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Simple Summary: Pompe disease is produced by an enzymatic deficiency that leads to aberrant
accumulation of glycogen in in multiple tissues, mainly muscle, causing progressive heart, respiratory
and motor failure. Dysregulations observed in these patients are derived from glycogen accumulation
but also to different secondary abnormalities. The characterization of the metabolic profile associated
with this disease is a valuable approach to gain a larger view of all the metabolic dysregulations
caused by the disease, and its potential correlation with clinical progression and response to ther-
apies. This article describes the metabolic alterations reported to be significantly altered in Pompe
disease patients in recent years. From a clinical perspective, this information could contribute to
guide in the diagnosis, evaluation of disease severity, treatment decision and monitoring of Pompe
disease patients.

Abstract: Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inher-
ited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins,
membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the
acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant
accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neuro-
logical and multiple-organ pathologies, can range from birth to adulthood, and disease severity
can vary between individuals. Although very significant advances related to the development of
new treatments, and also to the improvement of newborn screening programs and tools for a more
accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet
need for further understanding the molecular mechanisms underlying the progression of the disease.
Also, the reason why currently available treatments lose effectiveness over time in some patients is
not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable
approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation
with clinical progression and response to therapies. These approaches represent a discovery tool
for investigating disease-induced modifications in the complete metabolic profile, including large
numbers of metabolites that are simultaneously analyzed, enabling the identification of novel po-
tential biomarkers associated with these conditions. This review aims to highlight the most relevant
findings of recently published omics-based studies with a particular focus on describing the clinical
potential of the specific metabolic phenotypes associated to different subgroups of PD patients.

Keywords: lysosomal storage disorders; glycogen storage disease; Pompe disease; omics; multi-omics;
metabolic phenotype

1. Introduction

Lysosomal storage diseases (LSDs) are a group of over 70 inherited metabolic dis-
orders, frequently presented in childhood, caused by mutations in genes that affect the
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function of lysosomal hydrolases, accessory proteins, membrane transporters, or trafficking
proteins, that finally result in the accumulation of biomolecules inside the lysosomes and
lysosomal impairment. Although individually LSDs are defined as rare disorders, as a
group they are relatively common, with an incidence as high as 21:100,000 live births in
some countries [1–3]. From a genetic perspective, most LSDs are inherited as autosomal
recessive, while only three have an X-linked inheritance pattern [4]. Traditionally, these
disorders were grouped based on the accumulated biomolecule [5]; however, more recently,
LSDs tend to combine this information with their molecular background and common
pathophysiological mechanisms [6]. Among them, glycogen storage diseases (GSDs) are a
subgroup of LSDs characterized by mutations in enzymes involved in glycogen metabolism,
finally leading to the accumulation of glycogen in lysosomes [7]. GSDs are classified, based
on the enzymatic deficiency, into different groups that can be further categorized in other
subtypes [8]. Among the different subtypes, the GSD type II, also known as Pompe disease
(PD), is one of the most studied [9]. The reported incidence of the disease varies in different
populations, although it is estimated to range from 1:40,000 to 60,000 individuals [3,10–12].

PD is an autosomal recessive GSD caused by mutations on the encoding gene of the
acid alpha-glucosidase (GAA) lysosomal enzyme, which is responsible for the hydrolysis
of glycogen to glucose. This enzymatic deficiency leads to glycogen accumulation in vari-
ous tissues, including musculoskeletal, cardiac, respiratory and nervous systems [13–15].
Diagnosis of PD includes accurate evaluation of clinical presentations, together with the
measurement of GAA enzymatic activity, or protein abundance, in leukocytes, fibroblasts,
urine, or rehydrated dried blood spots (DBS) for newborns [16–20] and molecular testing
of the GAA gene [21]. In 2015, PD was added to the Recommended Uniform Screening
Panel (RUSP) [16,22]. Since then, PD has been included in public newborn screening (NBS)
programs in many countries, and has contributed to the identification of PD patients, even
in asymptomatic cases [23–26].

From a clinical perspective, there are two main phenotypes described in PD: the infan-
tile onset PD (IOPD) and the late onset PD (LOPD) phenotypes [27]. Moreover, patients
with total enzymatic deficiency exhibit severe symptoms (e.g., hypertrophic cardiomy-
opathy, skeletal muscle myopathy) that finally lead to the patient’s death, while patients
with a partial enzyme deficiency present less severe phenotypes [28,29]. Classic IOPD
results from the complete or near-complete deficiency of GAA activity. This phenotype is
clinically characterized by the onset of symptoms soon after birth [30], sometimes even
manifesting prenatally [31,32], and requires early treatment for best outcomes [33–36]. In
contrast, LOPD is characterized by later onset of symptoms, with a high heterogeneity in
clinical presentation, usually characterized by muscle weakness with a limb girdle pattern,
that leads to progressive respiratory insufficiency [37,38]. LOPD patients exhibit a vari-
able spectrum of complex clinical phenotypes [39], ranging from an attenuate late-onset
of disease with mild health symptoms to severe early-onset phenotypes that frequently
result in patient death. Moreover, it is not clear whether these patients would benefit from
prophylactic treatment to delay or prevent symptoms. Thus, there is no uniform consensus
on the optimal time to initiate treatment in these patients [26,40].

Given the broad clinical variability and the unpredictability of different genotype–phenotype
correlations in these patients, the application of omics technologies could remarkably con-
tribute to improve the landscape of PD [41]. Indeed, the use of omics technologies (e.g.,
genomics, transcriptomics, proteomics and metabolomics) has greatly contributed to opti-
mize the clinical management of different LSDs patients [6], and can provide new insights
into the mechanisms underlying these disorders [42,43]. In addition, these technologies
have also allowed the discovery of new genes involved in LSDs [44,45], and the identifica-
tion of biomarkers associated with specific health conditions [46–49]. Notably, since these
disorders are characterized by the accumulation of specific metabolites, the characterization
of the metabolic phenotype of these patients can be used to guide in the diagnosis, evalu-
ation of disease severity, treatment decision and monitoring of LSD patients [50]. In this
context, since the metabolic composition can be influenced by the pathological processes of
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the disease or by the effect of specific treatments [51], the metabolic changes associated with
these processes can be used to identify metabolic dysregulations related to the progression
of these diseases, and to predict or monitor treatment response to therapies. Omics-based
technologies have already proved to contribute to identify metabolic alterations associated
to the pathophysiology of complex and heterogeneous diseases [52], such as irritable bowel
syndrome [53] and colorectal cancer [54]. In PD patients, early diagnosis and early treat-
ment have shown to be essential for a better outcome of patients [55–58]. Also, different
factors (e. g., age at start of treatment, CRIM (cross-reactive immune material) status, extra
lysosomal glycogen accumulation in muscle) are thought to be correlated with the high
variability of response to ERT in PD patients [14,35,59–62]. Additionally, there is a current
need to develop newer and more sensitive biomarkers related to disease burden, disease
progression, optimal time to initiate ERT and response to current treatments [26,63–67].
Thus, metabolic phenotyping represents a powerful and promising approach for the char-
acterization of clinically relevant PD metabolic phenotypes that could be translated to
therapeutic benefits for these patients.

Regarding PD treatment, enzyme replacement therapy (ERT), given as recombinant
human GAA (rhGAA), has been available for more than 15 years [68]. Although alglu-
cosidase alfa (Myozyme/Lumizyme®, Sanofi-Genzyme, Cambridge, MA, USA) approval
by the Food and Drug Administration (FDA) and the European Medical Agency (EMA)
in 2006 completely changed the landscape for PD patients [69], ERT is currently the only
available treatment option [59,70,71]. Moreover, this therapeutic strategy presents some
limitations [64], including variability in its effectiveness among patients [9,59], limited
bioavailability in the central nervous system (CNS) [72] and development of a strong im-
munologic response to treatment in some patients, that lead to less effective and sustained
response to treatment [73,74]. Notably, efforts have been made in recent years towards
the development of novel ERTs with improved lysosomal uptake (e.g., Avalglucosidase,
Reveglucosidase, anti-CD63-GAA, Clenbuterol) [75–77], gene-based therapies (e.g., SPK-
3006, ACTUS-101, AT845) [78] and also novel therapies targeting other disease-related
mechanisms, including autophagy, immune response and others (Figure 1). In this sce-
nario, identification of molecular markers that could contribute to evaluate the therapeutic
efficiency would also be greatly beneficial for the development of these novel treatments.

Figure 1. Graphical representation of the most common dysregulations observed in PD patients,
derived from glycogen accumulation but also due to secondary abnormalities (e.g., impaired
autophagy, activation of inflammation), and newer therapeutic approaches under investigation
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directed to restore lysosomal functionality and improve response to therapy in PD patients, including
ERT (e.g., Myozyme) [69], enzyme stabilization (e.g., Cipaglucosidase alfa plus miglustat) [79],
improving rhGAA lysosomal uptake (e.g., Avalglucosidase, Reveglucosidase, anti-CD63-GAA,
Clenbuterol) [75–77], gene therapy (e.g., SPK-3006, ACTUS-101, AT845) [78], SRT (e.g., MZE001) [80],
ex vivo HSCT gene therapy [81], immune tolerance induction (e.g., Methotrexate, Rituximab) [74,82]
and inhibition of autophagy (e.g., AAV-mediated TSC knockdown) [83,84]. Created with BioRender.
AAV-mediated TSC: adeno-associated virus-mediated tuberous sclerosis complex; ERT: enzyme
replacement therapy; HSCT: hematopoietic stem cell; rhGAA: recombinant human acid alpha-
glucosidase; SRT: substrate reduction therapy.

Although not specific, urinary glucose tetrasaccharide (Glc4) seems to be the most
important biomarker in measuring the progress of PD [85–88] and monitoring the thera-
peutic response to ERT [89,90]. For this reason, a number of studies have been performed
to develop robust procedures based on mass spectrometry methods for the analysis of
Glc4 in different biological samples [91–94] and to yield more evidence of its utility as a
biomarker [91,95–97]. Other studies have emerged looking for new metabolic biomarkers
to improve the clinical value of Glc4 for the diagnosis and prognosis of PD (reviewed
in [85,98]). This review summarizes the results obtained in recent omics-based studies fo-
cused on the characterization of distinct PD metabolic phenotypes reported in PD patients,
and also related with different clinical outcomes/treatment response in these patients.
Metabolic phenotyping is a systems biology approach that seeks to comprehensively assess
the metabolic status of an individual from a holistic perspective, based on the analysis of a
multitude of biochemical components and not in the individual measurement of specific
metabolites. These approaches are very valuable as they provide a deeper knowledge of
the molecular mechanisms underlying the pathology. In the last years, the percentage of
studies applying omics-based approaches for the characterization of the metabolic pheno-
type associated to PD has significantly increased. For this reason, this review has focused
on studies published in the last five years. Further details on the specific criteria followed
for the selection of the studies included in this review are included in the Supplementary
Materials section (Figure S1). Out of the nine studies finally included in the review, four of
them included data related to the identification of PD diagnostic biomarkers, five of them
focused on the characterization of distinct PD phenotypes and four of them also evaluated
the metabolic changes associated with the response to treatments in these patients. The
following sections of this work describe the most relevant findings reported in these studies
in relation to the pathophysiology of PD.

2. Omics Studies Directed to the Identification of Metabolic Pompe Disease
Diagnostic Biomarkers

The detection of metabolic alterations associated with the development of PD may
contribute to the identification of new diagnostic biomarkers and improve the diagnosis
of this disease. In this context, a range of studies have compared the metabolic profile of
PD patients and healthy individuals using different omics approaches aiming at the identi-
fication of potential metabolic biomarkers that could be clinically useful in PD diagnosis
(Table 1). In these studies, mass spectroscopy (MS) was the analytical platform used for the
identification of metabolic alterations in PD patients, and urine as the preferable sample
type for analysis.

Table 1. Omics-based studies focused on the identification of metabolic biomarkers for PD diagnosis.

Study Study
Design Sample Omics-Based

Approach
Major

Findings †

Sidorina et al. [99] 13 HC
12 PD Plasma nLC-MS/MS SWATH

and LC-IMS/MS

nLC-MS/MS SWATH: ↑ LDHB, PKM and
↓ GPLD1 and PON1

LC-IMS/MS: ↑ phosphatidylcholines and
↓ lysophosphatidylcholines
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Table 1. Cont.

Study Study
Design Sample Omics-Based

Approach
Major

Findings †

Semeraro et al. [94]

Urine:
75 HC
4 PD

Urine
and
DUS

UHPLC-MS/MS with
MRM

↑ Glc4 and M4
DUS:

12 HC
2 PD

de Moraes et al. [100] 21 HC
13 PD Urine LC-HRMAS

↑ Glc4, creatine, sorbitol/mannitol,
L-phenylalanine, N-acetyl-L-aspartic acid and ↓

N-acetyl-4-aminobutanal and 2-aminobenzoic acid

Hagemeijer et al. [101] 121 HC
18 PD Urine UHPLC/HRAM MS ↑ Glc4, Hex7 and Hex6

DUS: dried urine spots, Glc4: glucose tetrasaccharide, GPLD1: glycosylphosphatidylinositol specific pshospho-
lipase D1, HC: healthy control, LC-HRMAS: liquid chromatography-high resolution mass spectrometry, LC-
IMS/MS: liquid chromatography combined with ion mobility mass spectrometry, LDHB: lactate dehydrogenase
B, M4: maltotetraose, MRM: multiple reaction monitoring, nLC-MS/MS SWATH: nano-liquid chromatography
with tandem mass spectrometry and sequential window acquisition of all theoretical spectra, PD: Pompe disease,
PKM: pyruvate kinase M1/2, PON1: paraoxonase 1, UHPLC/HRAM MS: ultra-high performance liquid chro-
matography with a high-resolution accurate mass mass spectrometry, UHPLC-MS/MS: ultra-high performance
liquid chromatography mass spectrometry. † Direction of variation, considering the healthy group as a reference
(↑: higher levels than reference group; ↓: lower levels than reference group).

In the study conducted by Sidorina et al., data from proteomic and lipidomic analyses
were combined to identify novel PD biomarkers and gain knowledge in the physiopatho-
logical mechanisms underlying PD [99]. Comparison of the proteomic profile of plasma
samples from control subjects and PD patients showed significantly increased levels of two
proteins involved in glucose metabolism, lactate dehydrogenase (LDHB) and pyruvate
kinase (PKM), in these patients. Moreover, the pathway enrichment analysis performed in
this study revealed that these changes could be related to alterations in the glucagon signal-
ing pathway, connected with the breakdown of cell glycogen, suggesting an impairment of
glucose/glycogen metabolism in these patients [102]. Also, given that LDHB is expressed
in heart tissues and that increased levels of LDHB have been associated with heart dam-
age [103], the authors suggest that this change could be a reflection of cardiac abnormalities
observed in PD patients. Significantly lower levels of proteins related to phosphatidyl-
choline metabolism, glycosylphosphatidylinositol specific phospholipase D1 (GPLD1) and
paraoxonase 1 (PON1) were also reported in PD patients in this study. Since PON1 reg-
ulates the hydrolysis of some phosphatidylcholines into lysophosphatidylcholines [104],
down-regulation of this enzyme could explain the accumulation of phosphatidylcholines
and reduction of lysophosphatidylcholines levels in plasma, which were also observed in
the PD samples analyzed in this study. The results from this study highlight the potential
of integrated multi-omics analyses for the identification of novel biomarkers but also for a
better understanding of disease-related alterations.

Other studies have been focused on evaluating the performance of different analyt-
ical methods as metabolic screening tools for different LSDs causing an accumulation
of oligosaccharides (OS) [105–107]. In this line, Semeraro and colleagues evaluated the
performance of an ultra-high performance liquid chromatography mass spectrometry
(UHPLC-MS/MS) which allowed to characterize the different oligosaccharide species in
urine and dried urine spot (DUS) samples in a chromatographic run less than 30 min [94].
Glc4, a characteristic glycogen-derived tetrasaccharide in PD, is a known biomarker for
PD [108] and for monitoring the response to ERT in these patients [89]. In this study,
Glc4 and its isomer maltotetraose (M4) were the most significantly elevated OS found in
PD patients’ samples. Interestingly, the authors found that this analytical method was
able to detect increased concentrations of Glc4 in the urine and DUS in PD patients, but
also in patients diagnosed with autophagy disorders coursing with cardiac abnormalities



Biology 2023, 12, 1159 6 of 18

related to glycogen storage, such as Vici syndrome, Yunis–Varon syndrome and Danon
disease patients.

Another study conducted by de Moraes and coworkers [100], which included a larger
cohort of PD patients, also detected Glc4 as the most discriminative biomarker when
comparing the control group with both LOPD and IOPD patients. This result was also in
accordance with previous publications [86,109], therefore validating their analytical method.
In addition to Glc4, the targeted analysis also revealed increased levels of other OS species,
including hexose oligomers Hex5, Hex6, and Hex7. Moreover, the authors performed an
untargeted strategy to identify additional metabolic alterations with diagnostic utility in
PD patients. This allowed them to identify seven metabolites strongly associated with PD,
showing significant statistical differences between healthy individuals and PD patients.
Particularly, compared to control individuals, the metabolic profile of PD patients was
characterized by higher Glc4, creatine, sorbitol/mannitol, L-phenylalanine, N-acetyl-L-
aspartic acid and lower N-acetyl-4-aminobutanal and 2-aminobenzoic acid levels. Notably,
although all candidate biomarkers showed area under the curve (AUC) values above 0.70,
when the levels of these seven metabolites were combined for a multivariate ROC curve
analysis, that metabolic panel showed superior discriminative capability (AUC > 0.96)
compared to each individual metabolite.

Alterations in the urinary levels of Hex7 and Hex6, in addition to Glc4, were also found
in PD patients in a study conducted by Hagemeijer et al. [101]. The individual analysis
of the predictive potential of these metabolites revealed AUC values above 0.97. Hex6
showed the lower accuracy, while Hex7 exhibited slightly higher specificity and sensitivity
when compared to Glc4, suggesting the potential value of Hex7 as a novel biomarker for
the diagnosis of PD.

3. Omics Studies for the Characterization of Specific Pompe Disease Metabolic Phenotypes

Other studies have focused on identifying metabolic changes related to a particular
disease phenotype (Table 2). In PD patients, glycogen accumulation due to the complete
or near-complete deficiency of the GAA lysosomal enzyme mainly affects cardiac and
skeletal muscles [9]. Thus, different studies aimed at exploring the metabolic profile of
muscle biopsies from more and less severe PD phenotypes to gain deeper knowledge in
the molecular processes underlying this disease. The majority of these studies relied on
the analysis of tissue samples for characterizing the metabolic dysregulations specifically
associated with disease severity, while the urine metabolic profile was explored in only one
of these studies for the comparison of infantile-onset vs late-onset PD [100]. Regarding the
strategy used for the identification of metabolic alterations, MS was the most widely used
analytical platform, though the transcriptomic and the proteomic profiles were analyzed in
one study each [110,111].

Table 2. Omics-based studies focused on the characterization of specific PD metabolic phenotypes.

Study Study
Design Sample Omics-Based

Approach
Major

Findings †

Lim et al. [84] 10 WT
14 GAA-KO

Muscle
tissue CE-MS ↑ histidine, lysine, threonine, alanine, aspartate,

glutamine and serine

Meena et al. [112] 6 WT
6 GAA-KO

Muscle
tissue

CE-TOF/MS and
CE-QqQMS

↑ Gal1P, UDP-glucose, acetyl-CoA, citrate, succinate,
fumarate, malate, carnitine, and ↓ G1P, G6P, F6P, F1,6B,

pyruvate and lactate

Kinton et al. [110] 10 HC
8 LOPD

Muscle
tissue

Transcriptome
profiling

↑ lysosomal function, glycolysis, lipid metabolism and
calcium homeostasis, and ↓ mitophagy pathway

Moriggi et al. [111] 15 HC
10 LOPD

Muscle
tissue

2D-DIGE and
LC-MS/MS ↑ glycolysis and ↓ OXPHOS
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Table 2. Cont.

Study Study
Design Sample Omics-Based

Approach
Major

Findings †

de Moraes et al. [100] 8 IOPD
14 LOPD Urine LC-HRMAS ↓ Glc4, Hex5, Hex6, and Hex7

2D-DIGE: two-dimensional difference gel electrophoresis, CE-MS: capillary electrophoresis-mass spectrometry, CE-
QqQMS: capillary electrophoresis-triple quadrupole mass spectrometry, CE-TOF/MS: capillary electrophoresis-
time of flight mass spectrometer, F1,6B: fructose-1,6-biphosphate, F6P: fructose-6-phosphate, G1P: glucose-1-
phosphate, G6P: glucose-6-phosphate, GAA: acid alpha-glucoside, Gal1P: galactose 1-phosphate, Glc4: glucose
tetrasaccharide, HC: healthy control, IOPD: infantile-onset Pompe disease, KO: knockout, LC-MS/MS: liquid
chromatography-mass spectrometry, LOPD: late-onset Pompe disease, OXPHOS: oxidative phosphorylation.
† Direction of variation, considering the first group as a reference (↑: higher levels than reference group; ↓: lower
levels than reference group).

One of the hallmarks of PD is muscle atrophy [113–116] that occurs following a shift in
protein synthesis and degradation towards protein degradation [117,118]. Hence, Lim and
coworkers designed a metabolomics strategy in order to characterize how GAA knockout
(GAA-KO) in the muscle affected the muscle metabolic profile in an animal model [84].
In this analysis, significantly elevated levels of total amino acids, particularly histidine,
lysine, threonine, alanine, aspartate, glutamine and serine, were observed in the muscle
of GAA-KO animals compared to the wild-type group. These changes were accompanied
by an increased proteasome content and activity in the skeletal muscle of GAA-KO mice.
These results are in accordance with the increase in both protein synthesis and degradation
in PD patients reported in previous studies [117,118] that set the basis of the high protein
and exercise therapy for PD patients [119–121].

The metabolic profiles of skeletal muscle from GAA-KO and wild-type mice were
also compared in a more recent study conducted by Meena and colleagues [121]. In par-
ticular, GAA-deficient mice showed a metabolic shift from glucose towards fatty acid
metabolism as the main energy source, characterized by lower levels of glycolytic metabo-
lites and increased concentrations of glycogen synthesis precursors, as well as an increase in
acetyl-CoA, tricarboxylic acid (TCA) cycle intermediates and carnitine levels. The authors
suggested that these findings would be consistent with the shortage of glucose in these
tissues, indicating lysosomal glycogen accumulation as well as dysregulation of recycled
glucose would be involved in muscle damage in PD patients.

Other studies have reported different findings in relation to glucose metabolism ob-
served at the transcriptome level. In the study conducted by Kinton et al., the transcriptomic
profiles from healthy individuals’ and LOPD patients’ (ranging from 19 to 78 years age)
muscle biopsies were compared to identify cellular processes that were specifically altered
in LOPD patients [110]. The results obtained following a co-expression and pathway en-
richment analysis revealed that, compared to healthy controls, LOPD patients showed
enrichment in basic lysosomal function and biogenesis pathways, together with an increase
in glycolysis and lipid-related metabolic process, such us sphingolipid and phospholipid
metabolism. On the other hand, LOPD patients showed a significant attenuation in the
mitophagy pathway and a disruption of calcium homeostasis, indicated by the increased
enrichment in several pathways related to calcium ion transport, signaling and binding in
these patients. Previous studies have also reported defects in lysosomal morphology and
impaired lysosomal functions [9,122–124], alteration in glycolysis and lipid metabolism [99],
and dysregulation of calcium homeostasis [125] in PD. Also, alterations in mitochondrial
morphology, function and clearance [122,123,126,127] have been previously reported in re-
lation to PD. Notably, in this study the authors observed similar changes in these pathways
when analyzing a transcriptomic dataset from an external IOPD cohort of patients. This
analysis indicated an enrichment of lysosomal function, glycolysis and lipid metabolism in
IOPD patients compared to healthy controls. Nonetheless, impaired mitophagy was not
observed in IOPD patients, indicating that dysregulation of this biological mechanism is
particularly associated with the LOPD phenotype.
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Increased glycolysis was also observed using a proteomics approach in a study con-
ducted by Moriggi and coworkers focused on gaining deeper insights into the molecular
players involved in the impairment of muscle metabolism of LOPD patients [111]. Using a
double proteomic approach, based on two-dimensional difference gel electrophoresis (2D-
DIGE) and label free liquid chromatography-mass spectrometry (LC-MS/MS) proteomics,
the authors found altered levels of 178 proteins when comparing the proteomic profile
of muscle biopsies from LOPD (ranging from 46 to 75 years age) and healthy subjects.
Additionally, ingenuity pathway analysis revealed that, compared to healthy individuals,
LOPD patients exhibited enhanced glycolysis and inhibition of oxidative phosphorylation
(OXPHOS) suggesting that, in LOPD muscle biopsies, mitochondria are unable to oxidize
substrates for ATP production, which is needed for muscle contraction.

A recent metabolomics study was focused on characterizing differences in the OS
profile of IOPD and LOPD patients. The results from this study revealed that the urinary
OS profile of IOPD patients was characterized by significant increased concentrations of
Glc4 Hex5, Hex6, and Hex7, when compared to LOPD patients [100]. Notably, elevated
Glc4 levels have previously been reported in IOPD [109].

4. Omics Studies for the Characterization of the Metabolic Response to Therapeutic
Interventions in Pompe Disease

Over the last years, several studies have focused on exploring metabolic changes
associated with the response to ERT or gene therapy (Table 3) in PD. Muscle biopsies
were analyzed in all these studies, with one of them analyzing spinal cord samples [128].
From an omics perspective, the transcriptomic profile was characterized in two of the
studies [110,128], while proteomics [111] and metabolomics [121] analyses were conducted
in one study each. Regarding therapeutic intervention, ERT was administrated in three
studies [110,111,121], whereas the effect of adeno-associated virus (AAV) vectors was
evaluated in one study [128].

Table 3. Omics-based studies focused on the characterization of the metabolic response to different
therapeutic interventions under evaluation for the treatment of PD.

Study Study
Design Treatment Sample Omics-Based

Approach
Major

Findings †

Moriggi et al.
[111]

10 LOPD
untreated
10 LOPD
treated

ERT Muscle tissue LC-MS/MS ↓ glycolysis and gluconeogenesis

Kinton et al.
[110]

8 LOPD
untreated
8 LOPD
treated

ERT Muscle tissue Transcriptome
profiling

↑ mitophagy and ↓ sphingolipid and
phospholipid metabolism, cytosolic calcium

Meena et al.
[121]

6 untreated
GAA-KO
6 treated
GAA-KO

ERT Muscle tissue CE-TOF/MS and
CE-QqQMS

↓ Gal1P, UDP-glucose, acetyl-CoA, citrate,
succinate, fumarate, malate, and ↑ G1P, G6P,

F6P, pyruvate and lactate
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Table 3. Cont.

Study Study
Design Treatment Sample Omics-Based

Approach
Major

Findings †

Colella et al.
[128]

3 untreated
GAA-KO
3 treated
GAA-KO

AAV
Muscle tissue

and
spinal cord

Transcriptome
profiling

In skeletal muscle: ↑ glycogen degradation,
glucose and glucose-1-phosphate

degradation, and serine and glycine
biosynthesis

In spinal cord: ↑ nervous system disease,
neuroinflammation, immunity and energy

sensing

AAV: adeno-associated virus, CE-QqQMS: capillary electrophoresis-triple quadrupole mass spectrometry, CE-
TOF/MS: capillary electrophoresis-time of flight mass spectrometer, ERT: enzyme replacement therapy, F6P:
fructose-6-phosphate, G1P: glucose-1-phosphate, G6P: glucose-6-phosphate, GAA: acid alpha-glucoside, Gal1P:
galactose 1-phosphate, KO: knockout, LC-MS/MS: liquid chromatography-mass spectrometry, LOPD: late-onset
Pompe disease. † Direction of variation, considering the first as a reference (↑: higher levels than reference group;
↓: lower levels than reference group).

Although ERT is the standard of care for PD patients, many patients present poor out-
comes due to the heterogeneous response and limited efficacy of the drug in clearing muscle
glycogen storage [129]. Late-onset patients benefit from ERT for the first couple of years,
but the effect of this therapy worsens through time, affecting muscle function [15,130,131].
Different studies have tried to elucidate the reason for these changes [132]. Nevertheless,
it has been difficult to evaluate due to the clinical heterogeneity and the small number of
samples that have been included in these studies. Following this purpose, a proteomic
study conducted by Moriggi et al. compared the profile of the muscle proteome of LOPD
before and after one year of ERT. The aim of the study was to explore the treatment’s
effect on muscle tissues and to understand why ERT efficacy decreases over time in these
patients [111]. Pathway enrichment analysis of significantly dysregulated proteins revealed
a significant inhibition of glycolysis and gluconeogenesis following ERT. Based on these
results, the authors suggested that these could be metabolic pathways specifically targeted
by ERT. In addition, the authors reported that protein homeostasis was still not completely
balanced even after one year of ERT, indicating that longer treatment times may be required
to recover or maintain muscle function in these patients [133].

Metabolic alterations after ERT were also analyzed by Kinton and coworkers to inves-
tigate the early response of LOPD patients to treatment [110]. In this case, the analysis was
performed for the comparison of the transcriptomic profiles of LOPD muscle biopsies before
and after six months of ERT. Based on the observed transcriptomic changes, the authors did
not report significant changes in glycolysis at this point of treatment. Nonetheless, other
metabolic pathways were already partially attenuated or enhanced after the therapeutic
intervention and were more similar to the control group. Particularly, calcium homeostasis,
and sphingolipid and phospholipid metabolism of treated LOPD patients showed trends
towards normalization or significant reductions in enrichment after ERT. In addition, mi-
tophagy was significantly enriched after ERT, suggesting a potential complete recovery of
mitochondria function and morphology after 6 months of therapeutic intervention.

Meena et al. also evaluated the potential of ERT [121], based on recombinant human
GAA co-administrated with miglustat [134], to reverse the metabolic defects caused by
lysosomal glycogen accumulation and lysosomal dysfunction in the muscle tissue of a
GAA-KO mice model. In particular, following ERT, the metabolic profile was more closely
related to the wild-type phenotype. This metabolic shift was mainly reflected by increased
levels of glycolytic-related metabolites and lower concentrations of TCA cycle intermediates
in the ERT-treated GAA-KO animals compared to untreated GAA-KO mice. Although the
metabolic changes in glucose metabolism reported in this study differ from the changes
observed in other studies based on the analysis of LOPD patients’ samples, the results
from this study indicated that ERT either reversed or improved the metabolic alterations
associated by a deficiency of GAA activity in this animal model [64].
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A similar animal model was used in a different study for the evaluation of the efficacy
of AAV in restoring GAA enzymatic activity and reverting the gene expression dysreg-
ulations observed in the skeletal muscle and spinal cord tissues of GAA-KO mice [128].
Comparing untreated GAA-KO mouse models with mice receiving four months of AAV
therapy, Colella and colleagues reported significant restoration of GAA activity in both
muscle and spinal cord biopsies, resulting in normalization of glycogen storage and mi-
tophagy capacities. In addition, based on RNA-sequencing data analyses, the authors
observed that the expression of over 90% of the genes found to be dysregulated in the
skeletal muscle of untreated GAA-KO mice was either fully (65.7%) or partially (24.8%)
normalized following AAV administration. Particularly, GAA gene transfer by AAV in
GAA-KO mice restored expression levels of genes involved in bioenergetics and metabolism
processes, including glycogen degradation, glucose and glucose-1-phosphate degradation,
and serine and glycine biosynthesis pathways. The fact that the enhancement in glucose
metabolism observed in this study is opposite to the results reported more recently by
Moriggi et al. [111] could be attributed either to the technological platform used for the
analysis or to the therapeutic intervention being evaluated (i.e., ERT vs. AVV). Regarding
the transcriptomics profile of spinal cord samples, the expression of approximately 63% of
the genes, which were mainly associated with pathways involved in nervous system dis-
ease, neuroinflammation, immunity and energy sensing, were fully or partially recovered
after GAA restoration by AAV gene therapy. These results suggested that gene therapy
based on AAV vectors could contribute to efficiently restore GAA activity in the muscle
and nervous system, leading to restoration of the biochemical and transcriptomic defects
observed in this GAA-KO animal model.

Overall, the results from these studies reflect that, following therapeutic interventions
aimed at restoring GAA enzymatic activity, certain metabolic changes revert to the state
observed in healthy individuals, while other metabolic changes are not affected after
treatment. These results are in accordance with previous studies that have demonstrated
that although ERT can improve clinical outcomes and survival of PD patients, it does not
revert many other biological processes underlying this disease. In this line, several factors
have been shown to contribute to skeletal muscle resistance to ERT, including defective
autophagy [135], which is also associated with muscle atrophy [113,115,136].

5. Conclusions

This review summarizes the most relevant findings reported in omics-based stud-
ies focused on the characterization of metabolic alterations associated with PD-specific
phenotypes. Overall, these studies have revealed that alterations in glycogen, glucose,
lipids and aminoacids, nucleotide metabolism and TCA cycle are the most frequently
observed (Figure 2). Notably, metabolic changes in glycogen and glucose metabolism are
the most representative.

The results from these studies highlight the presence of a deep metabolic remodeling
in this disease and confirm the potential of omics-based approaches in lysosomal diseases to
reveal clinical and biological associations to generate pathophysiological hypotheses. Also,
these studies have demonstrated how some of these metabolic alterations can be reverted
following different therapeutic approaches. Different alterations in specific metabolites and
metabolic enzymes have been reported in these studies (Table S1). Although the mean-
age difference between the groups of samples included in some of these studies together
with the unbalanced number of samples included in some groups, usually due to ethical
considerations and pediatric recruitment difficulties, represent a drawback in these studies,
the significant metabolic differences identified in relation to these pathologies and the
response to current treatments may help to characterize pathophysiological mechanisms
underlying this disease and shed the light to set future targeted studies.
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Figure 2. Metabolic pathways reported to be significantly altered in the omics-based studies included
in this review. Circle size and color intensity is proportional to the number of studies where the
metabolic pathway has been found to be altered.

6. Future Perspectives

Due to the high clinical heterogeneity among PD patients, individual phenotyping and
patient monitoring are essential for optimal management of these patients. Although great
advances have been achieved in recent years towards improving routine testing of many
LSDs [137–142], further characterization of specific phenotypes that correlate with clinical
characteristics of patients (e.g., early/late-onset of disease, presentation of symptoms, etc.)
or efficacy of therapies could be very valuable for the management of LSDs patients and
for guiding treatment decisions [41]. This would be especially relevant in LSDs such as
PD [63], where both diagnosis and treatment at the earliest possible stage is critical for
patient prognosis [26,56], and where there is a poor correlation between genotype and
clinical manifestations of the disease [15,143–146].

Future studies including larger cohorts of patients and time-series measurements for
treatment monitoring will be needed to verify the biological relevance of the metabolic
alterations already reported in PD patients and the following response to treatments. Also,
the application of computational-based data augmentation techniques to create synthetic
sets of samples that have proven to be an adequate strategy to overcome the limited num-
ber of samples often found in other LSDs datasets [147] could be of interest in PD studies.
A significant number of more close-to-patients models have been developed in recent
years [148–150]. The information derived from the metabolomic study of these models
could have important implications for assessing these differences and for improving drug
targeting and clinical efficacy of PD therapies that are currently under development. More-
over, these approaches could help to promote the development of novel therapies targeting
disease mechanisms that are common to other LSDs, similar to autophagy, inflammation
and other directed therapies currently under evaluation [151–154]. Finally, the integration of
data from different omics experimental approaches (e.g., genomics, transcriptomics, proteomics
and metabolomics) may represent a powerful strategy to parse the genotype–phenotype com-
plexity of PD. Particularly, another experimental approach that has proven its value in
characterizing CNS progression [155] and response to therapy [156,157], but also in defining
when to start therapy [26] in PD patients, is magnetic resonance imaging (MRI). Hence, the
development of new bioinformatics tools for the integration of radiomics and metabolomics
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data, directed to the characterization of the prognostic profile associated with different
subgroups of PD patients, would be of benefit for the identification of specific phenotypes
that could be clinically exploited for improving the management of PD patients [158].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biology12091159/s1, Figure S1. Flow diagram of the systematic search
followed for the selection of the studies included in the review; Table S1. Metabolites and metabolic
enzymes reported to be significantly altered in the studies included in this review.
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