).



[image: Biology 09 00296 g003]







[image: Biology 09 00296 g004 550] 





Figure 4. In silico cloning of the multiepitope vaccine construct (MVC). The cDNA of the MVC (yellow) was inserted at the upstream of the T7 promoter. 
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Figure 5. Computational immune simulation by C-Immsim using MVC as antigen. (A) Immunoglobulin/antibodies titer in response to antigen injection. (B) Production of interleukin (IL) and cytokines in response to antigen. 
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Table 1. Predicted antigenic B-cell epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro).
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	No.
	Start
	End
	Peptide
	Length





	1
	15
	23
	GCMVQVTCG
	9



	2
	32
	45
	LDDVVYCPRHVICT
	14



	3
	65
	72
	NFLVQAGN
	8



	4
	83
	91
	QNCVLKLKV
	9



	5
	101
	107
	YKFVRIQ
	7



	6
	111
	120
	TFSVLACYNG
	10



	7
	123
	129
	SGVYQCA
	7



	8
	153
	162
	DYDCVSFCYM
	10



	9
	201
	212
	TVNVLAWLYAAV
	12



	10
	244
	253
	QDHVDILGPL
	10



	11 *
	258
	271
	GIAVLDMCASLKEL
	14







* 11 antigenic sites were predicted from the main protease. The underlined residues were also predicted as cytotoxic T-lymphocyte (CTL) epitope.
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Table 2. Predicted antigenic B-cell epitopes of SARS-CoV-2 Nsp12 RNA polymerase.
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	No.
	Start
	End
	Peptide
	Length





	17
	395
	400
	CFSVAA
	6



	3
	50
	56
	KTNCCRF
	7



	8
	171
	177
	ILRVYAN
	7



	10
	201
	207
	IVGVLTL
	7



	13
	327
	333
	GPLVRKI
	7



	20
	557
	563
	VAGVSIC
	7



	21
	573
	579
	QKLLKSI
	7



	22
	585
	591
	ATVVIGT
	7



	26
	670
	676
	GGSLYVK
	7



	28
	725
	731
	HRLYECL
	7



	31
	773
	779
	QGLVASI
	7



	2
	28
	35
	TDVVYRAF
	8



	6
	125
	132
	ADLVYALR
	8



	15
	350
	357
	ELGVVHNQ
	8



	16
	369
	376
	KELLVYAA
	8



	18
	435
	442
	VELKHFFF
	8



	23
	633
	640
	MASLVLAR
	8



	29
	744
	751
	EFYAYLRK
	8



	32
	783
	790
	KSVLYYQN
	8



	34
	825
	832
	DYVYLPYP
	8



	4
	67
	75
	DSYFVVKRH
	9



	25
	658
	666
	ECAQVLSEM
	9



	30
	760
	768
	DDAVVCFNS
	9



	35
	839
	847
	GAGCFVDDI
	9



	36
	859
	867
	FVSLAIDAY
	9



	1
	8
	17
	LNRVCGVSAA
	10



	27
	694
	703
	FNICQAVTAN
	10



	33
	810
	819
	HEFCSQHTML
	10



	7
	144
	154
	EILVTYNCCDD
	11



	9
	183
	193
	RQALLKTVQFC
	11



	14
	335
	345
	VDGVPFVVSTG
	11



	24
	643
	653
	TTCCSLSHRFY
	11



	5
	87
	99
	YNLLKDCPAVAKH
	13



	37 *
	878
	890
	ADVFHLYLQYIRK
	13



	19
	466
	482
	IRQLLFVVEVVDKYFDC
	17



	11
	230
	248
	GVPVVDSYYSLLMPILTLT
	19



	12
	295
	323
	HPNCVNCLDDRCILHCANFNVLFSTVFPP
	29







* 37 antigenic sites were predicted. The underlined residues were also predicted as CTL epitope.
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Table 3. Predicted antigenic B-cell epitopes of SARS-CoV-2 Nsp13 helicase protein.
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	No.
	Start
	End
	Peptide
	Length





	3
	70
	75
	YYCKSH
	6



	5
	207
	212
	DAVVYR
	6



	10
	369
	374
	DIVVFD
	6



	11
	384
	389
	LSVVNA
	6



	13
	423
	428
	NSVCRL
	6



	15
	493
	498
	IGVVRE
	6



	17
	542
	547
	DYVIFT
	6



	12
	394
	400
	KHYVYIG
	7



	16
	522
	528
	ASKILGL
	7



	18 *
	570
	576
	VGILCIM
	7



	1
	4
	11
	ACVLCNSQ
	8



	6
	222
	230
	GDYFVLTSH
	9



	9
	353
	361
	EQYVFCTVN
	9



	4
	78
	87
	PISFPLCANG
	10



	14
	449
	458
	VDTVSALVYD
	10



	7
	237
	250
	APTLVPQEHYVRIT
	14



	8
	292
	325
	AIGLALYYPSARIVYTACSHAAVDALCEKALKYL
	34



	2
	21
	58
	RRPFLCCKCCYDHVISTSHKLVLSVNPYVCNAPGCDVT
	38







* 18 antigenic sites were predicted. The underlined residues were also predicted as CTL epitope.
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Table 4. Predicted antigenic B-cell epitopes of SARS-CoV-2 spike protein.
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	No.
	Start
	End
	Peptide
	Length





	1
	4
	18
	FLVLLPLVSSQCVNL
	15



	2
	34
	41
	RGVYYPDK
	8



	3
	44
	51
	RSSVLHST
	8



	4
	53
	60
	DLFLPFFS
	8



	5
	65
	70
	FHAIHV
	6



	6
	81
	87
	NPVLPFN
	7



	7
	115
	121
	QSLLIVN
	7



	8
	125
	134
	NVVIKVCEFQ
	10



	9
	136
	146
	CNDPFLGVYYH
	11



	10
	168
	174
	FEYVSQP
	7



	11
	210
	216
	INLVRDL
	7



	12
	223
	230
	LEPLVDLP
	8



	13
	239
	248
	QTLLALHRSY
	10



	14
	263
	270
	AAYYVGYL
	8



	15
	272
	278
	PRTFLLK
	7



	16
	288
	295
	AVDCALDP
	8



	17
	333
	339
	TNLCPFG
	7



	18
	359
	371
	SNCVADYSVLYNS
	13



	19
	376
	385
	TFKCYGVSPT
	10



	20
	430
	435
	TGCVIA
	6



	21
	488
	495
	CYFPLQSY
	8



	22
	505
	527
	YQPYRVVVLSFELLHAPATVCGP
	23



	23
	592
	599
	FGGVSVIT
	8



	24
	607
	615
	QVAVLYQDV
	9



	25
	617
	627
	CTEVPVAIHAD
	11



	26
	647
	653
	AGCLIGA
	7



	27
	667
	674
	GAGICASY
	8



	28
	687
	693
	VASQSII
	7



	29
	723
	730
	TTEILPVS
	8



	30
	735
	741
	SVDCTMY
	7



	31
	750
	763
	SNLLLQYGSFCTQL
	14



	32
	781
	788
	VFAQVKQI
	8



	33
	803
	808
	SQILPD
	6



	34
	837
	843
	YGDCLGD
	7



	35
	847
	853
	RDLICAQ
	7



	36
	858
	864
	LTVLPPL
	7



	37
	873
	880
	YTSALLAG
	8



	38
	959
	966
	LNTLVKQL
	8



	39
	973
	979
	ISSVLND
	7



	40
	1003
	1011
	SLQTYVTQQ
	9



	41
	1030
	1037
	SECVLGQS
	8



	42
	1057
	1070
	PHGVVFLHVTYVPA
	14



	43
	1079
	1085
	PAICHDG
	7



	44
	1123
	1132
	SGNCDVVIGI
	10



	45
	1174
	1179
	ASVVNI
	6



	46 *
	1221
	1256
	IAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKF
	36







* 46 antigenic sites were predicted. The underlined residues were also predicted as CTL epitope.
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Table 5. Predicted CTL from SARS-CoV-2 S protein *. TAP, transporter associated with antigen processing.
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Residue Number

	
Peptide Sequence

	
Predicted MHC Binding Affinity

	
Rescale Binding Affinity

	
C-Terminal Cleavage Affinity

	
TAP Transport

	
Prediction Score

	
MHC




	
Efficiency

	
Ligand






	
604

	
TSNQVAVLY

	
0.6559

	
2.7847

	
0.944

	
2.991

	
3.0758

	
yes




	
361

	
CVADYSVLY

	
0.5348

	
2.2705

	
0.9764

	
3.18

	
2.5759

	
yes




	
733

	
KTSVDCTMY

	
0.4908

	
2.084

	
0.9649

	
3.016

	
2.3795

	
yes




	
687

	
VASQSIIAY

	
0.3529

	
1.4986

	
0.9656

	
3.089

	
1.7978136

	
yes




	
136

	
CNDPFLGVY

	
0.2613

	
1.1095

	
0.69

	
2.45

	
1.3355

	
yes




	
261

	
GAAAYYVGY

	
0.2253

	
0.9568

	
0.7608

	
2.969

	
1.2194

	
yes




	
357

	
RISNCVADY

	
0.2106

	
0.8941

	
0.9292

	
3.394

	
1.2032

	
yes




	
285

	
ITDAVDCAL

	
0.235

	
0.9979

	
0.8708

	
0.79

	
1.168

	
yes




	
1237

	
MTSCCSCLK

	
0.226

	
0.9595

	
0.7525

	
0.479

	
1.0963

	
yes




	
50

	
STQDLFLPF

	
0.1974

	
0.8383

	
0.553

	
2.511

	
1.0468

	
yes




	
748

	
ECSNLLLQY

	
0.1413

	
0.6

	
0.5316

	
2.747

	
0.8171

	
yes








* Threshold was set at >0.75000. Bold shows the amino acids that were also predicted as antigenic sites.
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Table 6. CTL prediction from SARS-CoV-2 Main protease *.
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	Residue Number
	Peptide Sequence
	Predicted MHC Binding Affinity
	Rescale Binding Affinity
	C-Terminal Cleavage Affinity
	TAP Transport Efficiency
	Prediction Score
	MHC Ligand





	201
	TVNVLAWLY
	0.6255
	2.6559
	0.8852
	2.957
	2.9365
	yes



	110
	QTFSVLACY
	0.2625
	1.1146
	0.9725
	2.998
	1.4104
	yes



	153
	DYDCVSFCY
	0.2097
	0.8905
	0.9722
	0.9722
	1.1717
	yes



	93
	TANPKTPKY
	0.1676
	0.7118
	0.9755
	2.676
	0.9088
	yes







* Threshold was set at >0.75000. Bold shows the amino acids that were also predicted as antigenic sites.
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Table 7. Predicted CTL from SARS-CoV-2 Nsp12 RdRp *.
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	Residue Number
	Peptide Sequence
	Predicted MHC Binding Affinity
	Rescale Binding Affinity
	C-Terminal Cleavage Affinity
	TAP Transport Efficiency
	Prediction Score
	MHC Ligand





	738
	DTDFVNEFY
	0.7922
	3.3634
	0.8873
	2.458
	3.6194
	yes



	336
	LSFKELLVY
	0.3898
	1.6552
	0.9676
	3.213
	1.961
	yes



	27
	STDVVYRAF
	0.4019
	1.7065
	0.6174
	2.4
	1.9191
	yes



	859
	FVSLAIDAY
	0.3709
	1.5746
	0.7669
	3.096
	1.8444
	yes



	666
	MVMCGGSLY
	0.3637
	1.5441
	0.9482
	3.008
	1.8368
	yes



	758
	LSDDAVVCF
	0.3143
	1.3345
	0.9556
	2.412
	1.5985
	yes



	686
	TTAYANSVF
	0.2963
	1.258
	0.4772
	2.663
	1.4627
	yes



	762
	AVVCFNSTY
	0.2435
	1.0339
	0.9754
	3.146
	1.3375
	yes



	463
	MCDIRQLLF
	0.2518
	1.0691
	0.1005
	2.436
	1.206
	yes



	233
	VVDSYYSLL
	0.2332
	0.9901
	0.7134
	0.834
	1.1388
	yes



	700
	VTANVNALL
	0.2007
	0.8523
	0.9705
	1.166
	1.0562
	yes



	818
	MLVKQGDDY
	0.1793
	0.7614
	0.8328
	3.079
	1.0403
	yes



	823
	GDDYVYLPY
	0.1821
	0.7733
	0.8456
	2.213
	1.0108
	yes



	879
	DVFHLYLQY
	0.1677
	0.7119
	0.9529
	3.013
	1.0055
	yes



	876
	EYADVFHLY
	0.1624
	0.6894
	0.9603
	2.953
	0.9811
	yes



	230
	GVPVVDSYY
	0.1504
	0.6386
	0.9521
	2.923
	0.9276
	yes



	434
	SVELKHFFF
	0.1454
	0.6176
	0.9285
	2.636
	0.8886
	yes



	334
	FVDGVPFVV
	0.1739
	0.7382
	0.8437
	0.191
	0.8743
	yes



	645
	CCSLSHRFY
	0.1586
	0.6732
	0.274
	2.91
	0.8598
	yes







* Threshold was set at >0.75000. Bold shows the amino acids that were also predicted as antigenic sites.
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Table 8. Predicted CTL from SARS-CoV-2 Nsp13 helicase *.






Table 8. Predicted CTL from SARS-CoV-2 Nsp13 helicase *.





	Residue Number
	Peptide Sequence
	Predicted MHC Binding Affinity
	Rescale Binding Affinity
	C-Terminal Cleavage Affinity
	TAP Transport Efficiency
	Prediction Score
	MHC Ligand





	57
	VTDVTQLYL
	0.4708
	1.9988
	0.6073
	0.68
	2.1239
	yes



	56
	DVTDVTQLY
	0.289
	1.2271
	0.9651
	2.704
	1.5071
	yes



	535
	SSQGSEYDY
	0.2761
	1.1724
	0.8149
	2.847
	1.437
	yes



	238
	PTLVPQEHY
	0.1794
	0.7617
	0.8719
	2.595
	1.0222
	yes



	448
	IVDTVSALV
	0.1991
	0.8453
	0.8977
	0.133
	0.9866
	yes



	574
	CIMSDRDLY
	0.1634
	0.6937
	0.1836
	3.125
	0.8775
	yes



	347
	KVNSTLEQY
	0.1391
	0.5907
	0.8156
	2.971
	0.8616
	yes



	245
	HYVRITGLY
	0.1102
	0.4678
	0.9598
	3.009
	0.7622
	yes



	85
	ANGQVFGLY
	0.1141
	0.4845
	0.9132
	2.746
	0.7588
	yes



	538
	GSEYDYVIF
	0.1401
	0.5947
	0.3528
	2.203
	0.7578
	yes







* Threshold was set at >0.75000. Bold shows the amino acids that were also predicted as antigenic sites.
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Table 9. Conformational epitopes of SARS-CoV-2 Mpro.






Table 9. Conformational epitopes of SARS-CoV-2 Mpro.





	No.
	Residues
	Number of Residues
	Score





	1
	A:S1, A:G2, A:F3, A:A211, A:V212, A:I213, A:N214, A:G215, A:D216, A:R217, A:W218, A:F219, A:L220, A:N221, A:R222, A:F223, A:T224, A:T225, A:T226, A:L227, A:N228, A:D229, A:F230, A:N231, A:L232, A:V233, A:A234, A:M235, A:K236, A:Y237, A:Y239, A:E240, A:P241, A:L242, A:T243, A:Q244, A:D245, A:V247, A:D248, A:L250, A:G251, A:P252, A:S254, A:A255, A:Q256, A:T257, A:G258, A:I259, A:A260, A:V261, A:L262, A:D263, A:A266, A:S267, A:K269, A:E270, A:L271, A:L272, A:Q273, A:N274, A:G275, A:M276, A:N277, A:G278, A:R279, A:T280, A:I281, A:L282, A:G283, A:S284, A:A285, A:L286, A:C300, A:S301, A:G302
	75
	0.716
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Table 10. Conformational epitopes of SARS-CoV-2 S protein.






Table 10. Conformational epitopes of SARS-CoV-2 S protein.





	No.
	Residues
	Number of Residues
	Score





	1
	A:L119, A:T120, A:K121, A:Y122, A:T123, A:D126, A:D135, A:E136, A:G137, A:N138, A:C139, A:D140, A:T141, A:K143, A:E144, A:I145, A:L146, A:V147, A:T148, A:Y149, A:N150, A:C151, A:C152, A:D153, A:D154, A:D155, A:Y156, A:F157, A:N158, A:K159, A:W162, A:Y163, A:N168, A:P169, A:D170, A:R173, A:V174, A:N177, A:L178, A:E180, A:R181, A:R183, A:Q184, A:A185, A:L187, A:K188, A:T189, A:V190, A:Q191, A:F192, A:C193, A:D194, A:A195, A:M196, A:R197, A:N198, A:A199, A:G200, A:I201, A:V202, A:G203, A:V204, A:L205, A:T206, A:D208, A:N209, A:Q210, A:D211, A:L212, A:N213, A:G214, A:N215, A:W216, A:Y217, A:D218, A:F219, A:G220, A:D221, A:F222, A:I223, A:Q224, A:T225, A:T226, A:P227, A:G228, A:S229, A:G230, A:V231, A:P232, A:V233, A:V234, A:A250, A:D284, A:K288, A:Y289
	95
	0.728



	2
	A:D269, A:L270, A:L271, A:K272, A:Y273, A:D274, A:F275, A:E277, A:E278, A:K281, A:T324, A:L329, A:V330, A:R331, A:K332, A:I333, A:F334, A:V335, A:D336, A:G337, A:V338, A:P339, A:F340, A:V341, A:V342, A:S343, A:T344, A:H355, A:N356, A:Q357, A:D358, A:V359, A:N360, A:L361, A:H362, A:S363, A:S364, A:R365, A:L366, A:S367, A:F368, A:K369, A:E370, A:L371, A:L372, A:V373, A:Y374, A:D377, A:P378, A:A379, A:M380, A:H381, A:A382, A:A383, A:S384, A:G385, A:N386, A:L387, A:L388, A:L389, A:D390, A:K391, A:R392, A:T393, A:A399, A:A400, A:L401, A:T402, A:N403, A:N404, A:V405, A:A406, A:F407, A:Q408, A:T409, A:V410, A:K411, A:P412, A:G413, A:N414, A:F415, A:N416, A:K417, A:D418, A:F419, A:Y420, A:D421, A:F422, A:A423, A:V424, A:S425, A:K426, A:G427, A:F428, A:F429, A:K430, A:E431, A:G432, A:S433, A:S434, A:V435, A:E436, A:L437, A:K438, A:H439, A:F440, A:F441, A:F442, A:A443, A:Q444, A:D445, A:G446, A:N447, A:C487, A:I488, A:N489, A:A490, A:N491, A:Q492, A:V493, A:D517, A:S518, A:M519, A:S520, A:Y521, A:E522, A:D523, A:Q524, A:D525, A:A526, A:L527, A:A529, A:Y530, A:T531, A:K532, A:R533, A:N534, A:V535, A:I536, A:Y546, A:A550, A:F594, A:Y595, A:G596, A:H599, A:N600, A:K603, A:S607, A:D608, A:V609, A:E610, A:N611, A:P612, A:H613, A:H642, A:T643, A:T644, A:C645, A:C646, A:S647, A:H650, A:G670, A:G671, A:T710, A:D711, A:G712, A:N713, A:K714, A:I715, A:A716, A:D717, A:K718, A:Y719, A:V720, A:R721, A:N722, A:L723, A:R726, A:C730, A:V737, A:D738, A:T739, A:D740, A:F741, A:N743, A:E744, A:K751, A:H752, A:N767, A:S768, A:T769, A:Y770, A:S772, A:Q773, A:G774, A:L775, A:V776, A:T801, A:E802, A:T803, A:D804, A:L805, A:T806, A:K807, A:G808, A:M818, A:L819, A:V820, A:K821, A:Q822, A:G823, A:D824, A:D825, A:Y826, A:V827, A:Y828, A:L829, A:P832, A:D833, A:P834, A:L838, A:G839, A:G841, A:C842, A:F843, A:V844, A:D845, A:D846, A:I847, A:V848, A:K849, A:T850, A:D851, A:G852, A:T853, A:L854, A:M855, A:I856, A:E857, A:F859, A:V860, A:A863, A:I864, A:A866, A:Y867, A:P868, A:L869, A:T870, A:K871, A:H872, A:P873, A:N874, A:Q875, A:E876, A:Y877, A:A878, A:D879, A:V880, A:F881, A:H882, A:L883, A:Y884, A:L885, A:Q886, A:Y887, A:I888, A:R889, A:K890, A:L891, A:H892, A:D893, A:E894, A:L895, A:T896, A:G897, A:H898, A:M899, A:L900, A:D901, A:M902, A:Y903, A:S904, A:V905, A:M906, A:L907, A:T908, A:N909, A:D910, A:N911, A:T912, A:S913, A:R914, A:Y915, A:W916, A:E917, A:P918, A:E919
	297
	0.719










[image: Table] 





Table 11. Conformational epitopes from SARS-CoV-2 Nsp12 polymerase.






Table 11. Conformational epitopes from SARS-CoV-2 Nsp12 polymerase.





	No.
	Residues
	Number of Residues
	Score





	1
	A:D1139, A:P1140, A:L1141, A:Q1142, A:P1143, A:E1144, A:L1145, A:D1146
	8
	0.975



	2
	A:Y707, A:S708, A:N709, A:N710, A:S711, A:I712, A:A713, A:I714, A:P715, A:T716, A:N717, A:Q1071, A:K1073, A:N1074, A:F1075, A:T1076, A:T1077, A:A1078, A:P1079, A:A1080, A:I1081, A:C1082, A:H1083, A:D1084, A:G1085, A:K1086, A:A1087, A:H1088, A:F1089, A:P1090, A:R1091, A:E1092, A:G1093, A:V1094, A:F1095, A:V1096, A:S1097, A:N1098, A:G1099, A:T1100, A:H1101, A:W1102, A:F1103, A:V1104, A:T1105, A:Q1106, A:R1107, A:F1109, A:Y1110, A:E1111, A:P1112, A:Q1113, A:I1114, A:I1115, A:T1116, A:T1117, A:D1118, A:N1119, A:T1120, A:F1121, A:V1122, A:S1123, A:G1124, A:N1125, A:C1126, A:D1127, A:V1128, A:V1129, A:I1130, A:G1131, A:I1132, A:V1133, A:N1134, A:N1135, A:T1136, A:V1137, A:Y1138
	77
	0.845



	3
	A:L335, A:C336, A:P337, A:F338, A:G339, A:E340, A:V341, A:F342, A:N343, A:A344, A:T345, A:R346, A:F347, A:A348, A:S349, A:V350, A:Y351, A:A352, A:W353, A:N354, A:R355, A:K356, A:R357, A:I358, A:S359, A:N360, A:C361, A:V362, A:A363, A:D364, A:Y365, A:S366, A:V367, A:L368, A:Y369, A:N370, A:S371, A:A372, A:S373, A:F374, A:S375, A:T376, A:F377, A:K378, A:C379, A:Y380, A:L390, A:C391, A:F392, A:T393, A:N394, A:V395, A:Y396, A:A397, A:D398, A:S399, A:F400, A:V401, A:I402, A:R403, A:G404, A:D405, A:E406, A:V407, A:R408, A:Q409, A:I410, A:A411, A:P412, A:G413, A:Q414, A:T415, A:G416, A:K417, A:I418, A:A419, A:D420, A:Y421, A:N422, A:Y423, A:K424, A:L425, A:P426, A:D427, A:D428, A:F429, A:T430, A:G431, A:C432, A:V433, A:I434, A:A435, A:W436, A:N437, A:S438, A:N439, A:N440, A:L441, A:D442, A:S443, A:Y449, A:N450, A:Y451, A:L452, A:Y453, A:R454, A:P491, A:L492, A:Q493, A:S494, A:Y495, A:G496, A:F497, A:Q498, A:P499, A:T500, A:V503, A:G504, A:Y505, A:Q506, A:P507, A:Y508, A:R509, A:V510, A:V511, A:V512, A:L513, A:S514, A:F515, A:E516, A:L517, A:L518, A:H519, A:A520, A:P521, A:A522, A:T523, A:V524, A:C525, A:G526, A:P527, A:K528
	142
	0.799



	4
	A:F559, A:L560, A:P561, A:F562, A:Q563
	5
	0.789



	5
	A:F79, A:D80, A:N81, A:P82, A:V83, A:L84, A:P85, A:I100, A:I101, A:R102, A:G103, A:W104, A:I105, A:T108, A:T109, A:L110, A:D111, A:S112, A:K113, A:T114, A:Q115, A:S116, A:L117, A:L118, A:I119, A:V120, A:N121, A:N122, A:A123, A:T124, A:N125, A:V126, A:V127, A:I128, A:K129, A:V130, A:C131, A:E132, A:F133, A:Q134, A:F135, A:C136, A:N137, A:D138, A:P139, A:F140, A:L141, A:G142, A:E156, A:F157, A:R158, A:V159, A:Y160, A:S161, A:S162, A:A163, A:N164, A:N165, A:C166, A:T167, A:F168, A:E169, A:Y170, A:V171, A:S172, A:Q173, A:P174, A:F175, A:L176, A:T236, A:R237, A:F238, A:Q239, A:T240, A:L241, A:L242, A:A243, A:L244, A:H245, A:R246
	80
	0.756
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Table 12. Conformational epitopes from SARS-CoV-2 Nsp13 helicase.






Table 12. Conformational epitopes from SARS-CoV-2 Nsp13 helicase.





	No.
	Residues
	Number of Residues
	Score





	1
	A:A1, A:V2, A:G3, A:A4, A:C5, A:L7, A:C8, A:N9, A:S10, A:Q11, A:T12, A:S13, A:L14, A:R15, A:C16, A:G17, A:F24, A:L25, A:C26, A:C27, A:K28, A:C29, A:C30, A:Y31, A:D32, A:V34, A:I35, A:S36, A:T37, A:S38, A:H39, A:K40, A:L41, A:V42, A:L43, A:S44, A:V45, A:N46, A:P47, A:Y48, A:V49, A:C50, A:N51, A:A52, A:P53, A:G54, A:C55, A:D56, A:V57, A:T58, A:D59, A:V60, A:T61, A:Q62, A:L63, A:Y64, A:L65, A:G66, A:G67, A:M68, A:S69, A:Y70, A:Y71, A:C72, A:K73, A:S74, A:H75, A:K76, A:P77, A:P78, A:I79, A:S80, A:F81, A:P82, A:L83, A:C84, A:A85, A:N86, A:G87, A:Q88, A:V89, A:F90, A:G91, A:L92, A:Y93, A:K94, A:N95, A:T96, A:C97, A:V98, A:G99, A:S100, A:D101, A:N102, A:V103, A:T104
	96
	0.761



	2
	A:D344, A:K345, A:F346
	3
	0.74



	3
	A:G150, A:I151, A:A152, A:T153, A:V154, A:R155, A:E156, A:V157, A:L158, A:S159, A:D160, A:R161, A:E162, A:L163, A:H164, A:L165, A:S166, A:W167, A:E168, A:V169, A:G170, A:K171, A:P172, A:R173, A:G184, A:Y185, A:R186, A:V187, A:T188, A:K189, A:N190, A:S191, A:K192, A:V193, A:Q194, A:I195, A:G203, A:D204, A:Y205, A:G206, A:D207, A:A208, A:V209, A:Y217, A:K218, A:L219, A:N220, A:V221, A:G222, A:D223, A:Y224, A:F225
	52
	0.738











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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