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Simple Summary: SARS-CoV-2 caused the COVID-19 health emergency, affecting millions of people
worldwide. Samples collected from hospitalized or dead patients from the early stages of pandemic
have been analyzed over time, and to date they still represent an invaluable source of information
to shed light on the molecular mechanisms underlying the organ/tissue damage. In combination
with clinical data, omics profiles and network models play a key role providing a holistic view of
the pathways, processes and functions most affected by viral infection. In fact, networks are being
increasingly adopted for the integration of multiomics data, and recently their use has expanded to
the identification of drug targets or the repositioning of existing drugs.

Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19
health emergency, affecting and killing millions of people worldwide. Following SARS-CoV-2
infection, COVID-19 patients show a spectrum of symptoms ranging from asymptomatic to very
severe manifestations. In particular, bronchial and pulmonary cells, involved at the initial stage,
trigger a hyper-inflammation phase, damaging a wide range of organs, including the heart, brain,
liver, intestine and kidney. Due to the urgent need for solutions to limit the virus’ spread, most
efforts were initially devoted to mapping outbreak trajectories and variant emergence, as well as
to the rapid search for effective therapeutic strategies. Samples collected from hospitalized or dead
COVID-19 patients from the early stages of pandemic have been analyzed over time, and to date
they still represent an invaluable source of information to shed light on the molecular mechanisms
underlying the organ/tissue damage, the knowledge of which could offer new opportunities for
diagnostics and therapeutic designs. For these purposes, in combination with clinical data, omics
profiles and network models play a key role providing a holistic view of the pathways, processes
and functions most affected by viral infection. In fact, in addition to epidemiological purposes,
networks are being increasingly adopted for the integration of multiomics data, and recently their
use has expanded to the identification of drug targets or the repositioning of existing drugs. These
topics will be covered here by exploring the landscape of SARS-CoV-2 survey-based studies using
systems biology approaches derived from omics data, paying particular attention to those that have
considered samples of human origin.

Keywords: omics; networks; drug repurposing; SARS-CoV-2; COVID-19

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped posi-
tive single-stranded RNA virus belonging to the Coronavirus family [1,2]. It triggered the
COVID-19 health emergency, which, to date, has affected more than seven hundred million
people worldwide and caused approximately seven million deaths (Figure 1A).
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Figure 1. Snapshot of the official websites reporting SARS-CoV-2 data in real time. (A) World Health
Organization (WHO) Coronavirus (COVID-19) Dashboard (https://COVID-19.who.int/ (accessed
on 1 August 2023)). (B) GISAID Repository (https://gisaid.org/hcov19-variants/ (accessed on 1
August 2023)).The GISAID Initiative promotes the rapid sharing of data from all influenza viruses
and the coronavirus causing COVID-19. This includes genetic sequences and related clinical and
epidemiological data associated with human viruses, and geographical as well as species-specific
data associated with avian and other animal viruses, to help researchers to understand how viruses
evolve and spread during epidemics and pandemics.

To infect and spread, SARS-CoV-2 employs its surface spike (S) protein, which in-
teracts with the host’s angiotensin-converting enzyme 2 (ACE2) receptor [3,4]. ACE2 is
present on the surfaces of different cell types, and the viral entry mediated by the S–ACE2
interaction was the first evidence of the mechanism underlying the infection in human be-
ings [5]. Due to the correlation between ACE2 expression and COVID-19 patient outcomes,
the analysis of ACE2 across different tissues/organs has been useful in deciphering the

https://COVID-19.who.int/
https://gisaid.org/hcov19-variants/
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potential routes of SARS-CoV-2 infection and damage [4]. Other studies have investigated
its variation in several pathological conditions, revealing that COVID-19 patients with
common comorbidities of cancer and chronic diseases may show higher ACE2 expression
levels, which could lead to an increased susceptibility to multi-organ damage [6]. On the
other hand, in cells with lower ACE2 expression, it has been reported that Neuropilin-1
(NRP-1) acts to facilitate virus entry [7,8], while a second route involves the endolysosomal
pathway via membrane fusion at the cell surface through the cathepsin L1 protein [9–11].

Following SARS-CoV-2 infection, a spectrum of disease ranging from asymptomatic to
the manifestations of highly severe symptoms has been observed. Bronchial and pulmonary
cells, involved at the initial stage, trigger a hyper-inflammation phase, damaging a wide
range of human organs and tissues, including the heart, blood vessels, brain, liver, intestine
and kidney [11–13]. Under the condition of the serious threat to public health and the
global economy, many efforts were initially dedicated to the sequencing and monitoring
of the SARS-CoV-2 variants that gradually emerged from the virus’ genomic evolution
(Figure 1B). Combined with mobility data, this information has been useful in mapping
the outbreak trajectory [14]. At the same time, many efforts have been devoted to the
rapid search for effective therapeutic strategies, involving hundreds of potential drugs and
thousands of patients in clinical trials [15].

Since the early outbreak phases, epidemiological data and clinical specimens have
been collected from hospitalized and/or dead patients. Today, they still represent an in-
valuable resource that the scientific community is analyzing and evaluating to shed light on
the molecular mechanisms underlying organ/tissue damage and to offer opportunities for
diagnostics and therapeutic designs. To achieve this goal, the contribution of omics tech-
nologies is essential. In fact, genomics, transcriptomics, proteomics and metabolomics have
now reached a level of effectiveness and depth that allows for a holistic evaluation [16].
However, multiomics data integration and their interpretation remain a challenge. To
address this, network-based approaches provide a framework to represent and process
the interactions between omics layers in a graph, which simulates the molecular wiring
in a cell [17]. In the context of SARS-CoV-2 investigation, a milestone in these strategies’
development was the release of the first network model, which shed light on host–virus
protein interactions [18]. Due to the urgent need for clinical and pharmacological solu-
tions, as well as the lack of animal models to mimic the disease’s pathogenesis and its
treatment [19], this and other protein–protein interaction (PPI) network models have been
used for drug repurposing purposes [20–22]. In particular, the combination of these models
and experimental omics data has often been considered in the field of network science
to identify relevant molecules, such as hubs, as candidate targets for pharmacological
treatments [23–26].

Based on these premises, we aim to explore here the landscape of studies based on the
combination of omics data and network analysis to investigate the molecular mechanisms
underlying SARS-CoV-2 infection and triggering organ and tissue damage. Special attention
is paid to studies where the authors have characterized the omics profiles of real human
samples from control and patient cohorts, as well as to those that have exploited the
network topology for drug repurposing or for the characterization of new drug targets.
Thus, the methods and strategies adopted are dissected into their most relevant steps
and aspects.

2. Word Associations in Titles of Manuscripts Focused on SARS-CoV-2 Investigation

The semantic analysis of the manuscripts published in the last three years has pro-
vided a good snapshot of how the scientific community has modulated its activity in the
various phases that have characterized the pandemic. Some terms, including “detection”,
“spike protein (S)”, “hospital/hospitalization” and “ACE2”, were always displayed. In par-
ticular, the association that emerged in the first semester between the terms “detection”
and “test” suggested the need to develop rapid methods to identify the presence of the
virus (Figure 2A). In addition to “hospital/hospitalization”, the pressure suffered in the
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hospital context was also highlighted by the term “healthcare worker”, which showed a
high frequency until the first semester of 2022 (Figure 2A–D). Equally interesting are the
terms that provide evidence of the development and geographical spread of the pandemic.
Countries like Italy and China are present in the titles of manuscripts published in the
initial phase. Meanwhile, other countries, such as Japan, Brasil, Spain, Germany, India,
France and England, appear in the following semesters. In both semesters of 2021, we
observe that the incidence of terms such as “variant”, “mutation”, “transmission” and
“diffusion” begins to grow, while the terms dominating 2022 evidence the different variants
that evolved and the attention paid to the immune system, related also to vaccine and
drug development (Figure 2B–E). It should be noted that the term “vaccine” immediately
appeared as a potential solution, and almost immediately it was specifically associated with
mRNA. On the contrary, the generic term “drug” was present in the first four semesters and
disappeared in the last two, when vaccines were developed and administered (Figure 2E,F).
Of note, the role of omics and network analyses, the topics of our review, did not signifi-
cantly emerge from the titles of the manuscripts that we considered. However, in the first
and last semester, we noticed terms related to in silico approaches, which, as we will see
later in our review, could be associated with drug repurposing studies through network
analysis. In the same way, they could be also associated with the “molecular docking” term,
which was present in several semesters.
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Figure 2. Term associations from title of manuscripts published in (A) 2nd semester 2020, (B) 1st
semester 2021, (C) 2nd semester 2021, (D) 1st semester 2022, (E) 2nd semester 2022 and (F) 1st semester
2023. All manuscripts were retrieved in PubMed (https://pubmed.ncbi.nlm.nih.gov (accessed on
1 May 2023)) by searching for “SARS-CoV-2” in the “Title” field. Title terms were associated using
the VOSviewer software (www.vosviewer.com) (accessed on 1 August 2023) and the 100 top-ranked
associations were displayed using the Cytoscape platform. Different colors show clusters of terms
most correlated.

3. Human Samples and Remodeling of Omics Profiles Following
SARS-CoV-2 Infection

A key point in evaluating the global impact of SARS-CoV-2 on tissue and organ physi-
ology is the multiomics profiling of samples collected by COVID-19 patients [4,6,11]. In the

https://pubmed.ncbi.nlm.nih.gov
www.vosviewer.com


Biology 2023, 12, 1196 5 of 23

last 3 years, and particularly in 2021 and 2022, a number of studies based on omics data
have been published, helping the scientific community to gain a deeper understanding of
SARS-CoV-2 infection, as well as of the molecular mechanisms that it activates in COVID-19
patients (Figure 3). Thanks to the improved sequencing capabilities, public resources and
databases are mainly enriched in genomics, transcriptomics and proteomics data related to
SARS-CoV-2. After their generation, the major challenge remains their efficient and quick
integration and interpretation [27]. Of note, their retrospective evaluations, or new analyses
of previously collected samples, represent a valuable source of information to be combined
with molecular network models. They allow for the analysis of the omics complexity in the
simplest way, and for the processing of the characterized profiles by taking into account
the relationships among molecules [28].

SARS-CoV-2 AND Genomics

SARS-CoV-2 AND Proteomics

SARS-CoV-2 AND Epigenomics

SARS-CoV-2 AND Transcriptomics

SARS-CoV-2 AND Metabolomics

SARS-CoV-2 AND Lipidomics

Year Year

YearYear

YearYear

Figure 3. Number of papers published per semester from 2020 to 2023 and found in PubMed
(https://pubmed.ncbi.nlm.nih.gov (accessed on 1 May 2023)) by searching for SARS-CoV-2 AND
(A) Genomics, (B) Transcriptomics, (C) Proteomics, (D) Metabolomics, (E) Epigenomics or (F) Lipidomics.

Despite the importance of having a complete picture of the processes influenced by
viral infection, to date, few studies have applied truly multiomics approaches, and even
fewer on tissues or organs. Some of them have combined proteomics and metabolomics
in plasma [29,30] and urine [31], or proteomics and lipidomics [30,32] in plasma. In this
scenario, Druzak and colleagues investigated the molecular mechanisms that occurred in
adult and pediatric subjects affected by COVID-19 and in children with multi-inflammatory
syndrome (MIS-C) [30]. Their findings showed differences in key mediators of pathogene-
sis, highlighting the role of fibrinogen in red blood cell aggregation and a strong correlation
of cytokine upregulation with disease severity in pediatric populations. Meanwhile, pro-

https://pubmed.ncbi.nlm.nih.gov
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inflammatory pathways and complement and coagulation cascades were upregulated in
both children and adults. Complement and coagulation cascades, platelet aggregation,
myeloid leukocyte activation and arginine and proline metabolism were observed by Sur-
vana et al. during progression from a non-severe to a severe state [29]. They showed that the
transforming growth factor beta-1 proprotein (TGFB1) and the galectin-3-binding protein
(LGALS3BP) were significantly downregulated in severe patients, correlating this result
with the progression of fatal COVID-19 infection. Meanwhile, they hypothesized increases
in creatine and arginine as indicators of kidney dysfunction and heart failure. Human
plasma was the collected biofluid also in Lam et al.’s work, who relied on lipidomics and
proteomics [32]. They focused their attention on monitoring the compositional variation in
exosome-enriched extracellular vesicles (EVs) from patients at different temporal stages of
COVID-19. EVs’ lipid membrane fluidity was affected by the dysregulation of the raft lipid
metabolism. This impacted the localization of the protein cargo, which in turn had distinct
biological attributes based on the temporal clinical stage. In agreement with Suvarna and
Druzak’s studies, the complement and coagulation cascades and platelet activation were the
most dysregulated pathways, confirming their role in the innate response against viruses.
Moreover, the enrichment of presenilin-1 (PS-1) in the EVs from the hyper-inflammatory
phase indicated this protein as a marker of distinct cellular responses in recipient cells.

Due to the spread of SARS-CoV-2 infection, many efforts have also been dedicated
to the investigation of maternal, fetal/placental and neonatal immunity, even following
vaccination [33–35]. Comparative studies have highlighted alterations in the activation
of systemic cytokines and peripheral leukocytes between pregnant and non-pregnant
COVID-19 patients [36,37]. The understanding of the pregnancy-specific response to SARS-
CoV-2 was enriched by a high-throughput proteomics-based study of human plasma [38].
It was collected from 101 pregnant women (72 diagnosed with COVID-19 and 29 who
tested negative) and 93 non-pregnant individuals (53 diagnosed with COVID-19 and 41
who tested negative). Over 7000 proteins were identified, and 708 were differentially
abundant following Uniform Manifold Approximation and Projection (UMAP) analysis.
The extracellular matrix, immune response and viral infection were the most enriched
processes. Terms related to protein transport, translation, platelet activation, vascular
endothelial growth factor A (VEGF) and platelet-derived growth factor subunit A (PDGF)
were enriched in non-pregnant cases. Although some processes, including cell adhesion,
wounding and blood coagulation, were shared by both groups, the results overall suggested
a stronger response to infection in non-pregnant women, whereas pregnant cases showed a
modulated response directed toward the protection of the fetus from inflammation.

Biofluids and omics technologies have been combined also for prognostic purposes.
Chen et al. defined the transcriptome, metabolome and proteome in blood samples from
COVID-19 patients [39]. Their goal was the discovery of biomarkers for the prognosis
of SARS-CoV-2 infection provoking multi-organ damage. By analyzing three different
infection time points, they associated differences in T-cell mobilization with the control
pro-inflammatory response. Matrix metalloproteinase-9 (MMP9), C-X-C motif chemokine 2
(CXCL2) and C-X-C motif chemokine 6 (CXCL6) were proposed as upregulated markers
of fatal progression. Moreover, different biomarkers per omics dataset were extracted,
including the let-7 family from exRNA, S-acyl fatty acid synthase thioesterase, the medium-
chain (OLAH) and T-cell surface glycoprotein CD3 epsilon chain (CD3E) from mRNA
and the complement C4-A (C4A) and complement C4-B (C4B) proteins, as involved in
T-cell activation and the suppression of inflammation. Biomarkers belonging to similar
protein families were reported by Bi et al., who proposed to use urine samples and a
machine learning approach to follow disease progression [31]. Among the discovered
markers, C-X-C motif chemokine 14 (CXCL14), transforming protein RhoA (RHOA), ras-
related C3 botulinum toxin substrate 1 (RAC1) and cubilin (CUBN) were validated by
parallel reaction monitoring (PRM); interestingly, CXCL14 was downregulated in the urine
of severely ill patients and correlated with blood lymphocytes.
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In addition to biofluids, some contributions have explored the effect of viral infection
using specific cell types [40–43]. Xu et al. analyzed Calu3 cells at 24 h post-infection, char-
acterizing their transcriptome, proteome and ubiquitinome profiles [40]. More than two
thousand genes and one thousand proteins were differentially regulated. In this context,
the role of pro-inflammatory processes emerged through the modulation of pathways like
p38/MAPK, PI3K-AKT, EGFR/VEGFR, TLR and TNF. Furthermore, the results suggested
the relevance of ubiquitination for viral infection. Indeed, multiple ubiquitination sites
have been identified on proteins participating in the TLR and TNF signaling pathway,
while three sites have been found in the spike (S) protein. Calu3 cells were also analyzed
by Pinto et al. at the transcriptomic, proteomic, acetylomic, phosphoproteomic and ex-
ometabolome levels [43]. By combining this multitude of analyses, they demonstrated
that the induction of the type I IFN response, the activation of the DNA damage response
and Hippo signaling dysregulation were SARS-CoV-2 Norway/Trondheim-S15 strain infec-
tion time-dependent. Of note, the results showed also an interplay among phosphorylation
and acetylation dynamics in host proteins, and its effect on the altered release of metabo-
lites, especially organic acids and ketone bodies. The proteome profiles of the Calu3 and
Caco2 cell lines at different time points were used by Caccuri et al. to demonstrate the
competition between virus quasi-species (MB610 and MB61222 patient isolates) to maintain
dominant replicative activity and spread by manipulating the host cell’s innate immunity.
The same group investigated the capability of SARS-CoV-2 to infect human primary lung
microvascular endothelial cells (HL-mECs), supporting the hypothesis of a direct role
of SARS-CoV-2-infected HL-mECs in sustaining vascular dysfunction during the early
phases of infection. In support of this, they observed the release of pro-inflammatory and
pro-angiogenic molecules, as well as the expression of antiviral molecules such as annexin
A6 (ANXA6) and Interferon-induced GTP-binding protein Mx1 (MX1) [41].

The results obtained by analyzing these cell lines can be related to human tissues
and biofluids; thus, they can be used to evaluate both disease states and drug efficacy.
Of course, it is important to underline the limitation of analyzing a single cell line, decon-
textualized from its natural environment made up of molecular and cellular interactions.
The analysis of biofluids, mainly serum and plasma, gives results that reflect the states of
different sources, including cell lines and tissues. Thus, they provide a more systemic view.
For this purpose, specific tissues certainly represent well-defined, complex systems whose
multiomics profiles can be better associated with a disease state, as well as with therapeu-
tic efficacy. However, in comparison to biofluids or infected cell lines, omics studies on
tissues and organs from patients affected by COVID-19 appear much less represented in
the literature.

The proteome, phosphoproteome and transcriptome were analyzed by Cantwell et al.
in the heart, kidney and lung in a Syrian hamster model [19]. Meanwhile, other studies
have taken into consideration large cohorts of human samples but focusing on ACE2
expression in different organs/tissues and pathological conditions [4,6]. As for human
tissues and proteomic landscapes, a major study analyzed 144 autopsies from seven dif-
ferent organs, such as the lung, spleen, liver, kidney, heart, testis and thyroid [11]. Taking
non-COVID-19 cases as a reference, 5336 were found to be dysregulated. For each analyzed
organ, hierarchical clustering analysis revealed a clear separation between infected and
non-infected samples. However, excluding the testis [44], they shared only 27 dysregulated
proteins, suggesting an organ-specific response. This set included the CRP and CD163
proteins, associated with the hyper-inflammatory response and tissue repair. Both the
spleen and lung exhibited a similar immune response pattern where the downregulation of
the tyrosine-protein kinase Lck (LCK) could indicate the suppression of T-cell-mediated
responses. Two immune checkpoints, carcinoembryonic antigen-related cell adhesion
molecule 1 (CEACAM1) and CD276 antigen (CD276), were upregulated in the lung, sug-
gesting the suppression of adaptive immunity. Meanwhile, in the spleen, it was suggested
by the dysregulation of proteins enriched in the PD-1 and PD-L1 pathway, along with the
inhibition of B-cell receptor signaling. Among the considered COVID-19 cases, 14 out of
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19 were characterized by systemic hyper-inflammatory and multiple organ dysfunction
syndrome (MODS). Their livers showed the enrichment of processes involved in the acute
phase response, cytokine secretion and neutrophil degranulation. To gain a better under-
standing of the mechanisms exerted by SARS-CoV-2, the authors selected six functional
protein clusters, including viral receptors and proteases, transcription factors (TFs), cy-
tokines and their receptors, the complement and coagulation system, angiogenesis and
fibrosis markers, as reported in other studies [29,30,42,45,46]. TFs were strongly correlated
with the activation of the inflammatory response, and 395 out of 1117 were found altered;
they were enriched also in processes involved in the spliceosome, viral carcinogenesis,
tissue injury and hypoxia. Similarly, 112 dysregulated cytokines were enriched in pathways
including angiogenesis and the growth factor response. Finally, in addition to ACE2 [3],
Nie and colleagues discovered several potential molecules involved in coronavirus entry.
They included C-type lectin domain family 4 member M (CLEC4M) [47], CD209 antigen
(CD209) [48], NPC intracellular cholesterol transporter 1 (NPC1) [49], CEACAM1 [50] and
procathepsin L (CTSL) [51]. ACE2, CD209 and CLEC4M did not show significant dysreg-
ulation in the lung, while ACE2 was downregulated in the kidney and heart, potentially
impacting its modulatory roles in angiotensin II and related processes, such as inflam-
mation, vasoconstriction and thrombosis [52]. On the contrary, CTSL, a serine protease
involved in the endosomal pathway of SARS-CoV-2, was significantly upregulated in the
lung, spleen, kidney and thyroid, suggesting it as a potential therapeutic target [51].

4. Omics Data-Derived Molecular Network Strategies to Explore SARS-CoV-2-Induced
Organ/Tissue Damage, Identify Drug Targets and Reposition Existing Drugs

The essential basis of systems biology is considering a biological phenomenon as an
ensemble of elements dynamically interacting at different levels. Based on this assumption,
the complex network of interactions between DNA, transcripts, proteins and metabolites is
considered the decisive cause of the emergent properties that determine cellular and/or
tissue/organ dysfunction [53]. In the fight against the pandemic, a relevant contribution to
this field was provided by Gordon et al., who released the first viral–human protein–protein
interaction (PPI) network for SARS-CoV-2 [18]. By cloning, tagging and expressing 26 out
of 29 SARS-CoV-2 proteins in human cells, the authors identified 332 high-confidence
PPIs between SARS-CoV-2 and humans. Among them, 66 proteins were druggable by
69 compounds, 29 of which were already approved by the US Food and Drug Adminis-
tration [54]. For a similar purpose, Zhou et al. used high-throughput yeast two-hybrid
experiments and mass spectrometry [55]. Following their pipeline, they built a compre-
hensive SARS-CoV-2–human PPI network consisting of 739 high-confidence interactions,
and almost half of them were new. The interaction partners found showed a large overlap
with already published datasets and DEGs in samples from COVID-19 patients. In addition,
by exploiting the network proximity measure [56], more than 2900 drugs were in silico
tested and 23 showed significant outcomes. Of note, carvedilol was effective in treating
COVID-19 patients due to its antiviral properties, demonstrated in a human lung cell line
infected with SARS-CoV-2. Using two large independent COVID-19 patient databases,
they found that its use was associated with a lowered risk (17–20%) of a positive COVID-19
test, validating the trustworthiness of the proximity measure.

Two additional studies helped to unravel the range of interactions between the virus
and host. One of them, published by Das et al., was based on codon usage patterns between
pairs of co-evolved host and viral proteins [57]. In addition to inferring both negatively and
positively interacting edges, the authors found the multi-domain non-structural protein
3 (NSP3) and spike (S) as the most influential proteins in interacting with multiple host
proteins. The MAPK pathway was the most affected during SARS-CoV-2 infection, while
proteins participating in multiple pathways were, as expected, central in host PPIs and
mostly targeted by multiple viral proteins. On the other hand, Schmidt and colleagues
dedicated their efforts to characterizing the interactions between SARS-CoV-2 RNAs and
the proteins of host cells [58]. Following RNA antisense purification and mass spectrom-
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etry, the authors identified 104 human proteins interacting with and affecting the virus
RNAs. The correlation with proteome modulation allowed the characterization of path-
ways with a role in SARS-CoV-2 infection, as well as the identification of two viral RNA
binders, cellular nucleic acid-binding protein (CNBP) and La-related protein 1 (LARP1),
able to restrict SARS-CoV-2 replication in infected cells. In this context, the pharmaco-
logical inhibition of some RNA interactors, including peptidyl-prolyl cis-trans isomerase
A (PPIA), sodium/potassium-transporting ATPase subunit alpha-1 (ATP1A1) and the
ARP2/3 complex, showed effectiveness in decreasing viral replication in cell lines.

PPI and co-expression network models have been combined with experimentally
determined omics profiles to organize them into functional, topological and disease mod-
ules [28,42]. The structure of these networks was analyzed to select hub nodes as key
molecules underlying the pathophysiological processes triggered by viral infection and
thus as potential drug targets [24–26]. This landscape is dominated by studies that have
adopted common pipelines characterized by the combination of different complementary
approaches and tools, including databases (Table 1), omics data, network models, algo-
rithms for network topology, molecular docking and molecular dynamics (MD) simulation
(Figure 4). Several of these contributions fall within the network pharmacology area, which
has attracted the attention of modern science, gaining even more interest in light of the
urgent need for effective therapeutic strategies that target SARS-CoV-2 and/or human
proteins to control the viral infection [15].

Table 1. Collection of web resources and databases useful for network pharmacology; OSP: Open-
Source Project.

Database/Link Description License Ref.

DGIdb
dgidb.org (accessed on
1 August 2023)

Web resource that provides information on drug–gene interactions
and druggable genes from publications, databases and other
web-based sources

OSP [59]

TTD
db.idrblab.net/ttd/ (accessed on
1 August 2023)

Database that provides information about the known and explored
therapeutic protein and nucleic acid targets, the targeted disease,
pathway information and the corresponding drug target

Free [60]

NPASS
bidd.group/NPASS/index.php
(accessed on 1 August 2023)

It integrates species sources of natural products and connects natural
products to biological targets via experimentally derived quantitative
activity data

Free [61]

SwissADME
swissadme.ch (accessed on
1 August 2023)

It allows predictive models for physicochemical properties,
pharmacokinetics, ADME parameters, druglikeness and medicinal
chemistry friendliness of one or multiple small molecules to support
drug discovery

Free [62]

STP
swisstargetprediction.ch
(accessed on 1 August 2023)

It estimates the most probable macromolecular targets of a small
molecule, assumed as bioactive from three different species
(Homo sapiens, Mus musculus, Rattus norvegicus)

Free [63]

SEA
sea.bkslab.org (accessed on
1 August 2023)

It quantitatively groups and relates proteins based on the chemical
similarity of their ligands. It can be used to rapidly search large
compound databases and to build cross-target similarity maps

Free [64]

PharmMapper
lilab-ecust.cn/pharmmapper/
(accessed on 1 August 2023)

It is a web server that allows the identification of potential small
molecule targets using a pharmacophore mapping approach.
The server hosts a large repertoire of pharmacophore models
annotated from various sources and it finds the best mapping poses
of the query molecule against all the pharmacophore models in
the database

Free [65]

TCMSP
cmsp-e.com/tcmsp.php
(accessed on 1 August 2023)

It captures the relationships between drugs, targets and diseases as
well as pharmacokinetic properties for natural compounds Free [66]

dgidb.org
db.idrblab.net/ttd/
bidd.group/NPASS/index.php
swissadme.ch
swisstargetprediction.ch
sea.bkslab.org
lilab-ecust.cn/pharmmapper/
cmsp-e.com/tcmsp.php
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Table 1. Cont.

Database/Link Description License Ref.

PubChem
pubchem.ncbi.nlm.nih.gov
(accessed on 1 August 2023)

It is an open chemistry database that mainly contains small
molecules, but also nucleotides, carbohydrates, lipids, peptides
and chemically modified macromolecules. It collects information on
chemical structures, identifiers, chemical and physical properties,
biological activity, patents, health and safety, toxicity data and
many others

OSP [67]

GeneCards
genecards.org (accessed on
1 August 2023)

It is a searchable integrative database that provides comprehensive
user-friendly information on all annotated and predicted human
genes. It automatically integrates gene-centric data from
approximately 150 web sources, including genomic, transcriptomic,
proteomic, genetic, clinical and functional information

OSP [68]

OMIM
omim.org (accessed on
1 August 2023)

It is a comprehensive, authoritative compendium of human genes
and genetic phenotypes that is freely available and updated daily.
The full-text, referenced overviews in OMIM contain information on
all known Mendelian disorders and over 16,000 genes. OMIM
focuses on the relationships between phenotypes and genotypes

OSP [69]

ETCM
tcmip.cn/ETCM/ (accessed on
1 August 2023)

It includes the most commonly used herbs and formulas of
Traditional Chinese Medicine, as well as their ingredients, to explore
the relationships or build networks among TCM herbs, formulas,
ingredients, gene targets and related pathways or diseases

Free [70]

STRING
string-db.org (accessed on
1 August 2023)

It aims to integrate all known and predicted associations between
proteins, including both physical interactions and functional
associations. To achieve this, STRING collects and scores evidence
from a number of sources: (i) automated text mining of the scientific
literature, (ii) databases of interaction experiments and annotated
complexes/pathways, (iii) computational interaction predictions
from co-expression and from conserved genomic context and
(iv) systematic transfers of interaction evidence from one organism to
another. The upcoming version 11.5 of the resource will contain more
than 14,000 organisms

Free [71]

STITCH 2
stitch.embl.de (accessed on
1 August 2023)

It aims to integrate the data dispersed throughout the literature and
various databases of biological pathways, drug–target relationships
and binding affinities. In STITCH 2, the number of relevant
interactions is increased by the incorporation of BindingDB,
PharmGKB and the Comparative Toxicogenomics Database.
The resulting network can be explored interactively or used as the
basis for large-scale analyses. STITCH 2 connects proteins from 630
organisms to over 74,000 different chemicals, including 2200 drugs

Free [72]

CHEMBL
https:
//www.ebi.ac.uk/chembl/
(accessed on 1 August 2023)

ChEMBL is a manually curated database of bioactive molecules with
druglike properties. It brings together chemical, bioactivity and
genomic data to aid the translation of genomic information into
effective new drugs

Free [73]

Pathguide
pathguide.org (accessed on
1 August 2023)

It contains information about 702 biological pathway-related
resources and molecular interaction-related resources. Databases that
are free and those supporting BioPAX, CellML, PSI-MI or SBML
standards are indicated

Free

The pandemic has led to a growing trend in the use of herbal drugs, with therapeutic
and antiviral properties and low side effects. After the use of Traditional Medicine (TM),
botanical formulations and cellular systems have been recently analyzed in a retrospective
manner with the aim of identifying hidden aspects of SARS-CoV-2’s pathogenic mecha-
nisms, as well as to characterize active compounds and drug target candidates. The latter
have been selected among hubs found by processing topologically the PPI network models
reconstructed from experimental omics profiles (Figure 4). However, most of them have

pubchem.ncbi.nlm.nih.gov
genecards.org
omim.org
tcmip.cn/ETCM/
string-db.org
stitch.embl.de
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
pathguide.org
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used differentially expressed genes (DEGs) [23,25,26,74–85], while few have relied on pro-
teomics [86] or metabolomics data [87]. Interestingly, similar strategies have been used for
network pharmacology studies to evaluate comorbidities. As a matter of fact, SARS-CoV-2
infection has been investigated in correlation with mucormycosis [88], influenza [24], dia-
betic kidney disease [83], multiple myeloma [84], cardiomyopathy [77,89,90], non-alcoholic
fatty liver disease (NAFLD) [79], pulmonary fibrosis [91], colon cancer [92], lung can-
cer [82,85], glioblastoma [93] and HIV [94].

Herbal Mixture
COVID-19 Disease

Bioactive compounds

Common genes

(Drug Targets)

SARS-CoV-2 interacting 

human proteins

Bioactive compound 

targets

(Human Proteins)

PPI

models

Funtional & Enrichment

Pathway Analysis

HUBs

POTENTIAL DRUGS

TF-genes

TF-miRNAs
AutoDock Vina

HDOCK

PDB

PyMOL

Network

Topology

Omics Profiles

Molecular

Docking/Dynamics

STRING
IntAct
MINT
DIP

GeneCards
DisGeNET

TTD
OMIM

Common genes

(Drug Targets)

SwissADME
NPASS

PubChem

TCMSP
ETCM
SEA

DGIdb
STP

PharmMapper

Figure 4. Workflow summarizing the main steps in discovering gene targets and herbal bioactive
compounds as potential drugs to treat COVID-19 patients. Starting with herbal mixtures, the authors
retrieved the bioactive compounds present there and the corresponding genes that they target. These
genes were matched with those interacting with SARS-CoV-2 proteins to select compound/gene
combinations of interest. The further identification of potential drug targets (HUBs) was performed
by the topological analysis of network models reconstructed from the omics profiles characterized by
COVID-19 patient samples. Finally, the selected combinations compound/gene(HUB) were in silico
validated by molecular docking/dynamics. The blue rectangles indicate the main databases used,
while the red circles indicate the in silico approaches.
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From the studies dedicated to the treatment of SARS-CoV-2 by TM, the relevance
of some active compounds and drug targets has emerged more frequently than oth-
ers. In particular, quercitin [88,90,92,95,96] and kaempferol [88,91,95,96], belonging to
the flavonoid family, were the active phyto-compounds most mentioned as effective. Along
with them, wortmannin [23], a fungal metabolite, amygdalin [97], a cyanogenic glyco-
side found in many plant seeds, phillyrin [24], an endophytic fungal isolate, cepharan-
thine [26], an anti-inflammatory and antineoplastic compound isolated from the Stephania
plant, luteolin [96], a flavonoid with antioxidant properties and a free radical scavenger,
β-sitosterol, estrone, and stigmasterole from ephedra bitter almond [98] and phaseolin-
isoflavan, glabrene, shinpterocarpin and irisolidone [95] were investigated and consid-
ered among the main active compounds. In the same way, a role as a hub and drug
target appeared recursive for some specific genes. In addition to ACE2, Interleukin-6
(IL6) [79,90,96,97,99,100], vascular endothelial growth factor A (VEGFA) [23,77,97,100,101],
transcription factor p65 (RELA) [75,90,91,94,96,101], signal transducer and activator of
transcription 1-alpha/beta (STAT1) [26,75,83,93,100], mitogen-activated protein kinase
1 (MAPK1) [16,91,94,96,100], MAPK8 [90,91,96,100], mitogen-activated protein kinase 3
(MAPK3) [91,94,97], proto-oncogene tyrosine-protein kinase Src (SRC) [26,91,97], epidermal
growth factor receptor (EGFR) [90,91,97] and RAC-alpha serine/threonine-protein kinase
(AKT1) [78,91,94] were among those best ranked following network topology, molecular
docking and molecular dynamic analyses—all results that highlight the enrichment and
involvement of the MAPK [23,100,101], PI3K-Akt [24,26,97,99] and Interferon signaling
pathways [41,42,75,76,83].

5. Network Topology: From Hubs to Proximity Measure by Way of Shortest Paths

Due to the long lead times for vaccine development, where the typical timeline for
approval can exceed 10 years, the emergence of the COVID-19 pandemic has triggered
several studies on the reuse of known drugs to accelerate the adoption of new therapies
against SARS-CoV-2 infection. One of the first studies, published in 2020, profiled a
library of 12,000 drugs, including clinical-stage and Food and Drug Administration (FDA)-
approved molecules [102]. One hundred molecules inhibited viral replication and 21 were
dose-responsive. Most of the molecules identified in this study were at an advanced clinic
stage, ensuring a pharmacological safety profile, which was important to accelerate the
clinical evaluation of these drugs for the treatment of COVID-19.

As reported in the previous paragraphs, the authors of several manuscripts have
concentrated their efforts on the investigation of the molecular network structure in terms
of characterizing nodes, called hubs, as candidate targets for drug therapies. A hub node
represents the signature of a deeper organizing principle called a scale-free property [28].
These strategies arise from the assumption that the underlying architecture of a network
enables the cellular functions to be carried out by a system (cell, tissue, organ) under a
given condition [53]. To provide a simplified picture of such concepts, a molecule (i.e.,
gene, transcript, protein, metabolite) is relevant, or central, if it is close to and connected
with many other molecules. To evaluate these features and identify the molecules most
topologically relevant in complex networks including thousands of nodes and interactions,
different parameters, called centralities, are available; a comprehensive description may
be found in Vella et al. [28] or Scardoni et al. [103]. In addition to the degree, which is the
simplest centrality, one of the most used is known as betweenness (Figure 5). Nodes with a
high value of this centrality maintain communication with groups of nodes and control
the information flow that passes through them. In other words, this hub or bottleneck
represents a fundamental element of connection in signaling pathways, thus becoming a
candidate drug target, as reported in several studies focused on SARS-CoV-2 investiga-
tion [23–26,74–86,89–94].

Betweenness centrality, like other topological parameters, is based on the shortest path
measure, i.e., the shortest path that connects two nodes in a network model. This measure
underlies also the drug–disease proximity measure that quantifies the interplay between
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drug targets and diseases and supports a mathematical approach employed to infer poten-
tial new drug candidates [56]. In addition to the network proximity measure, previously
published algorithms used for drug repurposing, like DrugNet [104] and GPSnet [105],
or specifically designed for COVID-19, like SAveRUNNER [106], CovidX [107] and LU-
NAR [108], have proven to be powerful in examining lists of existing and approved drugs.
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Figure 5. Network topology and parameters used to select hubs and candidate drug targets.
(A) Scheme representing hubs, bottlenecks and shortest path. (B) Betweenness centrality and its
variation in network models taken as an example. (C) Proximity distance. Red and orange nodes
indicate genes belonging to disease and drug target modules, respectively. In green, the shortest
paths between disease genes (S1, S2 and S3) and the drug target genes (t1, t2, t4 and t4) are shown.
Node size is proportional to node degree.

In Guney et al., the proximity measure was applied to test 238 drugs in 78 diseases
for a total of 402 combinations. Their idea was born from the question of whether drugs
that target proteins/genes (drug targets) closer to the disease proteins/genes are more
effective than drugs that target distant proteins/genes. Moreover, they assumed that genes
associated with a disease tend to cluster in the same network neighborhood, called the
disease module [109,110], as well as that the impact of drugs is typically local and thus
restricted to proteins within two steps in the interactome. Based on these assumptions,
the authors’ results suggested that 15% of the drug–disease associations among the drug
targets corresponded to disease proteins, while, for 59%, the drug targets were proximal
to the disease proteins/genes. Proximal drugs tended to involve the endocrine system
and metabolic processes, whereas distant drugs were enriched in the anti-inflammatory
and pain relief-related categories. Moreover, the proximity distance was found to be a
good measure of a drug’s efficacy, with proximal drugs more likely to be therapeutically
beneficial than distant drugs, which usually correspond to palliative treatments [56]. The
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same authors further used and validated this approach in investigating the associations
between over 984 FDA-approved drugs and 23 types of cardiovascular diseases (CV). By in-
tegrating network proximity and large-scale patient-level longitudinal data complemented
by mechanistic in vitro studies, already known relationships between drugs and drug
targets, like side effects, were found. Relying on the FDA-approved CV drugs (177 out of
984) and their known CV indications, the approach provided a value of accuracy over 70%
(AUC), outperforming other network distance-based measures between drug targets and
disease modules [111].

The availability of the proximity measure during the COVID-19 pandemic was impor-
tant in prioritizing approved drugs to treat SARS-CoV-2 infection without regard for their
established disease indications [20]. In their work, Morselli Gysi and colleagues imple-
mented three different network-repurposing strategies relying on artificial intelligence (Al),
network diffusion and network proximity. Based on these algorithms, 12 pipelines were
used to test 6340 drugs and rank their potential efficacy against SARS-CoV-2. To obtain
consistent, reliable outcomes across all datasets and metrics, the authors selected 918 drugs
for which all pipelines offered predictions and whose compounds were available in their
library to be experimentally tested. In fact, the predictions obtained were experimentally
screened in VeroE6 cells derived from the African green monkey. Specifically, 35 drugs
were cytotoxic, 37 had a strong effect and 40 had a weak effect, while the rest did not show
detectable effects on viral infectivity. Subsequently, the authors limited the analysis of the
918 screened drugs by considering as positive 37 drugs in clinical trials and as negative the
remaining 881. Unfortunately, since the outcomes of these trials were largely unknown,
each pipeline was tested referring to the pharmacological consensus of the medical com-
munity. AI-based pipelines showed the best predictive power for the drugs selected for
clinical trials, while proximity offered better predictions for the experimental outcomes of
the screened 918 drugs. Since these predictive models were limited by finite experimental
resources, the authors combined the predictions of the different pipelines by implementing
three heuristic rank aggregation algorithms. Among them, CRank [112], which relies on
Bayesian factors, showed the highest predictive performance for all datasets, exceeding the
predictive power of the individual pipelines. Among the drugs ranked by CRank, those
that had a positive effect on VeroE6 cells were further tested in Huh7 cells. In addition to
chloroquine and hydroxychloroquine, which have been tested repeatedly in the literature,
auranofin, azelastine and digoxin showed very strong anti–SARS-CoV-2 responses. How-
ever, they were not included in clinical trials. On the other hand, among the best-ranked
100 predictions, eight were cytotoxic drugs.

6. Discussion

Through this review, it was our intention to provide an overview of studies relying
on omics data and/or network analysis to improve the knowledge of the molecular mech-
anisms triggered by SARS-CoV-2 infection and underlying the organ and tissue damage.
Globally, the semantic analysis proposed at the beginning of our work foreshadowed
the poor representation of studies dedicated to this area of research. In fact, following
the exploration of this landscape, we obtained few manuscripts specifically targeting the
molecular profiles of tissues and organs. If, on the one hand, it was shown that these topics
are poorly investigated, on the other hand, it highlights the need to fill this gap.

The omics analyses already carried out represent an important source of information
for retrospective studies. Similarly, it is relevant to consider the possibility of investigating
today tissue and organ samples collected from COVID-19 patients during the pandemic.
This delay is probably due to several factors. Among them, social restrictions have affected
every type of work activity, including that dedicated to scientific research. In addition,
as highlighted by our semantic analysis, the priorities during the early stages of the pan-
demic were linked to the pressure suffered by hospitals, as well as by healthcare workers.
In other words, at least in the beginning, strict precautionary measures and resources
were put forward by most nations in order to mitigate transmission and decrease fatality



Biology 2023, 12, 1196 15 of 23

rates. Thus, healthcare workers, including doctors, spent more time and effort in treating
patients with already available tool than in collecting samples from deceased patients. The
collection of these, moreover, was only possible in specialized centers. On the other hand,
many researchers were forced to work at home, focusing more on scientific writing than on
analytical activities [113].

Except for cell lines analyzed at different times after infection [41,42], the restrictions
caused by the lockdown most probably impacted also the collection of longitudinal data.
The potential associated with this type of study [114], and the combination of omics data
and network strategies, is still to be exploited and could allow new insights into the phys-
iological mechanisms dysregulated by SARS-CoV-2 infection and the pathological ones
triggered by it. The data published by Nie et al. certainly represent the best example of
a dataset, to our knowledge, that could be further used to reconstruct PPI network mod-
els [11]. Even if the characterized profiles concern only the proteomic analysis, the dataset
covers several organs, providing, for each of them, a widely represented proteome. To our
knowledge, the rest of the panorama offers omics profiles from biofluids [29–32,38,39] or
cell lines [40–43], which, while not representing the complexity of a tissue or an organ,
still play a significant role in accumulating knowledge and having as complete a picture
as possible. Indeed, although the role of omics and network analyses does not signifi-
cantly emerge from the titles of the published papers (Figure 2), the picture offered by our
overview highlights the importance of these approaches in discovering new molecular
relationships that intervene in the host–virus interaction, as well as in opening up new
strategies that allow the faster development or reuse of pharmaceuticals.

The completeness of the omics profiles used to reconstruct the network models can cer-
tainly impact the consistency of the models themselves and the outcomes of their functional
and topological analysis. As for COVID-19 investigation, these strategies have been much
more widely adopted and exploited in combination with RNAseq data [23,25,26,74–85],
and specifically in the context of network pharmacology studies. As a result of using
traditional medicine to treat COVID-19 patients, the number of retrospective studies aimed
at discovering bioactive compounds and potential gene targets for therapy has clearly
emerged. The compelling need for pharmacological solutions has in fact stimulated differ-
ent and complementary approaches, including drug repurposing, drug design platforms,
in vitro assays and animal models, up to the development of vaccines [115]. Most of these
studies were based on a similar pipeline relying on network topology. The identification of
protein hubs has proven useful in prioritizing the candidate targets for drug treatments in
which to invest time for further study and validation [23–26,74–86,89–94]. The saving of
time certainly represents a vitally important element in emergency situations, such as the
one experienced due to COVID-19.

Though using different strategies, other studies have relied on topology for drug
reuse purposes. Like the betweenness, or other centralities for the selection of hubs,
the proximity distance was found to be useful to rank the potential benefits of ready-to-use
drugs [20,56,111]. The interest and relevance of this research area are underlined by the
development of other algorithms both before [104,105] and after the pandemic [107,108].
Indeed, beyond COVID-19, which has been an extraordinary condition, the increase in
drug development costs combined with a significant decline in the number of new drug
approvals increases the need for innovative approaches to identifying targets and predicting
drug efficacy.

All repurposing strategies, whether they are in silico or in combination with experi-
mental data, suffer from some limitations that emerge for different reasons. In the case of
experimental data, and in particular of clinical proteomics, the standardization of methods
remains the main challenge in obtaining reproducible results [116]. The completeness
of the characterized profiles, combined with that of accurate protein–protein interaction
network models [117,118], is a further factor that certainly can influence the results ob-
tained. In this scenario, in vitro drug screening is the first step in validating potential
drugs selected by in silico approaches. However, conflicting evidence may be also the
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result of the investigation of different cell lines, different readout times, different drug
concentrations or different viral MOI. As reported by Kuleshow [119], different laboratories
across the world, different assays or different models tested produce different lists of drugs
and targets with a small overlap (Figure 6). As shown in this figure, a larger number of
drugs was shared in studies performed by the same authors, i.e., Pickard et al. [120] and
Xiao et al. [121]. Nevertheless, some drugs, including remdesivir, chloroquine, hydroxy-
chloroquine and mefloquine, have been highlighted in multiple studies. Remdesivir is a
good example of a direct-acting antiviral drug that inhibits viral RNA polymerase. Hence,
it was found through drug-repurposing methods relying on docking patterns. In contrast,
pipelines based on network models could also identify drugs that target host proteins, like
dexametasone [20], which is commonly used in hospitalized patients [122]. Finally, it is
also important to highlight that some drugs tested in cells like VeroE6 could have different
efficacy in human cells, like Caco-2 or others. On the other hand, top-ranking drugs, like
ritonavir, do not show effects by in vitro screening but dozens of clinical trials are exploring
its potential efficacy in patients. Similarly, drugs effective in vitro may not replicate in vivo,
as observed for chloroquine and hydroxychloroquine, which work only in combination
with azithromycin [123].
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7. Conclusions

The picture offered by our review work is that the investigation area of omics and
systems biology has been little explored, with the exception of studies dedicated to tradi-
tional medicine and network pharmacology. This trend is probably in accordance with
the ongoing health emergency, and the prioritization of effective drugs even before under-
standing the mechanisms underlying the infection or triggered by it. However, this has
still allowed us to devote our efforts to the development and application of innovative
and inexpensive methods to evaluate the reuse of ready-to-use medicines. The goal of
drug repurposing is to prioritize all available drugs, allowing us to limit experimental
efforts only to the top-ranking compounds—hence improving efficiency and resource uti-
lization. As noted in our discussion, we are aware of the limitations that can arise from
these approaches, which can be further exacerbated by the use of different cellular models
or those derived from organisms other than humans. We also know that clinical trials,
aimed at discovering or verifying the effects of a new drug or an existing one tested for
new methods of therapeutic use, are divided into various phases and require timescales
that can even exceed several years. Furthermore, each country has different timescales for
the drug to be marketed. Nevertheless, the health emergency caused by SARS-CoV-2 has
led us to reduce the approval times for clinical use, and the development of vaccines is
the most striking example. For this purpose, the combination of omics technologies and
network approaches remains a promising strategy, despite all the aspects that need to be
improved. They therefore represent a tool to be further used in discovering new treatments
for various pathologies. This is a non-trivial opportunity that deserves to be discussed and
explored, not only in the event of an emergency but also for those rare diseases that suffer
from low investments regarding the development of dedicated drugs. This also applies
to the knowledge that has emerged from studies based on traditional medicine. In fact,
the discovery of new, potentially bioactive molecules should favor their investigation in
order to speed up their clinical investigation and approval.
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