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Simple Summary: Dental implants are becoming an accepted tool, and thousands of implants are
placed every year by specialists and general practitioners. However, more than 10% of bone surgeries
and related procedures can show healing complications as a consequence of infections, tissue damage,
or inadequate blood supply. In particular, a deficient blood supply impacts on the optimal healing
process because of altered oxygen delivery to cells in the wound and a decrease in their energy
supply. Researchers showed how red and infrared light affects key cellular pathways by interacting
with specific photoacceptors located within the cell, particularly in mitochondria. Low-level laser
therapy or photobiomodulation (PBM), as the recent medical subject heading defines it, is based on a
light–cell interaction, which modifies cell metabolism by increasing oxygen consumption and ATP
production through mitochondria. Although not all aspects of this interconnection are completely
described, many in vitro and in vivo studies showed the benefit of PBM in wound defect management.
For instance, treatment of bone with PBM results in a greater amount of new-formed osteoblasts
and matrix, an increase in collagen synthesis, and microvascular reestablishment. In our review,
we highlight the osteoblast–light interaction, and the in vivo therapeutic tool of PBM for socket
preservation is discussed.

Abstract: Bone defects are the main reason for aesthetic and functional disability, which negatively
affect patient’s quality of life. Particularly, after tooth extraction, the bone of the alveolar process resorbs,
limiting the optimal prosthetic implant placement. One of the major pathophysiological events in
slowly- or non-healing tissues is a blood supply deficiency, followed by a significant decrease in cellular
energy amount. The literature shows that photons at the red and infrared wavelengths can interact with
specific photoacceptors located within the cell. Through this mechanism, photobiomodulation (PBM)
can modify cellular metabolism, by increasing mitochondrial ATP production. Here, we present
a review of the literature on the effect of PBM on bone healing, for the management of socket
preservation. A search strategy was developed in line with the PRISMA statement. The PubMed
and Scholar electronic databases were consulted to search for in vivo studies, with restrictions on
the year (<50 years-old), language (English), bone socket preservation, and PBM. Following the
search strategy, we identified 269 records, which became 14, after duplicates were removed and
titles, abstract and inclusion-, exclusion-criteria were screened. Additional articles identified were 3.
Therefore, 17 articles were included in the synthesis. We highlight the osteoblast–light interaction,
and the in vivo therapeutic tool of PBM is discussed.
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1. Introduction

Regeneration of bone tissue after oral and maxillofacial surgery reconstruction remains a challenge
in medicine and dentistry. Bone defects are the main reason for aesthetic and functional disability and
negatively affect a patient’s quality of life. A primary objective after bone tissue surgery is to restore
the natural morphology and function of the impacted region [1–3]. Bone and bone-substitute grafts are,
in different ways, the gold standards for bone grafting, due to their peculiar characteristics in containing
bone matrix proteins and osteogenic cells, which support bone growth [3,4]. However, they might show
postoperative complications, which are seen in at least 30,000 patients per year worldwide [2]. In the
dentistry field, dental implants are more commonly accepted tools, and thousands of implants are
placed every year by specialists and general practitioners. However, more than 10% of bone surgeries
and related procedures can have healing complications as a consequence of infections, tissue damage,
or inadequate blood supply and cell energy default, which lead to the alveolar bone reabsorption after
tooth extraction [5].

Light at red and infrared (IR) wavelengths can affect key cellular pathways of life-forms. Indeed,
in a previous review [6], we highlighted that the interaction between the non-plant cell and red/IR light
wavelengths, results in an ambiguous cellular communication pathway, which is mediated by ATP,
ROS, or calcium, and which leads to the manipulation of energetic cellular metabolism; this is also
known by the term photobiomodulation (PBM), formerly known as low-level laser therapy (LLLT).
PBM can, in this way, modulate tissue inflammation, stimulate growth factor expression and cell
proliferation, and accelerate the healing processes [7]. Therefore, PBM might be a reliable method to
support bone regeneration and the management of socket preservation. In this review, we explore the
osteoblast–light interaction, and the in vivo therapeutic tool of PBM is discussed.

Particularly, we present a review of the literature on the effect of PBM on socket bone preservation,
with the scope to point out both its in vivo effect and its support in the management of alveolar
bone healing.

1.1. The Challenge of Socket Preservation

Different patterns of bone resorption might occur after tooth extraction. It is difficult to predict the
final ridge contour and dimensions because of the remodeling of alveolar tissues [8], which considerably
affects oral rehabilitation with dental implants and other prosthetic tools. The socket healing process
might be conceptualized as a sequence of biological steps occurring after tooth extraction, to fill the
dental alveolus with bone tissue [9]. Essentially, following a tooth extraction, a defensive fight against
infection occurs via polymorphonucleocyte cell migration and coagulum formation in the impacted
area. Fast angiogenesis takes place and it is accompanied and followed by an osteoclastic activity,
which carries out the bone breakdown to create gaps within the bone and to promote step-by-step
remodeling [10,11]. After eight weeks of healing, up to a 50% reduction of vertical bone wall height
and a 20% horizontal bone resorption might be experienced by the patient. Over 12 months, 50%
of the horizontal width of the ridge might disappear. Basically, the literature suggests that, within
the first three months, almost two-thirds of bone reabsorption takes place [9]. Bone deformities from
tooth removal might be partially avoided and repaired by a procedure called socket preservation or
alveolar ridge preservation [12,13]. Socket preservation consists of conservative procedures designed
to maintain the volume of bone after the extraction. It helps counteract bone resorption and reduces
the need for later bone augmentation, in anticipation of a fixed partial denture-pontic or implant
placement. Therefore, socket preservation supports implant success and durability by minimizing
bone resorption and increasing bone formation [13,14].
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Many techniques, materials, and complementary therapies were described in recent years to
improve socket preservation for extraction site grafting. A number of graft materials could be used [15]:

1. Autogenous Grafts: Grafts transferred from one position to another within the same individual.
This type of graft comprises cortical bone or cancellous bone and marrow, and is harvested either
from intraoral or extraoral donor sites.

2. Allogeneic grafts: Grafts transferred between genetically dissimilar members of the same species.
Frozen cancellous bone and marrow and freeze-dried bone are used.

3. Xenogenic grafts: Grafts taken from a donor of another species.
4. Alloplastic materials: Synthetic or inorganic implant materials that are used as substitutes for

bone grafts.

The action of the grafting material used could be differentiated by [16,17]:

1. Osteoproliferative action (osteogenetic): New bone is formed by bone-forming cells (osteoblasts)
contained in the grafted material; this is typical of autogenous grafts.

2. Osteoconductive action: The grafted material does not contribute to new bone formation per se
but serves as a scaffold for bone formation originating from the adjacent host bone; this happens
with xenogenic and alloplastic grafts.

3. Osteoinductive action: Bone formation is induced in the surrounding soft tissue immediately
adjacent to the grafted material; the most widely studied type of osteoinductive cell mediator is
the bone morphogenetic protein (BMP) family.

The clinician, therefore, has a wide variety of graft materials with different proprieties that could
be used for the clinical procedure; it is up to the clinician to choose the best material for the right case.
Basically, socket preservation is done to preserve the alveolar space derived from the extraction of
the tooth. The main aim of this technique is to keep the space in the alveolar socket and prevent the
collapse and resorption of the bone all around. The clinician needs to choose the right graft material
by evaluating the clinical condition of the alveolar socket, such as wall integrity, surgical protocol,
and healing pattern. In this way, it is possible to achieve little bone resorption of the bone, which results
in a minor requirement for bone regeneration in the patient [18].

1.2. Laser Light–Osteoblast Interaction

The light–cell interaction is well-known in plant cells, where during the first phase of chlorophyll
photosynthesis (light phase), solar energy is absorbed by chlorophyll and other pigments located
in the membranes of thylakoids, inside the chloroplasts [19]. However, light–cell interactions are
also described in non-plant cells, such as non-photosynthesizing prokaryotic and protozoan cells
and animal cells [6]. When a photon interacts with a specific photoacceptor, its energy is absorbed
to generate high-energy electrons. The excited molecule can lose its energetic status in the form
of heat or fluorescence emission, or the absorbed light energy can be transferred to a photosystem
molecule as an excited electron or state. In this way, the photosystem converts the photon’s energy
into chemical energy, thanks to the tricky process of electron transport and a proton gradient, ending
with the conversion of ADP to ATP [19]. In plants, this process occurs in the chloroplast, whereas it
occurs in photoacceptors in bacteria and the conversion of ADP takes place in the inner part of the cell
membrane. In other eukaryotic cells, electron transport occurs in the mitochondrial respiratory chain.
This close interconnection between chloroplasts and mitochondria reflects their common origin via
their bacterial ancestors and the parallel and convergent evolution of endosymbiont models [20].

Particularly, Fe-protoporphyrin (heme), Fe–S clusters, and chromophore proteins with Cu2+

centers of complex IV in the mitochondrial inner membrane respiratory chain show suitable features to
be photoacceptors. Evidence based on the literature points out that cytochrome c oxidase (complex IV)
exhibits evident absorption peaks at the red (600–700 nm) and near-infrared (NIR) (760–900 nm)
wavelengths (according to its precise oxidation state) [21]; complexes I and II are not affected by light
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in this spectrum, while at 808 nm, complex III is poorly stimulated [22]. However, by increasing
the wavelength to 1064 nm, the photon and mitochondrial complex interaction changes and while
the I, III, IV, and V complexes are affected, the extrinsic mitochondrial membrane complex II and
mitochondrial matrix enzymes seem to not be receptive to photons at this wavelength [23]. It is,
however, of interest to take into account that other photoacceptors can exist and be involved in the
ATP-, ROS-, and calcium-dependent cellular pathways, following red and IR light stimulation, such as
water, transient receptor potential-V cation channels, and cellular membranes [6,24,25]. Consequently,
photons can affect animal cell behavior; this medical subject heading is defined as PBM, previously
known as low-level laser therapy.

However, the mechanisms through which PBM works are multifaceted and are involved in
versatile biological actions such as gene expression, energy metabolism, cell proliferation, differentiation,
survival, and cell death (please see review [6] and the cited literature). The fate of PBM therapy
is closely related to a wide range of parameters that can be applied, such as wavelength [unit of
measurement (u.m.) = nanometers (nm)], energy [u.m. = Joule (J)], fluence, i.e., the optical energy per
unit area at some location (u.m. = J/cm2), power [u.m. = Watt (W)], power density (power per unit area.
u.m. = W/cm2), pulse, or continuous mode of irradiation, treatment duration (s), and repetitions [26].

Concerning the in vitro approach on bone, the best-studied wavelength range, 600–700 nm,
clearly showed that pre-osteoblast proliferation and viability could be positively affected [27–31]
or not influenced [32–37] by PBM, depending on the specific laser therapy parameters employed.
Particularly, the viability and the proliferation of pre-osteoblast cells were affected by an increase in
matrix metalloproteinase (MMP-2) activity and activation of the extracellular signal-regulated kinase
(ERK1/2) pathway [31], which are involved in the control of cell proliferation and cell death [38].
Similarly, pre-osteoblast differentiation homeostasis is also strongly modulated (or not affected)
by differentiation markers and matrix mineralization such as fibroblast growth factor (bFGF) and
insulin-like growth factor-1 (IGF-1) [28], both involved as autocrine and paracrine mediators of
bone cell replication and differentiation. The IGF-induced PI3-kinase-Akt signaling cascade is
essential for bone morphogenetic protein (BMP) 2, runt-related transcription factor (RUNX) [37],
osteopontin [30,37], osteocalcin [36], collagen type I [29,31,36], and bone sialoprotein [27] expression.
Similarly, the 800–900 nm wavelength range, which like 900–1000 nm better penetrates tissues than
shorter wavelengths, positively [35,39–42] or negatively [35,36] affects both the proliferation and
viability of pre-osteoblasts after PBM; in some cases, cells are not influenced [43,44]. Pre-osteoblast
differentiation is likewise modulated by the 800–900 nm range PBM, by showing an increase in
differentiation markers [37,39,41,42,45–47], a decrease [36] or no response [43,44].

Lastly, wavelengths higher than 900 nm are not extensively investigated, compared to shorter
wavelengths. They can affect pre-osteoblast differentiation in vitro as well as proliferation and viability,
although the phenomena was only described macroscopically [48–50]. However, Hanna et al. [1]
clearly showed that 980 nm laser light improves pre-osteoblast viability and differentiation by inducing
Wnt signaling and the SMAD2/3-β-catenin pathway. In a prospective analysis and following the
review of Hosseinpour et al. [51], PBM administration showed promising results in vitro for bone
tissue regeneration processes, via the upregulation of numerous osteogenic factors that facilitate
bone formation.

2. Methods

Our review was carried out in line with the PRISMA guidelines. Papers were independently
searched by three authors (A.A., E.C., S.A.) on the PubMed and Scholar databases. The following
keywords were applied to comply with the strategy investigation: “low-level laser therapy OR
photobiomodulation OR laser biostimulation OR laser phototherapy” AND “bone augmentation OR
alveolar preservation OR socket preservation OR ridge preservation”. Additional studies were also
identified from the references. Articles were listed and duplicates were deleted by the three authors.
They also initially screened the works by title and abstracts, according to the inclusion and exclusion
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criteria. Inclusion criteria were—(1) studies published in English in indexed journals on Scopus or Web
of Science; (2) works published between 1 January 1970 and November 2020; (3) in vivo studies on
animal models or human subjects; (3) type of LED or laser employed and treatment parameters were
clearly described; and (4) therapies were immediately traceable to PBM. Exclusion criteria included
(1) in vitro studies; (2) LED or laser therapies not adhering to the principles of PBM; and (3) study not
focused on socket preservation. The selection process is available in Figure A1 in Appendix A and the
included papers are shown in Tables 1 and 2.

3. Results

Seventeen out of 269 articles selected by PubMed, Scholar, and from article references were
judged to be eligible for the review. Fifty-three per cent of those were performed on animals and the
remainder on humans. Among the animal studies, 67% were performed using rats, 22% using rabbits
and 11% on dogs. One rat group was also exposed to gamma rays and another to bisphosphonates.
A group was composed of diabetic rats. Human subjects were prevalently healthy, but in one case
the patients were affected by liver diseases. Additionally, 75% of the studies were performed without
biomaterial or allograft support for bone regeneration; only 25% included these materials. The in vivo
studies were set up prevalently with diode lasers and using wavelengths between 808 nm and 940 nm
or higher; only two studies used 780, 670, and 632.8 nm. These last wavelengths did not show
an effect on bone regeneration and socket preservation, while the others induced improvements.
However, Mozzati et al. [52,53] pointed out that 904–910 nm diode irradiation positively affected socket
inflammation but had no effect on bone in the time windows considered. The irradiation modality was
heterogeneous and prevalently performed every day for more than 5 days, up to 15 days, but some
experiments were designed with only three irradiations delivered on days 0, 3, and 5, after surgery.
Socket preservation was prevalently (56%) evaluated by histomorphological analysis and micro-CT,
while 25% assessed osteogenic protein expression and 19% used both of these methods. A schematic
representation of the selected articles for the review process is shown in Tables 1 and 2. Lastly, only 37%
of the studies correctly described the laser therapy parameters in the abstract and 31% measured the
actual energy delivered by the laser device; none of the studies evaluated the temperature increase
during irradiation.
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Table 1. Study on photobiomodulation (PBM) and socket preservation in animal models. A schematic representation of the experimental set-up and results.

Model Employed Teeth
Extracted

Wavelength and
Device Parameters Irradiated Therapy

Administered Methods of Detection Effect of PBM

Rat [54] First molars 980 nm diode
with 300 µm fiber

Power = 0.01 W; Energy 0.6 J; Power
density = 0.23 W/cm2; fluence = 13.95
for 60 s of irradiation; irradiation time:
60 s or 120 s or 300 s; continuous wave

mode of irradiation (CW);
spot size area = 0.043 cm2

For 3 and 7 days,
daily

Observation period = 3 and 7 days
Real-time PCR: Runx2, Col-1,
osteocalcin, PDGF-B, VEGF

improvement

Rat [55]
with diabetes First molars 980 nm diode

with 300 µm fiber
0.01 W; 0.23 W/cm2; 13.95 J/cm2; 60 s;

CW; 0.043 cm2 from 3 to 14 day, daily

Observation period = 3,5,7,14 days
Real-time PCR: Runx2, collagen type

1, osteocalcin, GAPDH/
Histomorphometric analyses

improvement

Rat [56] First molars 904-910 nm diode
with 5.9 mm probe

0.2 W; 0.73 W/cm2; 43.8 J/cm2; 60 s;
pulsed mode of irradiation (PM);

30 kHz; 0.087 cm2

For 3 and 5 days,
daily

Observation period = 3 and 7 days
Real-time PCR: Col-1, Alp, Runx2,

osteocalcin, and BMP-2;
PCNA-positive cells/Micro-CT

analysis/
Histomorphometric analyses

improvement

Rat [57]
treated with γ-ray First molars 830 nm diode

with 18 mm probe 75 mW; CW; Not clearly
documented

Observation period = 3,7,10 days
Histomorphometric analyses improvement

Rat [58]
treated with

bisphosphonates

First molar
(left)

1064 nm Nd:YAG
with 320 µm fiber

1.25 W; 268.8 W/cm2; 14.37 J/cm2; 300 s;
very short pulsed mode of irradiation,

15 Hz

For 6 day, every other
day

Observation period = 8 days
Western blot analysis:

osteocalcin; osteopontin
improvement

Rat [59] First molar
(left)

10,600 nm CO2 with
laser tip

1 W; 55 W/cm2; 40 J/cm2;
15 s; PM; 0.018 cm2 The day after surgery Observation period = 3 and 7 days

Histomorphometric analyses improvement

Rabbit [60] First
premolars

808 nm diode
irradiation probe = no

specified

0.9 W; 5 W/cm2; 1459 J/cm2;
300 s; CW; 0.18 cm2

Immediately and
every 72 h for 12 days

Observation period = 7,14,30,45 days
Histomorphometric analyses improvement

Rabbit [61]

Low inferior
first

premolar
(right)

830 nm LED; 780 nm
diode

irradiation probe =
no-specified

830 nm = 30 J/cm2; 150 s; CW
780 nm = 30 J/cm2; 50 s; CW

48h after surgery and
then 9 irradiations

Observation period = 90 days
Evaluation of impacted area

(infection, hyperemia, oedema)
Micro-CT analysis

830 nm =
improvement

780 nm = no-effect

Dog [62] Third
premolar

980nm diode laser
with flat-top
hand-piece

0.60 W; 0.77 W/cm2;
36 J; 46 J/cm2; 60 s; CW

Immediately and
every 48h for 14-days

Observation period = 3-,
4- and 5-weeks

cone-beam computed tomography
improvement

Runx2 = runt-related transcription factor 2; Col-1 = collagen type 1; VEGF = vascular endothelial growth factor; PDGF-B = Platelet-derived growth factor B; GAPDH =
glyceraldehydes-3-phosphate dehydrogenase; BMP-2 = bone morphogenetic protein 2; and PCNA = anti-proliferating cell nuclear antigen.
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Table 2. Study on photobiomodulation (PBM) and socket preservation in human. A schematic representation of the experimental set-up and results.

Model Employed Teeth
Extracted

Wavelength and
Device Parameters Irradiated Therapy

Administered Methods of Detection Effect of PBM

Human [63]
First and
second
molars

808 nm diode
irradiation probe = no

specified

Power = 0.1 W; Power density = 3.6
W/cm2; fluence = 89 J/cm2;

irradiation time: 25 s; continuous
wave mode of irradiation (CW);

spot size area = 0.028 cm2

Irradiated at day
0, 1, 2, 3, 4, 7, 15, in 5
points (2 vestibulars,
1 occlusal, 2 linguals)

Observation period = 45 days
Micro-computed-tomography (mCT)

Histomorphometric analysis
improvement

Human [64] Lower
molars

808 nm diode
irradiation probe = no

specified

0.1 W; 2.5 W/cm2; 75 J/cm2; 30 s; CW;
0.04 cm2

Irradiated at day 0, 1,
2, 3, 4, 5, 7, in 5 points

(2 vestibulars,
1 occlusal, 2 linguals)

Observation period = 40 days
Micro-computed-tomography (mCT)

Histomorphometric analysis
improvement

Human [65] molars
940 nm diode

irradiation probe = no
specified

0.9 W; 36 J; 80 s; CW
Irradiated at day 0, 1,
2, 3, 4, 7, in 2 points
(1 buccal, 1 lingual)

Observation period = 56 days
Histomorphometric analysis improvement

Human [52]
with hepatic

disease
Molars

904-910 nm diode
irradiation probe = no

specified

0.2 W; 0.2 W/cm2; 180 J/cm2; 900 s;
1 cm2;

super-pulsed (SP) 200 ns; 3 kHz

Irradiated at day
0, 3 and 5

Observation period = 7 days.
Real-time PCR = IL-1B; IL-6; IL-10;

Col-1; Col-3; TGF-B2; COX-2; BMP-4;
BMP-7; PPAR-B

Inflammation =
improved

Bone = no-effect

Human [53] molars
904-910 nm diode

irradiation probe = no
specified

0.2 W; 0.2 W/cm2; 180 J/cm2; 900 s;
1 cm2; SP 200 ns; 3 kHz

Irradiated at day
0, 3 and 5

Observation period = 7 days.
Real-time PCR = IL-1B; IL-6; IL-10;

Col-1; Col-3; TGF-B2; COX-2; BMP-4;
BMP-7; PPAR-B

Inflammation =
improved

Bone = no-effect

Human [66]
treated with

allograft

Anterior,
posterior,
with roots
fused teeth

Osseo-pulsed
phototherapy 0.02 W/cm2; 1200 s

Irradiated for 21 days,
daily

Observation period = 60 days
Histomorphometric analysis Improvement

Human [67]
treated with
biomaterial

Molars and
premolars 810 nm diode 1 W; 1 W/cm2; 50 J/cm2; 50 s; 1 cm2;

CW
Irradiated at day

0, 3, 5 and 7

Observation period = 4 months.
Radiographs

Histomorphometric analysis
Improvement

Human [68] Molars 670 nm diode
632.8 nm He-Ne

670 nm = 20 mW, 1.5 J/cm2; 292 Hz,
9000 Hz, 20 mW, 1.5 mW; 5 Hz,

20 mW, 1.5 J/cm2

632.8 nm = 5 mW, 5 Hz, 1.5 J/cm2

Irradiated for 4 days,
daily

Observation period = 6 months.
Bone density with digital

radiovisiography. Protein staining =
immunoglobulin A, albumin

No-effect on bone

IL = interleukin; Col = collagen type; TGF = transforming growth factor; COX = cyclooxygenase; PPAR = peroxisome proliferator-activated receptor; and BMP = bone morphogenetic protein.
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4. Discussion

In accordance with the growing interest in bone regeneration by the scientific community,
PBM could be used to support traditional medicine. Undoubtedly, as previously shown, many steps
forward were made in the understanding of the interaction between light and bone cells from the first
scientific description of PBM by Professor Mester [69]. However, taking into account the in vivo and
in vitro literature, PBM has discordant and contradictory effects. After a careful revision of reports,
Deana et al. [70] concluded that osteoblasts are susceptible to PBM, but most of the light parameters
employed by different authors unfortunately had little to no influence on proliferation and very high
doses had dangerous effects on cell homeostasis, while Escudero et al. [71] pointed out that many data
support the positive effects of PBM on bone regeneration, by accelerating this process. More generally,
Dompe et al. [7] suggested that PBM can induce cell proliferation, enhance stem cell differentiation,
and improve healing and tissue repair processes. Considering the positive effect in animal studies,
authors mainly described that PBM is able to modulate inflammation in bone defects and stimulate
the deposition of granulation tissue and newly formed bone tissue, as a consequence of angiogenic
gene expression, as well as cyclooxygenase-2 (COX2) and vascular endothelial growth factor (VEGF)
expression, during the initial phase of bone healing [71–73]. Additionally, PBM therapy stimulates
bone regeneration when organic or inorganic materials are synergically added to the bone defect.
PBM on autogenous fibrin grafts in the right parietal bone of rats induced bone regeneration, and
accelerated the process of integration of the graft [74]. Irradiation of titanium scaffolds in the femurs
of healthy and osteoporotic rats improved and accelerated bone repair, when compared to animals
not subjected to radiation [75]. Plus, in a review, Escudero et al. [71] reported that PBM, isolated or
associated with a biomaterial, remarkably improved animal disease associated with insults, trauma,
osteoporosis, or osteopenia. In different settings, however, PBM did not stimulate the bioactive
properties of a biosilicate, conversely inducing the deterioration of the biomechanical properties of
bone [76]. Furthermore, no reduction in inflammation or amelioration in bone regeneration was
described by other authors [77,78]. Therefore, adequate PBM parameters could have clinical benefits
for the procedures employed daily by dentists [79].

On the topic of our review, among the 17 papers taken into account, nine were performed using
animal models [54–62]. However, the animals investigated were prevalently rats [54–59] and in two
cases, rabbits [60,61]; a dog model was surprisingly employed only in one recent work [62].

In healthy rats, 980 nm 0.01 W, 13.95 J/cm2 (60 s) [54] and 904/910 nm, 0.2 W, 43.8 J/cm2 (60 s) [56]
PBM positively affected the markers of osteoblast differentiation and also improved bone mineralization.
Interestingly, to support the effect of the 980 nm therapy, diabetic rats also experienced alveolar bone
healing and calcification, if irradiated at the same parameters [55].

Model rats also showed improvement in alveolar bone healing, mineralization [57], and expression
of osteocalcin and osteopontin [58], when irradiated to prevent the side effects of γ-ray and
bisphosphonates, respectively. Lastly, alveolar bone density of rabbit ameliorated after 808 nm or
830 nm laser light irradiation, but at extremely different fluences, 1459 J/cm2 vs. 30 J/cm2, respectively.

While, rats and rabbits are a good model for wide screening, the results on bone healing cannot
be directly transferred to the human clinical situation, unlike the dog model. Rats do not have a
Haversian system and rabbits have a faster healing rate than humans, although a Haversian system
is present. Conversely, the dog model has a human-like bone structure, dentoalveolar architecture
and Haversian system [80]. Dog bone composition, density, and quality are very similar in weight,
hydroxyproline content, extractable proteins, water fraction, organic fraction, and volatile inorganic
fraction to human bone [80]. Bone composition and structure can directly interact with diode laser light
and influence the results of therapy. In particular, laser light resonates with the vibrational overtone
of water at 980 nm [81], and water appears to be a photoacceptor for this wavelength [6] or higher,
influencing both the absorption of photon energy and the thermal effects. Therefore, these macro and
micro-structural features and the differences in them, impede the interpretation of results from rats
and rabbits, in view of translating this knowledge to the clinical setting.
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For these reasons, only the work on dog models [62] is of particular interest and suggest a clinical
investigation with those parameters.

During the experiment, the authors monitored the thermal increase during the irradiation.
Temperature could indeed increase when higher wavelengths are irradiated and then confound the
PBM’s effect. Additionally, therapy parameters were clearly described and measured by a power meter.
Essentially, the bone density of extraction sockets, evaluated at 3-, 4-, and 5-weeks using cone-beam
computed tomography, improved by irradiation with 980 nm diode-laser (0.60 W, 0.77 W/cm2, 36 J,
46 J/cm2, 60 s) in a continuous-wave mode [62]; both the buccal and lingual sides were irradiated to
reach a total irradiation time of 120 s. In vivo animal work seem, therefore, to indicate the effectiveness
of the wavelength of 980 nm, despite the parameters used in rat and dog studies being pretty far apart.

Seven [52,53,63–67] out of eight reviewed studies performed on human subjects described
improvement on socket healing by PBM. Particularly, five studies point out the modulation of
bone regeneration by laser therapy [63–67], two of these were in the presence of allograft and
biomaterial [66,67], and only two showed an anti-inflammatory effect [52,53]. As an exception,
one study revealed that PBM did not affect socket preservation [68]. Mozzati and collaborators [52,53],
however, despite an adequate experimental approach, examined the effect only a few days after
surgery and the therapy administered by Kucerova et al. [68] used 670 and 632.8 nm as the therapeutic
wavelengths. Indeed, longer time windows (from 40 days to 4 months) allowed researchers to observe
the new bone formation and bone density improvement [62–68]. In particular, in accordance with
Schropp [9], studies with at least 8 weeks of follow-up could better describe the effect of PBM on bone
healing and its possible resorption. Concerning the wavelengths, it is not strange that the only two
studies [61,68] that showed no effect of PBM in animal and human models used wavelengths below
800 nm. It is known that wavelengths in the range of 800–980 nm allow better tissue penetration [82,83]
than lower and higher ones, and can reach a deeper therapy target, such as bone. Indeed, wavelengths
in the range of 600–700 nm showed interesting results in vitro but limited applicability in vivo.
Additionally, an operational definition of PBM suggests that no significant increase in target tissue
temperature is induced. Therefore, according to the absorption curves of water and the wavelengths
considered in our paper, moving from the 632 nm to 1064 nm and 10,600 nm, the temperature needs
monitoring and drastic increment, due to incorrect power and energies, which must be avoided [82].
In an attempt to extrapolate possible therapeutic support for socket preservation, thanks to the analysis
of the devices employed, we could conclude that PBM delivered by LED or diode, Nd:YAG, and CO2

lasers, can positively affect alveolar ridge retention, independent of the laser used.
Unfortunately, the heterogeneity of laser parameters and the discordant, and in some cases

unclear therapeutic procedures as well as the unspecified features of the probe, hand-piece, or fiber
employed for laser administration, did not allow for an intergroup analysis of the studies. A major
problem in PBM, as carefully reported by Tuner and Jenkins [84], is the lack of proper reporting
of the parameters, which does not enable reproducibility of the experimental results. Previously,
we showed [85] that fluence per se did not predict the photobimodulatory effect of laser light on the
cell, but a precise relation exists between laser power and duration of exposure.it was found that ”the
energy has two-component power and time of exposure, and it has been demonstrated that there is not
necessarily reciprocity between them and expected effects. So, if the power doubled and the time is
halved, then the same energy is delivered but a different biological response is often observed” [85].
This clearly supports the need for a description of the laser parameters as a mandatory effort to promote
PBM as a clinical therapy and not only as promising experimental evidence. Additionally, the features
of the probe used to deliver laser therapy could dramatically influence therapeutic success. Standard
probes, hand-pieces, and fibers often have a Gaussian irradiation profile with respect to hand-pieces
with a flat-top profile, influencing the energy distribution at the target and, thus, the PBM event [22].
In a previous work, we showed that if irradiation is performed with the standard hand-piece, the laser
parameter setup on the laser device did not necessarily describe the precise power reaching the cell at
a non-contact distance, with respect to a hand-piece with a flat-top profile [1].



Biology 2020, 9, 409 10 of 15

The pooled data revealed the strength and limits of the use of PBM on socket preservation.
The strengths were the reliable data on the osteoblast–light interaction, which highlighted the cellular
pathways involved, and the energetic support of photon energy to metabolic cellular homeostasis,
and thus, the healing process. The limits of PBM rest on the poor quality and the low number of
studies, as well as the heterogeneity and description of the experimental set-up.

5. Conclusions

In conclusion, when irradiated using the appropriate parameters, PBM could improve
osteoproliferation and osteoinduction for socket preservation in healthy and sick animal models
and human subjects, as well as in the presence or not of an allograft or biomaterial. Wavelengths higher
than 800 nm and irradiation longer than three applications, resulted in a better bone healing effect.
However, the review of the current literature did not allow an unambiguous definition of therapy and
suggests improving experimental set-up and performing more extensive randomized controlled trials
as mandatory efforts to develop reproducible clinical therapies.
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