Media screening for obtaining *Haematococcus pluvialis* red motile macrozooids rich in astaxanthin and fatty acids

Thomas O. Butler, Gordon J. McDougall, Raymond Campbell, Michele S. Stanley, and John G Day

Supplementary information

Table S1 Sources of astaxanthin from natural origins

Species	Class	Astaxanthin content (% DW)	Reference
Haematococcus pluvialis	Chlorophyceae	4.0	[2]
Chlorella zofingiensis	Chlorophyceae	0.7	[77]
Scenedesmus vacuolatus	Chlorophyceae	0.3	[77]
Scotiellopsis oocystiformis	Chlorophyceae	1.1	[77]
Neochloris wimmeri	Chlorophyceae	1.9	[77]
Protosiphon botryoides	Chlorophyceae	1.4	[77]
Chlorococcum sp.	Chlorophyceae	0.2	[78]
Adonis annua	Dicotyledons	1	[79]
Ulva intestinalis	Ulvophyceae	0.02	[80]
Ulva lactuca	Ulvophyceae	0.01	[80]
Catenella repens	Florideophyceae	0.02	[80]
Agrobacterium aurantiacum	Alphaproteobacteria	0.01	[81]
Paracoccus carotinifaciens	Alphaproteobacteria	2.2	[82]
Phaffia rhodozyma/			
Xanthophyllomyces			
dendrorhous	Tremellomycetes	0.01	[83]

Table S2 *H. pluvialis* biomass and astaxanthin productivity

Strain no.	Conditions	Culture time (days)	Biomass yields green stage (g L ⁻¹ DW)	Biomass productivity green stage (g L ⁻¹ d ⁻¹ DW)	Astaxanthin content red stage (mg g ⁻¹ DW)	Astaxanthin yield red stage (mg L ⁻¹ DW)	Astaxanthin productivity green + red stages (mg L ⁻¹ d ⁻¹ DW)	Ref.
CCAP 34/7	30 L air-lift bioreactor (autotrophic)	90	1.6	0.02	27	43.2	0.5	[27]
UTEX 16	3.7 L Fed- batch bioreactor (mixotrophic)		2.74	0.14	43	64.4	3.2	[84]
NIES-144	2.3 L Maxblend fermentor. pH stat fed- batch (sequential heterotrophic- autotrophic)	30 (20+10)	7	0.35	98	114	3.8	[85]
CCAP 34/8	50 L tubular bioreactor, 0.6 mM nitrate for red stage, continuous one-stage production process outdoors (autotrophic)		0.7	0.6-0.7	6-13	11	3.5-8	[56]
Unknown strain from Aquasearch	Green stage in Aquasearch growth modules (AGMs), followed by open pond astaxanthin induction (autotrophic)	19 (14+5)	0.2-0.36	0.036-0.052	28-30		2.2	[22]
CCAP 34/8	2 L jacked bubble column bioreactor, 2.7 mM nitrate deprivation in red stage, one- stage continuous process indoors (autotrophic)		1.03	0.93	6	6.2	5.6	[43]
NIES-144	Astaxanthin induction using nitrate depletion, with 5 % CO ₂ (autotrophic)	28	2.27	0.08	77.2	175.7	6.3	[86]

Strain no.	Conditions	Culture time (days)	Biomass yields green stage (g L ⁻¹ DW)	Biomass productivity green stage (g L ⁻¹ d ⁻¹ DW)	Astaxanthin content red stage (mg g ⁻¹ DW)	Astaxanthin yield red stage (mg L ⁻¹ DW)	Astaxanthin productivity green + red stages (mg L ⁻¹ d ⁻¹ DW)	Ref.
CCAP 34/8	2L jacketed bubble column bioreactors, one-stage continuous process indoors (autotrophic)			1.9	11		20.8	[42]*
CCAP 34/8	55 L tubular bioreactor, nitrate reduced to < 5 mM for astaxanthin accumulation (autotrophic)	16	7	0.55	20	72	4.5	[87]
SAG 34/1b	1 L cylindrical air-lift double- region bioreactor modified into cone shape (inner core green stage, outer core red stage), batch production (autotrophic)	22 (12+10)	4 (inner core) and 7 (outer core) after day 12 FW**	0.33 FW	49.5	357	16.2	[58]
SCCAP k-0084	500 mL glass columns, two- stage strategy indoors	10 (4+6)	2	0.5	40	115	11.5	[2]
	vertical plate bioreactor (green stage), 2000 L tubular bioreactor (red stage), two stage strategy outdoors	(4+6)	1.48	0.37	40		10.1	
NIES-144	Bubble column fed- batch process (autotrophia)	55 (12.5+ 42.5)	6.7	0.2	36	390	7.2	[88]
NIES-144	1 L flat panel bioreactor with stepwise increase in irradiance, astaxanthin induction using 5 % CO ₂ and high light (autotrophic)	13.5 (4.5+9)	1.47	0.33	47	190	14.1	[89]

Strain no.	Conditions	Culture time (days)	Biomass yields green stage (g L ⁻¹ DW)	Biomass productivity green stage (g L ⁻¹ d ⁻¹ DW)	Astaxanthin content red stage (mg g ⁻¹ DW)	Astaxanthin yield red stage (mg L ⁻¹ DW)	Astaxanthin productivity green + red stages (mg L ⁻¹ d ⁻¹ DW)	Ref.
WBG 26	Double-layer circular pond, two-step one- stage process (autotrophic)	12	1.83	0.15	27.9	51.1	4.3	[62]
NIES-144	3 L fermentor with stepwise increase in irradiance in fed-batch and perfusion processes (mixotrophic) Batch							[90]
	Fed-batch Perfusion	26 (6+20) 30 (10+20) 38 (14+24)	0.96 2.8 4.48	0.16 0.28 0.32	49	213 437 602	8.2 15.1 15.8	
SKLBE ZY-18	Sequential Heterotrophy- Dilution- Photoinductio n (SHDP)	27 (17 + 10)	26	1.54	46	64	6.4	[91]

*The publication by Del Río et al. [42] reported the highest astaxanthin productivity (mg $L^{-1}d^{-1}$) to date using the one-stage continuous production process

**FW = Fresh weight

Table S3 Chemical composition of autotrophic and mixotrophic media used in the initial medium

 preference study for the green stage

Medium component	3N-BBM+V	3N-BBM+V+ SA	BG-11	EG:JM
NaNO ₃ (mgL ⁻¹)	750	750	1500	40
Na2HPO4 (mgL ⁻¹)				
K ₂ HPO ₄ (mgL ⁻¹)	75	75	40	
KH2PO4 (mgL ⁻¹)	175	175		6.2
Na2HPO4 12H2O (mgL ⁻¹)				18
MgSO4 7H2O (mgL-1)	75	75	75	25
C6H8O7 (mgL ⁻¹)			6	
Ammonium ferric citrate green (mgL-1)			6	
Ca(NO ₃) ₂ 4H ₂ O (mgL ⁻¹)				10
CaCl ₂ 2H ₂ O (mgL ⁻¹)	25	25	36	
CaCl ₂ (mgL ⁻¹)				5

FeCl ₂ 6H ₂ O (mgL ⁻¹)	0.582	0.582		
CoCl ₂ 6H ₂ O (mgL ⁻¹)	0.012	0.012		
ZnCl ₂ (mgL ⁻¹)	0.03	0.03		
Co(NO ₃) ₂ 6H ₂ O (mgL ⁻¹)			0.05	
CuSO ₄ 5H ₂ O (mgL ⁻¹)			0.08	
Cr ₂ O ₃ (mgL ⁻¹)				
MnCl ₂ 4H ₂ O (mgL ⁻¹)	0.246	0.246	1.81	0.695
Na2MoO4 (mgL ⁻¹)				
Na2MoO4 2H2O (mgL ⁻¹)	0.024	0.024	0.39	
(NH4)6M07)24 4H2O (mgL ⁻¹)				0.5
H ₃ BO ₃ (mgL ⁻¹)			2.86	1.24
ZnSO ₄ 7H ₂ O (mgL ⁻¹)			0.22	
Na ₂ CO ₃ (mgL ⁻¹)			20	
Na2-EDTA (mgL-1)			1	1.125
FeNa-EDTA (mgL ⁻¹)				1.125
C2H3NaO2 (mgL ⁻¹)		820		240
Lab-Lemco powder (mgL-1)				500
Tryptone (mgL ⁻¹)				1000
Yeast extract (mgL ⁻¹)				1000
NaCl (mgL-1)	25	25		
NaHCO ₃ (mgL ⁻¹)				7.95
Thiamine-HCl (mgL ⁻¹)	0.012	0.012		0.02
B12 (mgL ⁻¹)	0.01	0.01		0.02

Table S4 Composition of FM:FB. Nutrient concentrations (guaranteed minimum concentrations) in mg L⁻¹ calculated from information from GHE, France

Constituent	mgL-1
Nitrogen as ammonium	10
Nitrogen as nitrate	40
Phosphate (P2O5)	250
Potassium (K2O)	200
Magnesium	250
Sulphur	50
Boron	0.1
Calcium	70
Copper	0.1
Iron	1.2
Manganese	0.4
Molybdenum	0.04
Zinc	0.15

Figure S1 Identification of carotenoid peaks by Liquid Chromatography-Mass Spectrometry (LC-MS)

Table S5 Liquid Chromatography Mass Spectrometry (LC-MS) data

Peak No	<i>m</i> / <i>z</i> [M+H]	Putative Identity
1	619	Astaxanthin ^a
2	591	Lutein ^a
3	565 , 588 (+Na)	Canthaxanthin ^a
4	864.7	Unknown Astaxanthin monoester ^b
5	864.7	Unknown Astaxanthin monoester ^b
6	859.6	Astaxanthin monoester (18:2)
6a	866.7	+ 2 amu >than peaks 4 & 5
7	861.6, 883.6 (+Na)	Astaxanthin monoester 18:1
8	898.9	Unknown Astaxanthin ester
9	868.7	Unknown Astaxanthin ester
10	870.7, 872.7, 874.8, 876.8	Mix of esterified forms

Values in bold are major signals.

a - identity confirmed by standards

b – possibly astaxanthin monoester (14:0 + NH3) using data from Murphy et al. [92]

Most IDs are from Holtin et al. [49] and Frassanito et al. [93]

The main peaks 6 & 7 actually match with the relative abundance shown in this paper. The more hydrophobic peaks after peak 9 are probably diesters which do not yield detectable M+H ions, possibly due to multiply charged forms.

Figure S2 Effect of nitrate and phosphate concentration on growth in *H. pluvialis* (n = 3)

References

- 2. Aflalo, C.; Meshulam, Y.; Zarka, A.; Boussiba, S. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga *Haematococcus pluvialis*. *Biotechnology and Bioengineering*. **2007**, *98*, 300-305.
- Olaizola, M.; Huntley, M.E. Recent advances in commercial production of astaxanthin from microalgae, in Fingerman, M.; Nagabhushanam, R. (eds.), Recent Advances in Marine Biotechnology. *Volume 9. Biomaterials and Bioprocessing*. New Hampshire: Science Publishers, 2003, 143-164.
- 27. Burczyk, J. Cell wall carotenoids in green algae which form sporopollenins. *Phytochemistry*, **1987**, *26*, 121-128.
- 42. Del Río, E.; Acién F.G.; García-Malea, M.C.; Rivas, J.; Molina-Grima, E.; Guerrero, M.G. Efficient one-step production of astaxanthin by the microalga *Haematococcus pluvialis* in continuous culture. *Biotechnology and Bioengineering*. **2005**, *91*, 808-815.
- 43. Torzillo, G.; Goksan, T.; Faraloni C.; Kopecky, J.; Masojidek, J. Interplay between photochemical activities and pigment composition in an outdoor culture of *Haematococcus pluvialis* during the shift from the green to red stage. *Journal of Applied Phycology*. **2003**, *15*, 127-136.
- Holtin, K.; Kuehnle, M.; Rehbein, J.; Schuler, P.; Nicholson, G. Albert, K. Determination of astaxanthin and astaxanthin esters in the microalgae *Haematococcus pluvialis* by LC-(APCI) MS and characterization of predominant carotenoid isomers by NMR spectroscopy. *Analytical and Bioanalytical chemistry*, 2009, 395 (6), p.1613.
- 56. Sarada, R.; Bhattacharya, S.; Ravishankar, G. Optimization of culture conditions for growth of the green alga *Haematococcus pluvialis. World Journal of Microbiology and Biotechnology.* **2002**, *18*, 517-521.
- Dalay, M.C.; Imamoglu, E.; Demirel, Z. Agricultural fertilizers as economical alternative for cultivation of Haematococcus pluvialis. Journal of Microbiology and Biotechnology. 2007, 17, 393-397.
- Oncel, S.S.; Imamoglu, E.; Gunerken, E.; Sukan, F.V. Comparison of different cultivation modes and light intensities using mono-cultures and co-cultures of *Haematococcus pluvialis* and *Chlorella zofingiensis*. *Journal of Chemical Technology and Biotechnology*. 2011, 86 (3), 414-420.
- Orosa, M.; Valero, J.F.; Herrero, C.; Abalde, J. Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnology Letters, 2001, 23 (13), 1079-1085.
- 78. Zhang, D.H.; Lee, Y.K. Ketocarotenoid production by a mutant of *Chlorococcum* sp. in an outdoor tubular photobioreactor. *Biotechnology Letters*, **1999**, *21*(1), 7-10.
- 79. Renstrøm, B.; Berger, H.; Liaaen-Jensen, S. Esterified, optical pure (3S, 3' S)-astaxanthin from flowers of *Adonis annua. Biochemical Systematics and Ecology*, **1981**, *9* (4), 249-250.
- 80. Banerjee, K.; Ghosh, R.; Homechaudhuri, S.; Mitra, A. Biochemical composition of marine macroalgae from Gangetic Delta at the apex of Bay of Bengal. *African Journal of Basic & Applied Sciences*, **2009**, *1* (5-6), 96-104.
- Yokoyama, A.; Adachi, K.; Shizuri, Y. New carotenoid glucosides, astaxanthin glucoside and adonixanthin glucoside, isolated from the astaxanthin-producing marine bacterium, *Agrobacterium aurantiacum*. *Journal of natural products*, **1995**, 58 (12), 1929-1933.
- Bories, G.; Brantom, P.; de Barberà, J.B.; Chesson, A.; Cocconcelli, P.S.; Debski, B.; Dierick, N.; Franklin, A.; Gropp, J.; Halle, I.; Hogstrand, C. Safety and efficacy of Panaferd-AX (red carotenoid-rich bacterium (*Paracoccus carotinifaciens*) as feed additive for salmon and trout. *EFSA J.*, 2007, 546, 1-30.
- 83. Gassel, S.; Schewe, H.; Schmidt, I.; Schrader, J.; Sandmann, G. Multiple improvement of astaxanthin biosynthesis in *Xanthophyllomyces dendrorhous* by a combination of conventional mutagenesis and metabolic pathway engineering. *Biotechnology Letters*, **2013**, *35* (4), 565-569.
- 84. Zhang, X.W., Gong, X.D. and Chen, F. Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga *Haematococcus pluvialis*. *Journal of Industrial Microbiology and Biotechnology*, **1999**, 23 (1), pp.691-696.
- 85. Hata, N.; Ogbonna, J.C.; Hasegawa, Y.; Taroda, H.; Tanaka, H. Production of astaxanthin by *Haematococcus pluvialis* in a sequential heterotrophic-photoautotrophic culture. *Journal of Applied Phycology*, **2001**, *13* (5), 395-402.
- Kang, C.D.; Lee, J.S.; Park, T.H.; Sim, S.J.; 2005. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by *Haematococcus pluvialis*. *Applied Microbiology and Biotechnology*, 2005, 68 (2), 237-241.
- López, M.G.M.; Sánchez, E.D.R.; López, J.C.; Fernández, F.A.; Sevilla, J.F.; Rivas, J.; Guerrero, M.G.; Grima, E.M. Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. *Journal of Biotechnology*, 2006, 123 (3), 329-342.

- Ranjbar, R.; Inoue, R.; Shiraishi, H.; Katsuda, T.; Katoh, S. High efficiency production of astaxanthin by autotrophic cultivation of *Haematococcus pluvialis* in a bubble column photobioreactor. *Biochemical Engineering Journal*, 2008, 39 (3), 575-580.
- Kang, C.D.; Han, S.J.; Choi, S.P.; Sim, S.J. Fed-batch culture of astaxanthin-rich *Haematococcus pluvialis* by exponential nutrient feeding and stepwise light supplementation. *Bioprocess and Biosystems Engineering*, 2010, 33 (1), 133.
- 90. Park, J.C.; Choi, S.P.; Hong, M.E.; Sim, S.J. Enhanced astaxanthin production from microalga, *Haematococcus pluvialis* by two-stage perfusion culture with stepwise light irradiation. *Bioprocess and Biosystems Engineering*, **2014**, *37* (10), 2039-2047.
- Wan, M.; Zhang, Z.; Wang, J.; Huang, J.; Fan, J.; Yu, A.; Wang, W.; Li, Y. Sequential Heterotrophy–Dilution– Photoinduction Cultivation of Haematococcus pluvialis for efficient production of astaxanthin. *Bioresource Technology*, 2015, 198, 557-563.
- 92. Murphy, R.C.; James, P.F.; McAnoy, A.M.; Krank, J.; Duchoslav, E.; Barkley, R.M. Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry. *Analytical biochemistry*, **2007**, *366* (1), pp.59-70.
- 93. Frassanito, R., Cantonati, M., Flaim, G., Mancini, I. and Guella, G. A new method for the identification and the structural characterisation of carotenoid esters in freshwater microorganisms by liquid chromatography/electrospray ionisation tandem mass spectrometry. *Rapid Communications in Mass Spectrometry*, **2008**, *22 (22)*, pp.3531-3539.