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Simple Summary: This review focuses on rosiglitazone, a medication used to treat diabetes. Rosigli-
tazone lowers blood sugar levels by helping the body use insulin more efficiently. Individuals with
diabetes have a higher risk of developing Alzheimer’s disease, a complex memory-loss disorder af-
fecting millions of individuals globally. Although scientists do not know why, diabetes may interfere
with the ability of the brain to respond to insulin. Diabetes and Alzheimer’s disease have a lot in
common when it comes to symptoms, brain changes and disease progression. As a result, researchers
are investigating the potential of anti-diabetic drugs, such as rosiglitazone, to treat Alzheimer’s
disease. Although the results in human clinical trials have not been promising, rosiglitazone provided
significant improvements in cellular and animal models of Alzheimer’s disease, with even more
promising results observed when rosiglitazone was formulated with nanosized particles that can
assist with drug delivery. This review proposes that rosiglitazone may provide these benefits by
modulating brain-derived neurotrophic factor, a critical protein for brain and metabolic health.

Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that debilitates
over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms;
however, there is still a need to find a therapy that prevents or halts disease progression. Since
AD has been labeled as “type 3 diabetes” due to its similarity in pathological hallmarks, molecular
pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using
anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated
receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin
signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been
reported to improve cognitive impairment and reverse AD-like pathology; however, results from
human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the
expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and
energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG’s
limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of
BDNF expression.

Keywords: rosiglitazone; brain-derived neurotrophic factor; Alzheimer’s disease; clinical trials;
peroxisome proliferator-activated receptor-gamma; type 2 diabetes mellitus; review

1. Introduction

Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma (PPARγ)
agonist of the thiazolidinedione (TZD) class used to treat type 2 diabetes mellitus (T2DM)
and potentially Alzheimer’s disease (AD) [1–5]. T2DM and AD are known to share similar
disease characteristics, most notably impaired insulin signaling and glucose
metabolism [6–9]. These similarities, together with the limited number of AD treatments
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available, have prompted researchers to investigate the use of easily accessible anti-diabetic
agents for AD treatment [10–23].

RSG has been observed to attenuate pathological hallmarks and behaviors associated
with AD in pre-clinical in vitro and in vivo models; however, clinical trials investigating its
efficacy in treating cognitive decline associated with AD and T2DM reported no significant
improvements [3–5,10–23]. The discrepancies in results between pre-clinical and clinical
studies, along with RSG’s low blood-brain barrier (BBB) permeability and cardiovascular
risks, highlight its limitations [11,12,24–26]. Recent research exploring alternative drug
deliveries, such as the encapsulation of RSG with nanoparticles, displays enhancements to
both RSG’s BBB permeability and improvements in targeting the pathological hallmarks of
AD [12,25,26]. These promising pre-clinical results, together with a better understanding of
RSG’s disease-modifying mechanisms, may contribute to the modification or development
of potential AD treatments. Although RSG may work through a variety of mechanisms,
one that may be particularly relevant for improvements in pre-clinical AD models is
RSG’s ability to modulate the expression of brain-derived neurotrophic factor (BDNF), its
receptors and key signaling pathway modulators [12,25–30].

BDNF is a member of the neurotrophin family known for regulating a variety of
neuronal and physiological processes [31–36]. Altered BDNF expression is observed in
AD, and although data is lacking for the effects of RSG on BDNF in humans, in pre-
clinical models of T2DM and AD, RSG upregulates BDNF and improves memory and
cognition [12,25–36]. Considering BDNF’s role in neuronal functions together with RSG’s
attenuation of AD-related pathologies and modulation of BDNF, this review explores the
possibility that RSG’s benefits in pre-clinical models of AD are due at least in part to its
ability to enhance BDNF expression and signaling.

2. General Features of BDNF
2.1. Expression and Isoforms

The BDNF gene is located on chromosome 11p14.1 and is transcriptionally regulated
by many factors, the most well-known being cyclic AMP-response element binding protein
(CREB) [37–46]. Interestingly, a bidirectional relationship exists between CREB and BDNF,
such that both substrates are responsible for activating each other. Activated CREB pro-
motes the transcription of BDNF by binding to the calcium response element in exon IV of
BDNF’s promoter region, while BDNF activates CREB through several calcium-dependent
mechanisms [41–46]. Activation of the tropomyosin receptor kinase B (TrkB) signaling cas-
cade triggers an increase in intracellular calcium, which activates CREB kinases (CaMKs),
which phosphorylate CREB at its Ser133 site to activate it [42–46]. Consequently, the ex-
pression and activity of either BDNF or CREB can impact the expression of the other [46].
This implication will be further discussed in the following sections.

Following transcription, BDNF protein is synthesized in the endoplasmic reticulum
(ER) as preproBDNF, which is a 247-amino acid peptide composed of an N-terminal 18
amino acid signal peptide, a 118 amino acid pro-region and a C-terminal 110 amino acid
mature domain [47–53]. In the ER, the signal peptide sequence of preproBDNF is cleaved
by convertases to form proBDNF [52,53], which can remain in its immature form or be
converted into its mature form, mBDNF, by intracellular convertases including furin and
prohormone convertase 1–3, or by extracellular convertases such as plasmin and ma-
trix metalloproteinases 2 and 9 [47,48,52–54]. Protein complexes, such as sortilin and
carboxypeptidase-e facilitate the sorting and release of BDNF [55,56]. A more comprehen-
sive analysis of BDNF’s synthesis, processing, and secretion can be found in reviews by Lu
et al. and Lebmann and Brigadaski [52,53].

Once proBDNF and mBDNF are synthesized, they can bind to their specific receptors
and activate signaling pathways for their distinct biological functions [57,58]. proBDNF
binds to the p75 neurotrophin receptor [p75 NTR] to activate pro-apoptotic and cytotoxic
pathways, such as c-jun N-terminal kinase (JNK)/caspase 3, while mBDNF binds to TrkB
to activate trophic signaling cascades, including phosphatidylinositol 3-kinase (PI3K)/Akt,
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phospholipase C (PLC)/inositol-1,4,5-trisphosphate (IP3) and mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK)1/2 [31,32,45,58]. ProBDNF
promotes apoptosis and long-term depression while decreasing the number and branching
of neural dendritic trees, whereas mBDNF encourages neurogenesis, the growth of dendritic
trees and long-term potentiation (LTP), processes known to contribute to learning and
memory [53,55,59–63]. A schematic representation of BDNF’s processing, secretion and
receptor activation is depicted in Figure 1.
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2.2. Relevance, Limitations and Therapeutic Potential

In the central nervous system (CNS), BDNF is expressed by a variety of neuronal and
glial cell types [31–33,64,65]. BDNF is highly concentrated in hippocampal, thalamic, and
cortical regions of the brain, where it is known to play major roles in learning and memory,
synaptogenesis, neurogenesis, synaptic plasticity, and neuroprotection [31–33,35,37,64,65].
Additionally, BDNF plays crucial roles in metabolic and physiological processes in other
tissues and is expressed in the heart, gastrointestinal tract, skeletal muscle, adipose tissue,
and platelet cells [32,66,67].

Given the broad distribution of BDNF throughout the body and its extensive range of
functions, it is a frequently evaluated molecular target in metabolic and neurodegenerative
diseases, including AD and diabetes, and for drug-targeting mechanisms as well, such as
with RSG [12,25,26,31–34]. Since the prevalence of AD and T2DM is on the rise and, notably,
BDNF expression undergoes significant alterations in these pathological conditions, the
development of novel treatments or utilizing already available ones, such as RSG, that
target BDNF, its receptors and key signaling pathways is necessary [11,31–34].

BDNF-centered therapies have been explored for the treatment of AD, with endoge-
nous treatments including gene delivery, antidepressants, lifestyle changes and supplemen-
tation and exogenous treatments utilizing nanoparticle formulations [64,68]. As will be
described for RSG later in this review, BDNF-based therapies show promising results in
pre-clinical AD studies, but these benefits are not observed in clinical trials [64]. Transla-
tional concerns for BDNF include invasive routes of administration, unregulated dosage
and degradability, poor systemic circulation, inability to cross the BBB and adverse side
effects [64,69,70]. This highlights many of the common issues with drug design and de-
velopment for AD, as the translatability of drugs in pre-clinical stages fails to provide any
significant improvements in human clinical trials.

BioRender.com
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To address these limitations, gene therapies and nanoparticle formulations are growing
in popularity as they present better-targeted deliveries and effective results with minimal
side effects in pre-clinical models and thus have the potential to be tested in clinical
trials [64,69–71]. In February 2023, a 5-year-long phase 1 clinical trial of novel adenoviral
AAV2-BDNF gene therapy was initiated to test its ability to decrease neuronal loss and
promote synaptogenesis in patients with mild cognitive impairment (MCI) and AD [72].
Additionally, a recent liposome-targeting nanoparticle formulation of a BDNF viral vector
gene therapy was reported to reduce adverse effects and plaque load in 6- and 9-month-
old amyloid precursor protein (APP)/presenilin-1 (PSEN) mice [73]. Like BDNF, RSG
also consistently demonstrated benefits in pre-clinical models but failed to provide any
improvements in AD-related pathologies and behaviors in human clinical trials; however,
nanoparticle formulations of commonly accessible diabetic drugs like RSG may represent a
promising future direction for clinical trials [71].

3. Rosiglitazone: General Features of PPARγ and Treatment of Type 2
Diabetes Mellitus

T2DM is a metabolic disorder primarily characterized by chronic insulin resistance
and hyperglycemia that impair pancreatic β-cell function and insulin secretion [1,74]. RSG
is the most potent member of the TZD class of oral blood glucose-lowering medications
known for their effectiveness in enhancing glycemic control and insulin secretion and
decreasing blood glucose levels and insulin resistance [74]. PPARγ agonists regulate the
expression of specific target genes that are dysregulated in a diabetic state [1,74–76]. One
such target is the glucose transporter-4 (GLUT-4), which, under insulin-resistant conditions,
is not translocated efficiently to the cell membrane, resulting in impaired insulin-regulated
glucose uptake [75]. TZD-mediated activation of PPARγ enhances GLUT-4 transcription
and cell surface expression, facilitating efficient glucose uptake and increased insulin
sensitivity [75].

PPARγ is a ligand-activated transcription factor that, upon activation, heterodimerizes
with the retinoid X receptor (RXR) to bind to peroxisome proliferator response elements
(PPREs) in DNA promoter regions [76]. PPARγ is expressed in virtually all tissues. In the
periphery, it is highly expressed in adipose tissue, skeletal muscle, and liver, and the CNS, it
is expressed in neurons, astrocytes, and oligodendrocytes across several brain regions, such
as the prefrontal cortex, hippocampus, nucleus accumbens and amygdala [1,77–79]. PPARγ
is known for its activation of anti-inflammatory and antioxidant pathways, but in the CNS,
it additionally promotes the growth of neural stem cells and the differentiation of neurons
and oligodendrocytes [77–79]. Therefore, PPARγ agonists like RSG have been proposed as
treatments for neurodegenerative diseases such as AD, where there is widespread neuron
loss [77–79].

3.1. Pharmacokinetics

Following the administration of a 2 mg oral dose, RSG is rapidly absorbed from the
gastrointestinal tract; the bioavailability of the compound is near complete at around 99%,
with peak plasma concentration occurring at 1.3 h in a fasted state, compared to 3.5 h in a
fed state [1,75]. Once absorbed, RSG is extensively distributed throughout the body due
to its highly protein-bound state (over 99%), primarily to albumin, which is thought to
contribute to its high volume of distribution into peripheral tissues [75]. The BBB exhibits
extremely low permeability to RSG in rodents (0.045%) following intravenous (IV) admin-
istration, and it is suspected that this is similar in humans, although this contention has
not been entirely elucidated [24,80]. RSG is primarily metabolized by the liver, specifically
the CYP2C8 enzyme, and its metabolism results in the formation of active and inactive
metabolites, N-desmethyl-RSG and hydroxy-RSG [75]. The half-life of RSG is estimated to
be approximately 3–4 h in both fasted and fed states, and excretion occurs primarily via
the kidneys [1,75]. Overall, RSG displays linear pharmacokinetic activity in doses ranging
from 0.2 to 20 mg [75].
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3.2. Adverse Effects

In the last decade, evidence has highlighted both cardiovascular and adverse effect
risks associated with RSG treatment for prediabetes or T2DM [23,81,82]. Primary inves-
tigations and meta-analyses have raised concerns regarding RSG’s safety and its impact
on cardiovascular disease (CVD) risk, including myocardial infarction, heart failure, and
stroke [23,81,82]. The Food and Drug Administration (FDA) added a warning for RSG
treatment in 2007, yet it remains an approved treatment based on the risk-benefit ratio,
despite RSG being removed from the European market in 2010 due to concerns about its
potential cardiac event risk [23,83–85].

Additionally, RSG has been linked to dose-dependent weight gain, fluid retention,
edema, and a heightened risk of fracture [23,86–88]. RSG is not alone in displaying an
increased risk of adverse events, other TZDs and diabetic agents elicit similar adverse
effects as well [23]. To mitigate this, physicians should limit their use in certain at-risk
populations, such as post-menopausal women at risk of developing osteoporosis or those
with or at risk of developing CVD [81,82]. Nevertheless, these risks must be considered
when investigating its potential therapeutic use in other conditions. Although RSG is
typically used to treat T2DM, given the strong comorbidity and shared pathways between
T2DM and AD, there is a compelling interest in investigating its use in AD.

4. Rosiglitazone and Alzheimer’s Disease

Dysregulated insulin signaling mechanisms have emerged as critical contributors to
the development and progression of AD, prompting interest in the use of insulin-sensitizing
agents, such as RSG, for managing AD-related insulin dysfunction [89–91]. This section
will discuss the current understanding of RSG’s effects in preclinical models and human
clinical trials of AD, focusing on its potential to enhance cognitive function and modulate
pathophysiological mechanisms associated with AD.

4.1. Rosiligtazone’s Treatment of Alzheimer’s Disease-Related Pathology in Pre-Clinical Models
4.1.1. Cognitive Function

RSG was reported to improve cognitive function in preclinical models of AD. Numer-
ous in vivo studies have demonstrated that RSG treatment significantly enhances learning
and memory performance [13,14,16,17,92–95]. For example, Cortez et al. reported that
9-month-old transgenic (Tg2576) mice orally treated with 30 mg/kg of RSG displayed
significant improvements in hippocampal neurocircuitry, which were associated with im-
provements in hippocampus-dependent spatial memory and associative fear memory [17].
Similarly, 3 mg/kg of oral RSG treatment was observed to improve spatial memory perfor-
mance in a 4-month-old APPswe/PSEN [delta]E9 double transgenic (2xTg) mouse model,
with RSG-treated groups displaying greater memory flexibility and alleviating spatial
memory impairments induced by beta-amyloid (Aβ) [16]. However, some studies report
RSG’s ineffectiveness in modulating specific cognitive impairments, specifically spatial
reference memory and object recognition [15,96].

Furthermore, the oral administration of RSG has been suggested to alleviate cognitive
deficits in AD mouse models by ameliorating synaptic dysfunction as well as reducing
neuroinflammation [15,16,96]. Notably, RSG reduced glial fibrillary acidic protein (GFAP)
staining in a 10-month-old triple transgenic (3xTg)-AD mouse model following the dietary
administration of 50 mg/kg of RSG for 4 months and diminished the astroglial inflamma-
tory reaction and GFAP intensity in a 4-month-old 2xTg-mouse model following 3 months
of RSG administration [15,16]. Similarly, direct injection of RSG into the dentate gyrus at
doses of 0.5 µM, 5 µM or 20 µM prevented the increase in pro-inflammatory markers, such
as interleukin-1β and interferon-γ in Wistar rats intracranially injected with the 42 amino
acid Aβ oligomer (Aβ1-42) [92].

Notably, numerous studies initiate RSG administration in transgenic mouse mod-
els of AD after the expected onset of major pathological changes in respective rodent
species [13–17,19,94,97].
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4.1.2. Glycogen Synthase Kinase 3 Beta and Tau

RSG also influences additional AD-related signaling mechanisms that may contribute
to its ability to enhance cognitive performance in preclinical models. The inhibition of
glycogen synthase kinase 3 beta (GSK3β) has consistently provided neuroprotection across
varying animal models of AD, with a common protective effect against tau pathologies, as
reviewed by Avila and colleagues [98]. Evidence implicates GSK3β as a major mediator
of tau phosphorylation, a protein with an imperative role in microtubule stabilization in
the CNS [98]. In its hyperphosphorylated state, tau forms neurofibrillary tangles (NFTs),
one of the major pathological hallmarks of AD and contributors to cognitive decline [99].
GSK3β can phosphorylate tau at multiple sites, promoting its hyperphosphorylation and
thus aggregation, which is why its inhibition remains a therapeutic strategy for AD [98].

Studies employing AD animal models observed increased GSK3β inhibition following
the oral administration of RSG [16,19]. Toledo and Inestrosa noted that RSG-mediated
GSK3β inhibition in the hippocampus of 2xTg-AD mice facilitated the recovery of down-
stream Wnt signaling proteins β-catenin and Dvl-3, two important regulators of the cell
cycle [16]. In the context of AD, impairment of Wnt signaling by activation of GSK3β
increases the production of AD pathologies and reduces cognition [100]. In addition to
reduced GSK3β activity and recovered Wnt signaling, 12-week oral administration of RSG
significantly decreased Aβ levels in the hippocampus of 3xTg-AD mice [16].

The ability of RSG to inhibit tau phosphorylation has been reported in various animal
and cellular studies [14,15,94,98,101]. In animal models of AD, including transgenic mice
expressing multiple APP mutations [14], 3xTg-AD mice [15], and spontaneously diabetic
(OLETF) rats injected with streptozotocin (STZ) [98], decreased tau phosphorylation was ob-
served after oral administration of RSG. Similarly, in SH-SY5Y human neuroblastoma cells,
RSG treatment ameliorated bisphenol A (BPA)-induced toxicity [101]. Exposure to BPA is
known to inhibit insulin signaling and increase levels of Aβ and hyperphosphorylated tau,
and these effects were attenuated in SH-SY5Y cells treated with RSG [101].

4.1.3. Amyloid-Beta

Aβ, a peptide derived from the cleavage of APP, plays a central role in AD patho-
genesis, and when present in excess quantities, it can aggregate to form Aβ plaques [102].
Accumulation of Aβ in the brain is linked to inflammation, synaptic dysfunction, and
neuronal death [102].

RSG has been observed to significantly modulate Aβ levels in various experimental
models of AD [14,16,94,95,103,104]. An in vitro study by Wang and colleagues determined
that RSG attenuated the BPA-induced increase in APP, beta-site APP cleaving enzyme
1 (BACE1), and Aβ1-42, all of which are key proteins involved in the pathogenesis of
AD [101]. Notably, BACE1 together with γ-secretase cleaves APP to generate Aβ peptides,
including the Aβ1-42 peptide, which is prone to aggregation [20,102]. Additional informa-
tion regarding the role of numerous proteins contributing to AD, including APP, BACE1,
and Aβ1-42, can be found in the 2016 review by Selkoe and Hardy [102].

Chiang et al. observed a decrease in Aβ levels in human neural stem cells treated with
RSG [18]. This was attributed to the RSG-mediated downregulation of caspase 3 and 9
activity, both of which were reported to be increased and linked to excessive cellular death
in pathological conditions like AD [18]. In vivo studies have similarly reported reduced
hippocampal Aβ levels in AD mouse models following RSG treatment [13,14,94,95]. Li et al.
investigated the effects of RSG on insulin-degrading enzyme (IDE) and APP in 4-month-old
APPswe/PSEN mice injected with STZ to induce diabetes [95]. In addition to metabolizing
insulin, IDE degrades Aβ, and reduced expression of IDE has been associated with Aβ
accumulation and plaque formation [105,106]. Li et al. observed that subcutaneous injection
of 50 mg/kg RSG increased IDE levels, which was followed by a significant reduction in Aβ
levels, demonstrating RSG’s capacity to modulate the pathological mechanisms associated
with AD [95].
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As previously outlined, various studies have demonstrated the crucial role the PPARγ
pathway plays in RSG’s effects [97,101,103,107]. Wang et al. observed a reduction in APP
expression and Aβ secretion along with an increase in IDE expression and Aβ degradation
in RSG-treated SH-SY5Y cells [108]. These effects were blocked when cells were treated
with the PPARγ antagonist GW9662. These findings are consistent with Camacho et al.,
who demonstrated that PPARγ activation enhanced brain Aβ clearance mechanisms [109].
Moreover, RSG treatment prevented Aβ-induced toxicity in rat hippocampal neurons, an
effect reversed by the PPARγ inhibitor FH353, again suggesting PPARγ activation was
necessary for RSG’s neuroprotection [103]. Lastly, dietary administration of 30 mg/kg
RSG facilitated the convergence between PPARγ and ERK signaling in an 8-month-old
Tg2576 AD mouse model, with ERK signaling being essential for hippocampal-dependent
learning and memory in rodents [97]. Therefore, RSG acts through PPARγ to modulate the
amyloidogenic pathway.

Despite low BBB permeability, RSG demonstrates therapeutic potential in pre-clinical
models of AD via the enhancement of multiple signaling mechanisms, improvement in
cognitive and synaptic function, reduction of neuroinflammation, and modulation of key
signaling proteins involved in the pathogenesis of AD, such as GSK3β, tau, and Aβ. This
prompted the exploration of RSG’s efficacy in human clinical trials.

4.2. Rosiglitazone in Alzheimer’s Disease Clinical Trials

Table 1 summarizes the data from human clinical trials investigating RSG
in AD [5,20,110–113]. This summary includes results published within the last two decades
and those available from ongoing clinical trials. Data from clinical trials were collected from
the NIH U.S. National Library of Medicine site: ClinicalTrials.gov. The inclusion criteria for
the clinical trials discussed in this review required that the study (1) included participants
diagnosed with a neurodegenerative condition with evidence of cognitive decline, such as
AD, (2) utilized RSG as the only form of treatment for AD, (3) utilized RSG in conjunction
with standard drugs commonly used to treat AD, such as acetylcholinesterase inhibitors
(AChEIs) like donepezil and (4) studies that provided results.

Table 1. Summary of clinical trials investigating RSG administration as a form of therapy in AD. RSG:
Rosiglitazone; XR: Extended Release; ADAS-Cog: Alzheimer’s Disease Assessment Scale-Cognitive
subscale; CIBIC+: Clinician’s Interview-Based Impression of Change plus caregiver input; CDR-SB:
Clinical Dementia Rating Scale—Sum of Boxes; AChEI: Acetylcholinesterase Inhibitors.

Participants Length of RSG
Treatment

Primary Outcome
Measures Main Results In-Text Reference

30 participants with
AD or amnestic mild
cognitive impairment

4 mg of RSG or placebo
daily for 6 months

To assess cognitive
performance and
plasma Aβ levels

Participants that
received RSG exhibited

better delayed recall
and selective attentive
relative to participants
that received placebo.

Plasma Aβ levels were
unchanged compared

to baseline in
participants that

received RSG

[20]

33 participants with
mild to moderate AD

4 mg of RSG XR orally,
once daily for 4 weeks
followed by 8 mg of

RSG orally, once daily
for 44 weeks

To assess the number of
participants with

adverse events

2 of 33 participants
experienced serious

adverse events while
10/33 participants

experienced
non-serious adverse

events

[110]

ClinicalTrials.gov
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Table 1. Cont.

Participants Length of RSG
Treatment

Primary Outcome
Measures Main Results In-Text Reference

80 participants with
mild to moderate AD

4 mg of RSG XR once a
day for 1 month

increasing to 8 mg once
a day or placebo for

12 months

Change from baseline
in global and regional
indices of the cerebral

metabolic rate of
glucose

Suggests that RSG is
associated with an

early increase in whole
brain glucose

metabolism but not any
biological or clinical
evidence for slowing

the progression of AD

[5]

693 participants with
mild to moderate AD

Once daily of placebo,
2 mg RSG XR, 8 mg
RSG XR or 10 mg

donepezil (control) for
24 weeks

To assess the change
from baseline to week
24 in the ADAS-Cog

score and CIBIC+
global functioning

score

No evidence of 2 mg or
8 mg RSG XR

monotherapy in
cognition or global

function

[111]

1496 participants with
mild to moderate AD

Once daily of placebo +
donepezil, 2 mg RSG

XR + donepezil or 8 mg
RSG XR + donepezil for

54 weeks

To assess the change
from baseline to week
48 in ADAS-Cog and

CDR-SB with the use of
RSG XR as adjunctive

therapy with donepezil
treatment in AD

No evidence of
statistically or clinically

significant efficacy in
cognition or global

function was detected
for 2 mg or 8 mg RSG

XR as adjunctive
therapy to ongoing

AChEIs

[112]

1468 participants with
mild to moderate AD

Once daily of placebo,
2 mg RSG XR or 8 mg
RSG XR for 54 weeks

To assess the change
from baseline to week
48 in ADAS-Cog and

CDR-SB with the use of
RSG XR as adjunctive
therapy with AChEI

treatment in AD

No evidence of
statistically or clinically

significant efficacy in
cognition or global

function was detected
for 2 mg or 8 mg RSG

XR as adjunctive
therapy to ongoing

AChEIs

[113]

Multiple clinical trials assessed the safety of RSG and its effects on cognition and
pathological markers in patients with AD [5,20,110–113]. In these studies, 2 mg, 4 mg, 8 mg,
or 10 mg doses of extended-release (XR) RSG were administered orally to AD patients for
various durations (24 to 54 weeks). Although results from a preliminary trial demonstrated
improvements in delayed recall and selective attention in AD patients receiving 4 mg of RSG
daily for 6 months, additional trials reported that RSG XR alone and as an adjunct therapy
did not significantly improve clinical outcomes, functional brain activity or cognitive
function in AD patients [20,111–113]. Additionally, concerns regarding the safety and
tolerability of RSG XR also arose, as one study reported that although RSG XR did not
induce severe or life-threatening events, one-third of the participants experienced adverse
events [110].

To assess the change from baseline in global and regional indices of cerebral metabolic
rate, participants received either a placebo or 4 mg of RSG XR tablets once daily (OD)
for 1 month, increasing to 8 mg OD for a total of 12 months. The results suggested that
although RSG was associated with an early increase in the metabolism of whole brain
or global glucose, there was no clinical or biological evidence to support the ability of
RSG to slow disease progression in the symptomatic stages of AD [5]. This negative
finding was also consistently observed in trials in which the effects of RSG XR alone were
compared to those of donepezil or placebo as monotherapy on cognition and overall clinical
response in participants with mild to moderate AD. The primary outcome measure was to
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assess the change from baseline in mean Alzheimer’s Disease Assessment Scale-Cognitive
subscale (ADAS-Cog) total score and mean Clinician’s Interview-Based Impression of
Change plus caregiver input (CIBIC+) global functioning total score at the 24th week, and
participants were stratified into apolipoprotein e4-positive and e4-negative groups and
randomized 2:2:2:1 to OD doses of placebo, 2 mg RSG XR, 8 mg RSG XR or 10 mg donepezil
(control) [111]. RSG XR monotherapy did not improve cognition or global function in any
of the analysis populations. Another study that aimed to assess the change from baseline
in ADAS-Cog total score and Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) at the
48th week similarly found that there was no statistical or clinical difference in the efficacy
of 2 mg or 8 mg RSG XR over 54 weeks as a form of adjunctive therapy with AChEIs on
cognition and global function in patients with AD [112,113].

The doses of RSG used in AD clinical trials are consistent with those used for T2DM,
with therapeutic doses ranging from 2 mg to 8 mg [3,114–121]. Although these doses
improve insulin sensitivity and lower glucose levels, the currently available data for human
clinical trials do not provide support for the role of RSG as a treatment for AD [3,115–122].
Possible factors contributing to the failure of RSG in human clinical trials include species
differences in AD-like disease progression and the action of RSG and its PPARγ mechanism,
the low BBB permeability of RSG, as well as the recruitment of suboptimal or wrong target
groups in clinical trials [24,80]. It is now clear that interventions that target patients with
AD have proven to be ineffective due to the degree of disease progression from excessive
amyloidogenesis and tau hyperphosphorylation [122]. Thus, clinical trials should target
groups with earlier stages of mild cognitive decline.

Despite its failure in human clinical trials, the observed benefits of RSG in preclinical
models of AD, together with the abundance of data supporting the role of impaired brain
insulin signaling in AD pathology, suggest anti-diabetic drugs should be further investi-
gated as a therapeutic option for AD. In addition, recent advances in drug delivery, such as
nanoencapsulation, represent promising strategies for future human clinical trials [71,73].
Nanoparticle formulations of easily accessible drugs like RSG could improve drug transport
through the BBB, increase drug concentrations in the target area of interest and lower the
risk of adverse effects [71,73,123]. Additionally, a better understanding of the mechanisms
of anti-diabetic drugs like RSG may identify therapeutic targets that could be investigated
in future clinical trials. Recently, RSG formulated with nanoparticles was shown to mod-
ulate BDNF and its upstream signaling pathway substrates in models of diabetes and
AD [12,25–28]. To better understand how RSG may act through this mechanism, alterations
to BDNF expression and its pathological involvement in AD must be explored.

5. BDNF and Alzheimer’s Disease

BDNF levels are known to fluctuate in response to factors such as age, sex hormones,
lifestyle, and stress; however, chronic alterations in its expression can be indicative of or
potentially lead to chronic diseases, such as AD [31–33,124–126].

Although studies generally suggest increasing BDNF levels and signaling would be
beneficial for multiple neurological disorders, conflicting trends in BDNF levels have been
reported in AD [31,33,127]. Key studies by Faria et al., Laske et al. and Ng et al. reported
increased BDNF plasma and serum levels in the early stages of AD and MCI; however,
levels of BDNF have been reported to decrease with elevated levels of Aβ, GSK3β, tau and
cortisol in the later stages of AD progression [33–36,64,70,128–138]. Additionally, decreased
BDNF expression has also been associated with atrophy in the hippocampus, medial
temporal lobe, and neocortex, which are regions that are also known to be significantly
implicated in AD pathology [50]. Furthermore, studies focusing on AD as “type 3 diabetes”
reported decreased levels of BDNF in individuals with T2DM and MCI/dementia [139–142].
These findings, in conjunction with in vitro and in vivo pre-clinical studies, have propelled
researchers to speculate that early in the AD disease process, BDNF expression may be
upregulated in a “last attempt” to rescue the brain from AD pathology; however, as the
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disease progresses, the widespread pathology and neurodegeneration associated with AD
may ultimately result in the decreased expression of BDNF [31,70,128–134].

Ng et al. and others proposed that the reported discrepancies in the levels of BDNF
could also be due to differences in study methods, including the lack of a gold standard
protocol for BDNF extraction and quantification and confounding factors such as the
disease stage, current medications, psychiatric comorbidities, and collection of plasma of
the patients [128,143,144]. In response to the validity of measuring BDNF in serum and
plasma, they proposed that (1) platelet-free samples should be collected as platelets are
known to alter BDNF levels, and (2) both proBDNF and mBDNF should be quantified as
they have different biological functions and effects [128,143,144]. Although most studies
report reduced BDNF expression in a neurodegenerative state, further studies are needed
to better understand the reported discrepancies.

To better understand these fluctuations in expression, the pathological role of BDNF,
specifically proBDNF, in the development of AD through the activation of inflammatory and
apoptotic pathways has been explored. Chen et al. reported that accumulated proBDNF
correlated with enhanced Aβ deposition, plaque formation and learning and memory
deficits in a 2xTg mouse model of AD [145]. Wang et al. determined that BDNF depletion
can contribute to this through increased inflammatory cytokines and activation of the Janus
kinase2/signal transducer and activator of transcription protein3 (JAK2/STAT3) pathway,
which leads to neuronal loss caused by APP and tau fragmentation [146]. Additionally,
Fleitas et al. reported upregulation of proBDNF and sortilin in the hippocampus and a
higher ratio of proBDNF to mBDNF in the cerebrospinal fluid of patients with AD through
a gain-of-function mutation in the PSEN1 gene that may enhance proBDNF-induced cell
death [147]. Considering that these mechanisms and effects have been similarly observed
in rodent models of aging, there is the possibility that increased and accumulated levels of
proBDNF during aging may predispose an individual to develop AD [148,149]. As a result,
there has been a call to develop diagnostic techniques that measure the ratio of proBDNF
to mBDNF in individuals at high risk of developing AD [150].

Furthermore, decreased BDNF levels may be the result of altered expression of its
upstream and downstream targets, including CREB and TrkB. Previously, the bi-directional
relationship between BDNF and CREB was described, and in AD, accumulation of Aβ and
hyperactivation of GSK3β were reported to decrease the phosphorylation and activation
of CREB in brain tissue collected from patients with AD, as well as in in vitro and in vivo
models of AD, and thus we speculate that this may be a potential mechanism by which
BDNF is downregulated [68,151–153]. Additionally, the overexpression of truncated TrkB,
known as TrkB.T1 may be another mechanism through which BDNF expression is down-
regulated in AD [154]. This isoform is a dominant-negative inhibitor for TrkB, such that it
inhibits full-length TrkB and regulates endogenous levels of BDNF [154]. Interestingly, in
AD, TrkB.T1 levels increase while BDNF and full-length TrkB levels in the frontal cortex and
hippocampus decrease, and these elevated levels of TrkB.T1 also correlate with memory
and cognitive impairments in transgenic mouse models of AD [65,132,154]. The impact
of this TrkB isoform is extensively reviewed by Tessarollo and Yanpallewar [154]. Since
BDNF is largely regarded for its neuroprotective and neurotrophic properties, there is a
compelling interest in determining whether the benefits of RSG in pre-clinical models may
be due to its ability to regulate BDNF activity.

6. Rosiglitazone Modulates CREB, BDNF and TrkB Expression

Several studies have reported that RSG alters the levels of CREB, BDNF and TrkB.
CREB is one of the main transcriptional activators of BDNF, and in response to RSG
treatment, its expression increases. Watson et al. observed this in STZ-induced diabetic
rats, where CREB activation was increased in rats treated with 20 mg/kg/day of RSG
through oral gavage for 8 weeks [29]. They postulated that since signaling pathways
such as Akt, p38 MAPK and PI3K are known to phosphorylate and activate CREB at
Ser133, RSG may modulate CREB activity through activation of these pathways [29].
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Kim et al. confirmed this by demonstrating increased phosphorylated levels of CREB,
calcium calmodulin-dependent kinase II (CaMKII) and Akt in rat insulinoma (INS)-1 cells
treated with RSG for 24 h [30]. Although they deduced that these upregulations were
the result of a g-protein coupled receptor 40-PPARγ dependent mechanism activated by
RSG, these results signify that RSG upregulates key signaling substrates involved in the
activation of CREB [30]. Similarly, Zhao et al. determined that RSG upregulated the
phosphorylation and activation of the insulin receptor substrate 1/Akt/CREB pathway to
induce anti-inflammatory, anti-apoptotic and antidepressant-like effects in a mouse model
of unpredictable chronic mild stress and primary neuronal and astrocytic cultures [155].
Since RSG increases the phosphorylation of CREB and its upstream signaling substrates to
induce therapeutic effects across several disease models and neuronal cell types, this may
then present as a mechanism for the upregulation of the expression of BDNF and one of its
main receptors, TrkB.

Sarathal et al. reported that RSG alone and when co-encapsulated as a nanoformulation
upregulated CREB, BDNF, nerve growth factor (NGF) and glial cell-derived neurotrophic
factor (GDNF) expression in both in vitro and in vivo mouse models of AD [12,25,26].
Similarly, Patel et al. observed that when either Urtica dioica leaf extract or RSG was
administered orally to STZ-treated mice, the mRNA expression of hippocampal BDNF,
TrkB and cyclin D1 was increased [156].

Kariharan et al. reported improved cognition, enhanced LTP and significant increases
in BDNF mRNA and protein expression by 3-fold and 2-fold, respectively, as well as
additional upregulations in CREB and the N-methyl-D-aspartate (NMDA) and α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtypes of glutamate receptors
following intracerebroventricular (ICV)-administered RSG in diabetic mice [27]. Promoter
analysis in transfected rat H19-7 hippocampal cells revealed 24-h RSG treatment increased
BDNF transcription through PPARγ-mediated activation at exon IX of its promoter region,
which contains a stop translation codon and encodes for full-length proBDNF [27,157]. The
authors proposed that because BDNF regulates LTP through AMPA and NMDA receptors,
and they reported that RSG increased protein and mRNA expression of these receptors
as well as CREB and BDNF expression, this may present an additional mechanism by
which RSG acts through BDNF to promote memory and cognition [27,158]. Additionally,
Baghcheghi et al. administered RSG at doses of 2 and 4 mg/kg intraperitoneally for
6 weeks to propylthiouracil-induced hypothyroid rats [28]. Before RSG treatment, rats
displayed decreased memory and cognitive performance, as well as reduced levels of
BDNF; however, treatment with RSG improved performance in memory and cognition
tasks, upregulated hippocampal BDNF levels and increased serum thyroxine levels, with
no reported significant difference between the two different doses [28]. Although these
studies did not use models of AD, there is the potential for RSG to treat other neurological
and metabolic diseases through the modulation of BDNF. Figure 2 depicts the proposed
mechanism through which RSG enhances neuronal BDNF levels.

These results highlight RSG’s efficacy in modulating BDNF, CREB and TrkB through
oral routes of administration in in vivo models. However, an important limitation is the
applicability of a rodent model as (1) the regulatory mechanisms controlling the BDNF
gene, (2) the number of promoter and exon regions, (3) mechanisms generating BDNF
transcripts, and (4) expression of BDNF and exon regions throughout several brain regions
are different between rodents and humans, as outlined by Gao et al. [64]. Thus, there is
a need to confirm many of these results by utilizing higher-order species or brain tissue
samples collected from individuals with AD.

Additionally, these studies do not report whether the alterations in BDNF are to its
pro or mature forms. As discussed by Ng et al., proBDNF and mBDNF activate distinct
receptors and signaling pathways that are linked with specific functions [128,143,144]. To
better understand the therapeutic potential of RSG, future studies must investigate whether
RSG preferentially alters one of these forms of BDNF and determine the impact of this on
other molecular outcomes of AD-related pathology.
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Rosiglitazone’s Modulation of BDNF for the Treatment of Alzheimer’s Disease

The effectiveness of RSG as a potential treatment for AD has mainly focused on its sup-
pression of inflammatory genes, transcription factors and molecular
pathways [159–163]. Since both BDNF and RSG are known to regulate neuronal func-
tion, and RSG modulates CREB, BDNF and TrkB expression in several disease models, we
suggest that BDNF is another mechanism through which RSG may act.

To date, Sarathal et al. are the only group that has investigated the effects of RSG on
BDNF expression in vitro using SH-SY5Y cells and in vivo using an STZ-induced mouse
model of AD [12,25,26]. Their first study compared the neuroprotective potential of RSG
free form to the drug in the polyethylene (PEG)-polycaprolactone (PCL) polymer nanofor-
mulated delivery system [12]. Following dose optimization and treatment, STZ-animals
receiving RSG embedded into a nanocarrier system through oral, IV and ICV routes ex-
hibited significant improvements in learning performance and memory retention, along
with significantly reduced AChE activity, at lower doses than those treated with free-form
RSG [12].

This study also revealed that RSG treatment significantly upregulated BDNF mRNA
expression, along with other substrates, such as CREB, GDNF, NGF and PPARγ in both the
hippocampus of mice and in SH-SY5Y cells [12]. RSG in free form at 10 mg/kg, 20 mg/kg,
and nanoformulated at 5 mg/kg also increased neuronal density in the CA1 region of the
hippocampus, improved neuron morphology and restored antioxidant levels in an ICV-STZ
induced mouse model of AD. Based on these results, Sarathlal et al. concluded that (1) RSG
upregulates neurotrophic factors like BDNF and improves memory and cognition in an
AD-mouse model, (2) a nanoformulated carrier system offers neuroprotection at lower
doses compared to the free drug form, and (3) RSG treatment can lower AChE activity,
supporting the drug as a potential AD therapeutic [12].

These results prompted a follow-up study investigating the neuroprotective potential
of RSG in combination with vorinostat, an epigenetic modulator, utilizing the same nanocar-
rier delivery system and STZ-induced mouse model of AD [26]. RSG in free form, RSG
combined with vorinostat and RSG+vorinostat with the nanoparticle delivery system were
administered both orally and IV for three weeks [26]. Although RSG in combination with
vorinostat attenuated behavioral deficits associated with ICV-STZ induction, upregulated
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neurotrophic factor expression and reduced parameters of oxidative stress, the nanoparticle-
encapsulated RSG elicited the greatest effect [26]. Compared to control wild-type mice,
CREB and BDNF expression increased 3-fold in the oral and IV nanoparticle-treated groups,
whereas RSG in combination with vorinostat elicited ~1.5-fold increase [26]. Similarly,
a study utilizing an in vitro model of atherosclerosis reported that RSG combined with
polylactic acid (PLA)-PEG polymer nanoparticles resulted in conserved safety, increased
uptake and a 5-fold increase in efficacy [164]. Therefore, RSG delivered using a nanocarrier
system has the potential to significantly boost drug delivery, efficacy, and neuroprotection,
as demonstrated by increases in endogenous BDNF expression within a model of AD.

Due to RSG’s safety concerns and its failure in AD clinical trials, there is a lack of
information on its ability to modulate BDNF in this disease; however, the recent research
conducted by Sarathal and colleagues highlights the potential of targeting BDNF and
delivering drugs like RSG in nanoparticle formulations in future AD clinical trials.

7. Conclusions

Pre-clinical studies support the role of RSG as a treatment for AD, as demonstrated
through improvements in AD-related symptoms and pathologies and increases in the ex-
pression levels of CREB, BDNF and TrkB. The benefits observed in these preclinical models,
together with an abundance of data supporting the role of impaired brain insulin signaling
in AD pathology, suggest that the modification of insulin sensitivity with compounds like
RSG could provide therapeutic benefits.

To date, the results of human clinical trials have not supported the use of RSG as a
treatment for AD. Unfortunately, this lack of success is a typical outcome for AD clinical
trials [165]. A better understanding of the underlying mechanisms of AD pathology and
symptoms, the contributions of other physiological systems to disease onset and progres-
sion, more effective biomarkers, the identification of multi-target drugs, and improved
drug delivery systems could contribute to improved therapeutic approaches. Preclinical
studies demonstrating increased effectiveness with RSG encapsulated within nanoparticles
provide the rationale for exploring alternative drug delivery methods in clinical trials.
Future research should investigate RSG’s molecular mechanisms to better understand the
interplay between insulin sensitivity, PPARγ signaling and neuroprotection.
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