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Simple Summary: Blood-based circulating cell-free DNA (cfDNA) biomarkers are important for
cancer detection because they can provide a less invasive and more cost-effective way of detecting
cancer and offer the possibility of screening large populations at risk for the early detection of multiple
cancers. However, highly sensitive techniques are needed to detect circulating tumour DNA (ctDNA),
and further optimization and standardization of pre-analytical and analytical steps are required to
harness the full potential of cfDNA analysis.

Abstract: Blood-based detection of circulating cell-free DNA (cfDNA) is a non-invasive and easily
accessible method for early cancer detection. Despite the extensive utility of cfDNA, there are still
many challenges to developing clinical biomarkers. For example, cfDNA with genetic alterations
often composes a small portion of the DNA circulating in plasma, which can be confounded by
cfDNA contributed by normal cells. Therefore, filtering out the potential false-positive cfDNA
mutations from healthy populations will be important for cancer-based biomarkers. Additionally,
many low-frequency genetic alterations are easily overlooked in a small number of cfDNA-based
cancer tests. We hypothesize that the combination of diverse types of cancer studies on cfDNA will
provide us with a new perspective on the identification of low-frequency genetic variants across
cancer types for promoting early diagnosis. By building a standardized computational pipeline
for 1358 cfDNA samples across seven cancer types, we prioritized 129 shard genetic variants in
the major cancer types. Further functional analysis of the 129 variants found that they are mainly
enriched in ribosome pathways such as cotranslational protein targeting the membrane, some of
which are tumour suppressors, oncogenes, and genes related to cancer initiation. In summary, our
integrative analysis revealed the important roles of ribosome proteins as common biomarkers in early
cancer diagnosis.

Keywords: early cancer diagnosis; cell-free DNA; biomarker; integrative biology; pan cancer

1. Introduction

Cancer results in the release of cell-free DNA (cfDNA) into the bloodstream through
processes such as apoptosis and necrosis. As a result, cancer patients often exhibit elevated
levels of cfDNA. This phenomenon has sparked significant interest in utilizing circulating
cfDNA as a “liquid biopsy” for noninvasive early detection of cancer [1]. In general, cfDNA
with genetic alterations constitutes a small proportion of the DNA circulating in plasma,
which can be confused with cfDNA from normal cells [1]. Therefore, it will be essential
for cancer-based biomarkers to eliminate potential false-positive cfDNA mutations in the
healthy population. In addition, many low-frequency genetic alterations are easily missed
in cancer tests based on a small amount of cfDNA.

Cancer genome project advancements and new applications of next-generation se-
quencing (NGS) technology have facilitated ground-breaking research on cfDNA over the

Biology 2023, 12, 934. https://doi.org/10.3390/biology12070934 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12070934
https://doi.org/10.3390/biology12070934
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0001-5498-3434
https://doi.org/10.3390/biology12070934
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12070934?type=check_update&version=2


Biology 2023, 12, 934 2 of 12

past decade. However, the development of clinical biomarkers continues to face significant
obstacles. Firstly, the sensitivity of current cfDNA profiling strategies is insufficient for
the simultaneous detection of multiple cancers. This can be enhanced in several ways,
including by optimizing the pre-analytical steps, collecting samples from body fluids with
higher mutation allele fractions, and enriching tumour-derived cfDNA after extraction.
By combining multiple biomarkers into a single evaluation, the sensitivity and specificity
of cfDNA tests can be dramatically improved. Secondly, the quantitative and qualitative
fluctuations of cfDNA in a person’s blood impede the reproducibility of measurements,
interpretations, and comparisons. A better understanding of the cfDNA release rate could
help solve this issue [2]. Thirdly, it is necessary to validate the quantification of cfDNA,
subsequent mutation analysis, and other analytical steps, including the sequencing plat-
form itself, in order to simulate the clinical environment [3]. Lastly, the use of diverse
high-throughput sequencing platforms makes it difficult to reproduce results, highlighting
the need for standardization and analytical validation of liquid biopsy techniques [4].

In a healthy individual, mutations in oncogenes and tumour suppressor genes play
an important role in the beginning stages of cancer [5,6]. There are fewer than 2000 genes,
despite the fact that these important driver genes are essential for cancer diagnosis. On
the other hand, cancer cells typically contain thousands of mutations that do not directly
drive cancer initiation and progression, and these mutations can also be found in healthy
populations. In this study, we collected data on 1358 cfDNA-based samples with original
sequences from 14 different projects in order to focus on key events in the progression of
cancer. These experiments involve seven different types of major cancers, including head
and neck cancer, lung cancer, breast cancer, prostate cancer, gastric cancer, colon cancer,
and liver cancer. We hypothesize that the combination of diverse types of cancer studies on
cfDNA will allow us to identify high-quality genetic variants across cancer types for early
clinical cancer detection [5].

2. Materials and Methods
2.1. Data Sources and the Data Filtering Pipeline

As shown in Figure 1A, our analysis pipeline was started by downloading data from
the NCBI SRA database (http://www.ncbi.nlm.nih.gov/sra, accessed on 10 April 2019)
using the SRA Toolkit (https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/, accessed on
10 April 2019). The SRA database is a public repository for millions of publicly available
data related to genomic sequencing. For our project, we only focused on the cell-free DNA
data in cancers. Therefore, we searched the SRA database by the following expressions:
“cell free DNA [title] or single cell DNA [title] or single cell RNA [title]” and “cancer or
tumour” on 10 April 2019. Then we downloaded 1358 samples with raw sequences from a
total of fourteen projects involving seven major cancer types, including breast, colorectal,
head and neck, liver, lung, prostate, and stomach cancers.

http://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/
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Figure 1. Flow chart of cfDNA data processing and filtering. (A) A three-stage workflow to identify 
the cancer driver genes in cfDNA sequence read, and five detailed steps for variant calling process 
on the left. (B) Flowchart for variants filtering, annotation, and deleterious gene prediction. 
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by using the genome aligner BWA v0.7.13 [7] with default settings. The resulting binary 
alignment map (BAM) files were used as input for the tools used in the GATK best practice 
[8]. In brief, we removed the potential duplicated short reads with Picard�s MarkDupli-
cates command. We also corrected the local alignment around indels based on GATK�s 
Indel-Realigner module. The recalibration of the quality score and reduction of machine-
read error was further conducted by using GATK�s base quality score recalibration (BQSR) 
module (Figure 1A). 

2.3. Variant Calling, Filtration, and Annotation 
The pre-processed BAM files with recalibrated quality scores were further analysed 
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data. In detail, the variant calling format (VCF) files were generated from two variant call-
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sequencing and germline artefacts. For example, we removed those non-functional vari-
ants and focused on those somatic variants detected in three or more cancer types. In ad-
dition, we also removed the false-positive genetic mutations that may be present in the 
VCFs (Figure 1B). Then, functional annotations for variants were added to each mutation 
using the ANNOVAR software v. 24 October 2019 [11]. In addition, the pathogenicity of 

Figure 1. Flow chart of cfDNA data processing and filtering. (A) A three-stage workflow to identify
the cancer driver genes in cfDNA sequence read, and five detailed steps for variant calling process on
the left. (B) Flowchart for variants filtering, annotation, and deleterious gene prediction.

2.2. Sequence Data Alignment and Pre-Processing

The raw data downloaded from the SRA database are short reads in the Fastq format.
To translate the raw data into meaningful information, we adopted the best practices of the
Genome Analysis Toolkit (GATK) for the overall data pre-processing and genome mapping.
Firstly, we aligned the raw Fastq reads to the Human reference assembly HG19 by using the
genome aligner BWA v0.7.13 [7] with default settings. The resulting binary alignment map
(BAM) files were used as input for the tools used in the GATK best practice [8]. In brief, we
removed the potential duplicated short reads with Picard’s MarkDuplicates command. We
also corrected the local alignment around indels based on GATK’s Indel-Realigner module.
The recalibration of the quality score and reduction of machine-read error was further
conducted by using GATK’s base quality score recalibration (BQSR) module (Figure 1A).

2.3. Variant Calling, Filtration, and Annotation

The pre-processed BAM files with recalibrated quality scores were further analysed
by the somatic mutation calling tools of MuTect2 [9] and Monovar [10] for single-cell DNA
data. In detail, the variant calling format (VCF) files were generated from two variant
calling tools for each sample. Then the VCF files were used as input to eliminate potential
sequencing and germline artefacts. For example, we removed those non-functional variants
and focused on those somatic variants detected in three or more cancer types. In addition,
we also removed the false-positive genetic mutations that may be present in the VCFs
(Figure 1B). Then, functional annotations for variants were added to each mutation using
the ANNOVAR software v. 24 October 2019 [11]. In addition, the pathogenicity of missense
variants was predicted in silico using scores from dbNSFP [12] based on 12 different
algorithms, such as SIFT and CADD [13].

2.4. High-Quality Variants Prediction

It is crucial to accurately predict the deleteriousness of nonsynonymous variants in or-
der to distinguish pathogenic mutations from background polymorphisms [13]. Although
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numerous methods for predicting deleteriousness have been developed, their prediction
results are sometimes inconsistent [14]. The computational algorithms utilised by these
prediction methods (Markov model, evolutionary conservation, random forest, neural
network, etc.) vary. Therefore, it is recommended to use multiple prediction algorithms
for variant evaluation to eliminate algorithm bias [15]. We chose Combined Annotation-
Dependent Depletion (CADD) [16] and Functional Analysis through Hidden Markov
Models with an eXtended Feature Set (FATHMM-XF) [17] as our prediction algorithms
based on their relative merits. In brief, CADD assesses the deleterious nature of SNVs based
on a variety of genomic characteristics, including the surrounding sequence context, epi-
genetic measurements, evolutionary constraints, and functional predictions [16]. CADD’s
ability to prioritise functional, deleterious, and pathogenic variants is unmatched by any
single-annotation method currently in use [18]. Compared to traditional procedures (such
as SIFT), CADD was determined to be the most effective in silico algorithm in previous
SNV pathogenicity analyses [19]. However, the disadvantage of CADD is limited accuracy
for predicting variants in non-coding regions [20]. To add non-coding information, we
used FATHMM-XF, one of the most efficient tools for non-coding regions [17].

2.5. Functional and Pathway Enrichment Analysis

To investigate the functional patterns of the genes associated with the identified
somatic mutations, we conducted a comprehensive functional annotation. In brief, signifi-
cant gene ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed to analyse the identified
biomarkers at the functional level. GO provides a general framework to characterise the
gene functions shared in multiple species [21]. According to the adjusted statistical p values,
the terms were arranged in ascending order, making it simple to focus on the most signifi-
cant GO terms associated with the biomarker genes. To supplement the missing information
in the GO annotation, we also consulted the KEGG database for pathway information.
KEGG assigns specific gene set pathways to key data containing higher-order functional
information and can be used for the functional interpretation and practical application
of genomic data [22]. In practice, all human genes as the background and the identified
biomarkers as the input were used to perform GO function and KEGG pathway enrichment
analysis, and FDR 0.05 was considered statistically significant using Toppfun [23].

2.6. Protein-Protein Interaction and Hub Gene Analysis

To understand the metabolic and molecular mechanisms related to the identified
biomarkers shared in multiple cancers, we utilised the existing protein-protein interaction
data. In brief, the Search Tool for the Retrieval of Interacting Genes (STRING) database
(version 10.0) [24] provides a comprehensive analysis and integration of protein-protein
interactions, including direct physical connections and indirect functional associations
such as co-expression in multiple datasets. The output from the STRING results was
further visualised by using Cytoscape 3.7.1, which makes it easy to depict the genes from
different functional groups [25]. In addition, the plug-in app cytohubba in Cytoscape
was downloaded and installed to explore the hub genes [26]. Using the top scores of the
Maximal Clique Centrality (MCC) algorithm, the hub genes with high connectivity in the
gene expression network were eliminated and clustered.

2.7. Survival and Mutational Analysis of the Top Module Genes in the TCGA Database

Using data from 10,953 patients from 33 TCGA pan-cancer studies, we further explored
the potential clinical application of those key genes identified in the network modules. For
instance, mutational analysis was performed to investigate the single-nucleotide somatic
mutation and copy number variation patterns of the genes from the top module at a pan-
cancer level [27]. The frequency of genetic alteration was further plotted based on the
number of tumour samples containing the somatic mutation and copy number alteration
associated with the key network genes. Additionally, we associate the genes with patient
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overall survival data from TCGA by classifying all patients into altered and unaltered
groups using cBioportal [28]. To focus on reliable results, the log-rank analysis and Kaplan–
Meier plots were generated.

3. Results
3.1. Identification of Potential Biomarkers in cfDNA

To collect the high-quality genetic variations in cfDNA for liquid biopsy biomarkers,
we searched SRA and downloaded raw sequence data from 14 projects involving seven
major cancer types. Firstly, we performed a gene-based annotation of all called variants
to remove non-functional variants and identified a total of 896,193 exonic SNVs or indels
(Figure 2A). Secondly, to further minimise the rate of false-positive calls, variants from
different cancer types were combined and duplicate variants were removed, leaving a
total of 858,176 variants. Figure 2B,C show how the variants were distributed and shared
across different cancer types. Thirdly, variants present in at least three cancer types were
selected to refine the list to 6981 for downstream analysis. A total of 129 variants were
predicted to be deleterious by a combination of two pan-genome prediction scores (CADD
and FATHMM-XF). The 116 corresponding potential biomarkers were then used for further
analysis (Table S1).

Figure 2. Summary of cfDNA sequence data processing results. (A) Detailed steps for variant calling,
filtration, and biomarkers prediction. (B) A bar chart indicates the number of variants called for
different cancer types. (C) Venn diagram depicts the overlap of somatic variants detected in various
cancer types.
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3.2. KEGG Pathway Analysis Confirmed the Close Relationship between Ribosome and Cancer

As shown in Figure 3A, the top GO terms of cellular component, molecular function
and biological process include cotranslational protein targeting to the membrane (ad-
justed p-value = 1.326 × 10−21), protein targeting to ER (adjusted p-value = 2.894 × 10−19),
translational initiation (adjusted p-value = 8.101 × 10−17), mRNA catabolic process (ad-
justed p-value = 2.941 × 10−16), the establishment of protein localization to the endo-
plasmic reticulum (adjusted p-value = 5.164 × 10−19), and cytosolic ribosome (adjusted
p-value = 4.468 × 10−20) (Table S2).
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Additional signalling pathway analyses (Table S3) were conducted. For instance, the
KEGG analysis showed that the biomarkers were mainly enriched in the ribosome, oxida-
tive phosphorylation, proteasome, and other signalling pathways (Figure 3B). Ribosomes,
for instance, are important for the translation of mRNA-contained information into func-
tional proteins, which align well with the enriched GO function “cotranslational protein
targeting to membrane” [29]. More interestingly, hyperactivation of ribosome biogenesis,
which can be triggered by oncogenes or the loss of tumour suppressor genes, plays an
essential role in the initiation and progression of cancer [30]. Recent studies suggest that
both increased numbers and altered modifications of ribosomes may contribute to cancer
development. For instance, multiple cancers, including endometrial cancer, high-grade
gliomas, colorectal cancer, acute and chronic lymphocytic leukaemia, have been found to
contain ribosomal genetic mutations [31].

The OXPHOS (oxidative phosphorylation) metabolic pathway is another significant
pathway that deserves a mention. Among the 116 biomarker genes identified in this study, 8
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are from the OXPHOS pathway, including NDUFC2-KCTD14, ATP6V0B, COX4I1, COX7A2,
NDUFA3, UQCR10, NDUFB10, and NDUFC2. These genes are shared by breast, liver,
and lung cancers, based on our data. It produces ATP by transporting electrons to the
electron transport chain, a series of transmembrane protein complexes in the mitochondrial
inner membrane (ETC) [32,33]. Cancer cells require OXPHOS, and cancer stem cells are
frequently characterised by an increased reliance on OXPHOS [34]. Many studies have
assumed that OXPHOS is downregulated in all cancers because cancer cells have a higher
glycolysis rate than normal cells [34]. Additionally, the downregulation of OXPHOS
is frequently correlated with poor clinical outcomes and metastasis [35]. Inhibition of
OXPHOS has also been shown to reduce oxygen consumption rate (OCR) and alleviate
hypoxia in tumours [32].

3.3. Network Analysis Revealed Hub Genes Associated with Cancer Development

To evaluate the interactive relationships among the identified biomarkers, we mapped
them to the STRING database. The final interactome contains 115 genes and 477 connections.
In the network, the average node degree is 8.3, and the average local clustering coefficient
is 0.506. The Protein-protein interaction (PPI) enrichment p < 1.0 × 10−16 (Figure 4A). In
summary, these topological characteristics of the network indicate that the genes within it
can exchange information efficiently.
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Figure 4. The network analysis of potential cancer biomarkers in cfDNA. (A) Visualized PPI analysis
of biomarker genes. (B) 25 genes in module 1 with the highest Maximal Clique Centrality (MCC)
scores. (C) Interconnection of 10 hub genes; the colour represents MCC scores, darker is higher. (D) The
overlap of identified biomarkers (CDGs) with CIGs (cancer initiation genes), OCGs (oncogenes), and
TSGs (tumour suppressor genes).

Then, we utilised the Molecular COmplex DEtection (MCODE) application to identify
clustered modules throughout the entire network. The network consisted of 5 modules,
with the top module containing 25 nodes and 262 edges. The 25 genes in the top module
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were selected for alteration frequency and survival analysis (Figure 4B). Based on the
MCC (Maximal Clique Centrality) scores, we prioritise the most stable hub genes in the
network, including RPS15A, RPS23, RPS9, RPS21, RPS14, RPS25, RPS6, RPL27, RPL35A,
and UBA52 (Figure 4C). Among these genes, RPS15A (Ribosomal protein s15a) was shown
to be related to many cancers in previous studies. As a component of the 40S subunit,
increased RPS15A expression is closely correlated with poor prognosis in gastric cancer
(GC) patients and promotes epithelial-mesenchymal transition (EMT) and GC progression,
as demonstrated [36].

3.4. Overlapping with OCGs, TSGs, and CIGs Revealed Multiple Roles Played by
Identified Biomarkers

In order to evaluate the roles of the potential biomarkers in cancer progression, we
mapped the genes to known oncogenes (OCGs) [6], tumour suppressor genes (TSGs) [5],
and cancer initiation genes (CIGs) [37]. This analysis identified 10 biomarker genes reported
as either CIGs, OCGs, or TSGs (Figure 4D) (Table S4). These genes included DUSP12, VIM,
FOS, UBE2C, MIEN1, HINT1, LITAF, GABARAP, PFN1, and MLF2. As a member of the
E2 ubiquitin-conjugating enzyme family, UBE2C is overexpressed in all 27 cancers, and
patients with higher UBE2C expression levels exhibited a shorter overall survival dura-
tion [38]. Another interesting gene is LITAF (Lipopolysaccharide-induced tumour necrosis
factor-α factor). It possesses transcription factor activity and is involved in the regulation
of protein quality. Previous research has suggested that LITAF functions as a TSG and is
frequently underrepresented in the prostate, pancreatic, and stomach cancers [39]. Taken
together, these findings confirmed the significance of these biomarkers in the development
of cancer, indicating their potential use in clinical diagnosis.

3.5. Patients with Altered Genes in the Top Functional Module Have a Significantly Worse Overall
Survival Rate

The frequencies of genetic alterations in the 25 genes in the top module were evaluated
using the cBioPortal database. Approximately 27% of clinical cases from 32 different
cancer studies exhibited significant alterations in the 25 genes (Figure 5A). Kaplan-Meier
plots were used to compare Overall survival in 10,953 patients with or without alterations
in the 25 hub genes (Figure 5B). It was revealed that cases with altered genes exhibited
significantly worse OS compared to those with unaltered genes (p value = 6.639 × 10−5).
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4. Discussion

Numerous studies have demonstrated the potential of cfDNA as a biomarker for the
early detection of cancer. However, the accuracy of cfDNA-based tests faces significant
obstacles [2]. Previous cfDNA studies focused on a single tumour type or the results
from a single cohort study [40,41], but there is no systematic examination of high-quality
variants in different cancer types. In order to collect high-quality biomarkers in cfDNA, we
constructed a computational pipeline to screen genetic variants shared by multiple tumour
types based on the raw sequence data in the SRA databases.

In total, we identified 116 potential biomarkers following variant calling and filtering
pipeline. As was suggested by functional enrichment analysis, these biomarker genes were
mainly involved in the ribosome pathway, confirming the close relationship between the
ribosome and cancer development, which contradicts the view held until recently that
ribosomes played a rather passive role as the only molecular factory in the translation
process [42]. Recent studies have linked the altered ribosome and dysregulated expression
of specific ribosomal proteins to cancer initiation, evolution, and progression (RP) [43].
As an example, the correlation between accelerated colorectal cancer (CRC) cell growth
and alterations in particular steps of ribosome biogenesis is cited as a key factor in cancer
initiation [44]. Erica Buoso et al. provided an analysis of how ribosomes translate cancer
progression in breast cancer through the ribosomal protein RACK1 [45]. Amandine et al.
provided evidence supporting the role of altered ribosome components in the develop-
ment of cancer and argued that ribosomes may play a crucial role in the acquisition and
maintenance of the cancer stem cell phenotype [42]. Our study confirmed the association
between ribosomes and cancer through the statistical analysis of large-scale genomic data
from multiple cancer types. It also indicated that targeting the ribosome pathway is another
promising possibility for developing a cancer therapeutic strategy.

The Circulating tumour DNA (ctDNA), which is a portion of the cfDNA released from
the blood of cancer patients by tumour cells via apoptosis, necrosis, or active release, is
another intriguing aspect of our data. As a new type of cancer biomarker, tumour-specific
mutations in the ctDNA sequence can be used to identify cancer patients. To evaluate
tumour heterogeneity, cfDNA-based liquid biopsy is less invasive, more feasible, and
more comprehensive than tissue biopsy due to the rapid development of next-generation
sequencing (NGS) technology. However, the use of ctDNA sequencing for cancer screening
and early diagnosis is hindered by a low concentration of ctDNA in the blood and an
increase in false positives resulting from normal healthy cells. This study developed a
systematic pipeline that integrated a combination of prediction algorithms with optimised
parameters to analyse raw sequencing data of cfDNA from various cancer types and
identify high-quality variants in order to identify reliable biomarkers for cfDNA tests.

In general, ctDNA is released into the bloodstream by tumour cells or other compo-
nents of the tumour microenvironment, such as cancer-associated fibroblasts (CAFs) or
immune cells. In brief, ctDNA released from tumour cells or the tumour microenviron-
ment can have effects on other tissues. For example, ctDNA can be taken up by immune
cells, potentially modulating immune responses [46]. Additionally, the genetic alterations
present in ctDNA may have implications for other tissues, potentially contributing to the
development of secondary malignancies or affecting normal cellular function [47].

Tumour-derived ctDNA and normal cell-derived ctDNA can have different functions,
primarily due to their distinct origins and genetic characteristics. Tumour-derived ctDNA
contains genetic alterations that are specific to the tumour, such as oncogenic mutations or
tumour suppressor gene alterations. These genetic changes can influence the behaviour of
tumour cells, including their proliferation, survival, and response to therapy [46]. In addition,
tumour-derived ctDNA can have direct effects on the tumour microenvironment and distant
tissues [48]. It may contain information about the tumour’s biological characteristics, such as
the presence of immune cell infiltration, angiogenesis, or stromal activation. Tumour-derived
ctDNA can potentially modulate immune responses or contribute to the development of
secondary malignancies [46,47]. Unlike tumour-specific ctDNA, normal cell-derived ctDNA
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contains genetic information representing normal cellular functions and does not harbour
tumour-specific alterations. Normal cell-derived ctDNA, being derived from healthy cells, is
less likely to exert the same effects on tissues as tumour-derived ctDNA.

Overall, tumour-derived ctDNA has significant clinical applications in personalised
medicine [48]. By analysing the genetic alterations present in tumour-derived ctDNA, clini-
cians can identify specific targets for therapy, assess the potential for treatment resistance,
and monitor the emergence of genetic changes associated with metastasis or disease recur-
rence. Normal cell-derived ctDNA, although less specific to cancer, may have other clinical
applications, such as monitoring overall health or assessing the presence of non-cancerous
genetic abnormalities.

Raw sequence data in FASTQ format were downloaded from the publicly available
SRA database; these data come from 14 projects involving seven major cancer types. By
applying the systematic pipeline, 116 biomarker genes shared by different cancer types were
screened out from a total of 896,193 exonic SNVs or indels. Functional enrichment analysis
shows that these biomarker genes are mainly involved in the ribosomal pathway, implying
a close relationship between ribosomes and cancer development. By cross-referencing
these 116 biomarker genes with known oncogenes, tumour suppressor genes, and cancer
initiation genes, 10 genes were identified with multiple roles in cancer development. Then
the importance of these biomarkers in cancer development was confirmed, implying
their potential application for clinical diagnosis. In summary, this study provided new
insight into identifying high-quality genetic variants in cfDNA across different cancer types,
enabling a better application of cfDNA as a non-invasive diagnostic clinical biomarker for
the early detection of cancer.

5. Conclusions

In this study, we developed a computational pipeline to identify high-quality biomark-
ers in cfDNA by screening genetic variants shared by multiple tumour types. Using a
standard computational pipeline and 1358 cfDNA samples from seven cancer types, we
ranked 129 shard genetic variants in seven major cancer subtypes. The majority of the
129 variants were enriched in ribosome pathways such as co-translational protein targeting
and oxidative phosphorylation, which are associated with tumour suppressors, oncogenes,
and cancer-initiating genes. Our integrative analysis revealed that ribosome proteins and
oxidative phosphorylation enzymes are common cancer biomarkers.
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