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Simple Summary: In this research, we investigate the COVID-19 spread in Latin American countries
using time-series and epidemic models. We highlight the diverse outbreak patterns and the crucial
role of the reproduction number in modeling pandemic scenarios. Our findings underscore the need
for ongoing epidemic surveillance and accurate data handling.

Abstract: This research provides a detailed analysis of the COVID-19 spread across 14 Latin American
countries. Using time-series analysis and epidemic models, we identify diverse outbreak patterns,
which seem not to be influenced by geographical location or country size, suggesting the influence
of other determining factors. Our study uncovers significant discrepancies between the number
recorded COVID-19 cases and the real epidemiological situation, emphasizing the crucial need for
accurate data handling and continuous surveillance in managing epidemics. The absence of a clear
correlation between the country size and the confirmed cases, as well as with the fatalities, further
underscores the multifaceted influences on COVID-19 impact beyond population size. Despite the
decreased real-time reproduction number indicating quarantine effectiveness in most countries, we
note a resurgence in infection rates upon resumption of daily activities. These insights spotlight
the challenge of balancing public health measures with economic and social activities. Our core
findings provide novel insights, applicable to guiding epidemic control strategies and informing
decision-making processes in combatting the pandemic.

Keywords: data science; epidemic models; reproduction number; SARS-CoV-2; time-series models

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible
for the COVID-19 pandemic, was first identified in the city of Wuhan, China, in December
2019 [1,2]. Almost three and a half years after its detection, it can be said that this epidemic
has plunged humanity into a state of confusion. The governments worldwide monitor the
spread of the disease and take measures to contain and control the outbreaks without prior
information. Therefore, it becomes crucial to assess and evaluate the best course of action
to face this pandemic based on data analytics.

Every country has implemented measures to prevent the spread of COVID-19, with
population isolation through quarantines gaining significant momentum. This study aims
to assess the effectiveness of these measures in controlling the spread of the virus. In world
history, this is the first time that a pandemic has compelled us into a complete state of
global quarantine [3]. The coronavirus has infected over 750 million people and has caused
the death of almost 7 million people as of the time of the present study [4]. A reliable
and accurate dataset of the disease is crucial for scientists to conduct research and make
informed decisions regarding policy development. Unfortunately, errors can occur in the
data collection process, especially during a pandemic.
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The coronavirus pandemic represents one of the most serious public health crises
faced by the world, with Latin America being particularly hard-hit. The specific challenge
lies in adapting existing protocols from previous epidemics to the unique characteristics
of this virus. However, effectively controlling and managing outbreaks is vital due to the
complexity involved. COVID-19 has had diverse impacts on both the globe and specifically
in Latin America, extending beyond public health to affect various aspects, such as the
economy of each country, as indicated by the gross domestic product, which represents the
total output of goods and services within a nation [5]. The pandemic has left significant
marks on the global level, but its economic and financial impact has been particularly
profound in Latin America due to its unique historical backdrop.

In this study, we present a refined feedback process aimed at guiding governments in
adopting effective health strategies to combat COVID-19. This process relies on robust data
visualization sourced from multiple databases. Most countries have been tracking daily
confirmed cases since the beginning, allowing for early reporting of disease incidence. The
main challenge lies in ensuring an appropriate response while balancing political, health,
and economic measures. Despite limited prior experience with COVID-19, certain crucial
steps must be considered based on our accumulated knowledge and ongoing learning as
the pandemic unfolds. Ongoing research offers the potential for a deeper understanding
of virus’s behavior, transmission methods, and potential preventive measures, enabling
the creation of predictive scenarios for similar situations in the future. This improved
understanding can facilitate more informed decision-making, helping to mitigate the social
impacts of the pandemic. After all, the global community was largely caught off guard by
this pandemic, and measures used to curb its spread may have been implemented later than
ideal. Previous research on similar events has demonstrated its value in decision-making
for managing disease spread, contributing to more effective responses.

Time-series models, as explored and applied in [6–8], are particularly relevant in
forecasting epidemic diseases, as evidenced in [9,10]. Studies into different aspects of
epidemics is being conducted by numerous scientists, each striving to provide helpful
insights that may benefit mankind. These studies employ a variety of methodologies,
with some relying on epidemic models [11,12], while others predominantly use statistical
and mathematical methods, as in [13], where the authors applied mathematical models
to analyze and predict the timeline and phases of an epidemic, specifically focusing on
COVID-19 in Italy. In addition, control theory [14] has been applied to epidemic models to
derive optimal strategies for easing restrictive measures, as showcased in [15].

In addition to time-series and epidemic models, it is worthwhile to mention an alter-
native approach based on the geometric Brownian motion (GBM). In the context of disease
spread modeling, the exponential growth of epidemic cases—as observed, for example, in
the initial stages of spreading based on epidemic models—can be modeled with the GBM.
Certain quarantine measures for such exponential-growth stochastic processes are then
modeled as the so-called resetting, a partial reduction approach in the process magnitude
at specifically chosen times (distributed, for instance, according to a Poisson model) [16–18].
Although this approach is not explored in the current study, it offers a valuable theoretical
alternative that could provide additional insights into disease spread dynamics.

Nonpharmacological measures to combat COVID-19 have also been modeled in [19,20].
The same was performed in [21] using branching processes. Other research has focused on
growth curves to analyze mortality and second waves of the pandemic [22,23]. Similarly,
in [24], the generalized Richards and growth models were used to analyze the COVID-19
infected cases in China. In [25], a cluster analysis of COVID-19 mortality according to
sociodemographic factors was carried out at municipal level in Mexico.

Machine learning models have been also employed, which are known for their flexibil-
ity and adaptability. Machine learning models have been successfully applied to complex
phenomena, including cardiovascular diseases [26], and to make reliable predictions for
emerging COVID-19 variants. For instance, as in [27], where the authors introduced a novel
interpretable deep learning architecture to predict SARS-Cov-2 disease severity.
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In the context of epidemics and pandemics, researchers have used machine learning
models such as logistic regression, neural networks, and support vector machines to
understand and predict the progression of COVID-19. A feature of these studies is their
use of data from diverse regions around the world, highlighting the global reach of these
epidemics [28–30]. Consequently, the goal of this study is to provide tools to bolster
disease control efforts. As we approach the third year since the emergence of the pandemic,
our primary objective is to enhance epidemiological surveillance across Latin America.
We endeavor to comprehend the current status of the disease, evaluate the strategies
deployed by different governments in response to this health crisis, and investigate the
disease propagation in various Latin American nations that have implemented government-
enforced quarantines. Furthermore, we aim to delineate the key parameters for managing
the COVID-19 outbreak within these countries.

The threat level of COVID-19 is heavily dependent on the virus’s interaction with
sensory receptors, meaning the myriad of coronavirus variants is determined by the inter-
actions of the viral proteins with human receptors [31,32]. To date, COVID-19 has exhibited
a variety of strains with diverse levels of contagion. Given the uncertainties surrounding
the varying contagion levels of these strains, accurate identification of the virus lifecycle
is vital for making informed health decisions, such as managing quarantines, designing
effective vaccines [33], and setting appropriate national policies.

Considering the vulnerabilities of Latin American healthcare systems exposed by
COVID-19, as demonstrated by the overburdening of healthcare systems and lack of
access to treatments for a significant proportion of the population, the importance of
thoroughly analyzing the virus’s propagation behavior and evaluating the implemented
policies cannot be overstated. This critical evaluation is a prerequisite for devising the
best strategies for disease containment. A notable approach [34] emphasized the need for
efficient distribution of healthcare centers within each country based on parameters such
as accessibility, demand, and equity. This optimization framework importantly should
encompass the strategic allocation of vaccination centers to ensure the most effective
response to the disease. Building upon these insights, our contributions include:

(i) Investigation of COVID-19 behavior in Latin America based on confirmed cases and
deaths reported up until 31 December 2021.

(ii) Mapping of the incidence rate by country to assess COVID-19 in Latin America.
(iii) Forecasting of COVID-19 cases in Latin American countries until January 2022.
(iv) Comparison of the trend changes in COVID-19 by country, observing and describing

the number of infection waves each country experienced.
(v) Formulation of the basic (instantaneous or effective) reproduction number (R0) with

values across different countries and the analysis of the effects of quarantine measures
on transmission rates [35].

(vi) Proposal of an epidemic model to predict future disease spread, which can serve as a
tool for developing predictive scenarios.

The rest of this article is organized as follows. Section 2 outlines the work strategy
employed to accomplish the aforementioned objectives, including descriptions of each
statistical method utilized. In Section 3, we detail the case study on our epidemiological
analysis for assessing and evaluating COVID-19 in Latin America countries, showing
the results obtained from implementing these methods. Finally, in Section 4, we offer a
discussion and conclusions based on the findings, as well as suggestions for future research.

2. Methodology

In this section, we initially explain the process of estimating the instantaneous (or
basic) reproduction number, followed by a detailed application of the susceptible, exposed,
infectious, and recovered (SEIR) model [36]. Subsequently, we present the applied tech-
niques based on statistical analysis of stochastic processes over time [37]. This includes a
focused approach to time-series and trend estimation, with particular attention given to
identifying shifts in these trends.
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2.1. Estimation of the Instantaneous Reproduction Number

In [10], a methodology was proposed assuming that the infectious profile of a patient
only depends on the time that has passed since the patient acquired the illness, rather than
the time that has elapsed since the epidemic started. Given the instant t, we can represent
the distribution of the number of infected people as

I(t)|(I(0), . . . , I(t− 1), R(t), w(t)) ∼ Poisson
(

R(t)∑t
s=1 I(t− s)w(s)

)
,

where w(t) is the probability distribution of the generation time of the outbreak, which can
be considered as the probability distribution of the interval between successive cases of the
illness [38]; and R(t) is the instantaneous reproduction number represented as

R(t) =
E(I(t))

∑t
s=1 I(t− s)w(s)

,

which is estimated by replacing the incidence expected by its observed value given by

R̂(t) =
I(t)

∑t
s=1 I(t− s)w(s)

.

The estimation of the reproduction number can be highly variable when the time
interval is small at the time of interpretation. To address this issue, in [39], a process
was proposed for parameter estimation using a Bayesian approach, assuming a specific
probability distribution for the reproduction number. In this approach, a prior distribution
is chosen to be a gamma probability model with a mean and standard deviation of 5, and a
posterior distribution is obtained as

R(t)|(I(t− τ + 1), . . . , I(t), w(t)) ∼ Gamma

(
1 +

t

∑
s=t−τ+1

I(s),
1
5
+

t

∑
s=t−τ+1

s

∑
r=1

I(s− r)w(r)

)
.

We use a window width of τ = 7 days. The instantaneous reproduction number is
estimated assuming a log-normal distribution with a mean of 4.7 days and a standard
deviation of 2.9 days for the interval between successive cases. The implementation in the
R software is provided by the function estimate_r from the EpiEstim package [10].

2.2. SEIR Model

One of the most critical challenges posed by the pandemic is the need to project the
spread of the disease in the future and provide tools for better outbreak management in
subsequent situations. In addition to the SEIR model, numerous other modeling methodolo-
gies have been utilized for COVID-19. For instance, susceptible, infectious, and recovered
models, classical tools in epidemiology, have been refined and adapted for COVID-19 in
several studies [40]. Machine learning models, capable of learning from complex, high-
dimensional data, have been employed for forecasting the virus’s spread, using techniques
such as regression, decision trees, and random forests [41]. Further, deep learning models, a
subset of machine learning structures, have leveraged artificial neural networks to simulate
the virus’s spread with a high degree of accuracy [42]. Each model has its unique strengths
and limitations, and its applicability can depend on the specific objectives and constraints
of a study. Given these considerations, we chose to utilize the SEIR model for our study
and fit it as

S′(t) = −βS(t)I(t)/N

E′(t) = βS(t)I(t)/N − σE(t)

I′(t) = σE(t)− (γ + µ)I(t)

R′(t) = γI(t),
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where S′(t) = dS(t)/dt and similarly for E′(t), I′(t), R′(t); β denotes the transmission rate
of the disease; σ represents the rate at which individuals transit from being infected to being
infectious; µ signifies the rate of mortality due to the disease; γ represents the recovery
rate of individuals; and N represents the total population size. The SEIR model is adjusted
using the transmission functions, denoted as

βt =


β, if t ≤ ti;

β
(

1− δd(t−ti)
2

1+δd(t−ti)2

)
, if ti < t < te;

βmin + (β− βmin)
(

δi(t−te)2

1+δi(t−te)2

)
, if t > te;

where β is the initial transmission rate; t is the time from the first detected case; ti is the
initial day of confinement minus a value equal to 2; te is the end of confinement; δd is
the rate of decrease of transmission; βmin is the value of βt at time te; and δi is the rate of
increase of transmission after te.

If we consider the variation rate of the accumulated infected people as the rate at
which individuals complete their exposed period, as suggested in [43], we can state that

C′(T) = σE(t),

where C(T) is an auxiliary variable that keeps track of the cumulative number of infectious
individuals, and C′(T) keeps track of the curve of new cases (incidence). Therefore, the
SEIR parameters are estimated by least squares [44] from the fit of the accumulated infected
number and the number of accumulated confirmed cases until 31 December 2021, which is
given as

(β̂, µ̂, σ̂, γ̂, δ̂d, δ̂i) = argmin
T

∑
i=1

(C(t)− yti )
2,

where yti is the time series that represents the observed number of accumulated confirmed
cases at time ti and T = n days have elapsed since the first confirmed case [45].

2.3. Time-Series Models and Forecasting

ARIMA, standing for autoregressive integrated moving average, is employed in time-
series analysis to comprehend and anticipate future trends [46–48]. In [49], it was argued
that the ARIMA models must be suitable for dealing with complex and dynamic problems.
These models use past observations for future predictions and incorporate unit root tests to
check the stationarity of the series. The parameters of the ARIMA model are ascertained
via the maximum likelihood (ML) estimation method, analogous to least squares, leading
to efficient estimators. The ARIMA model is symbolized as ARIMA(p, d, q), where AR(p)
signifies the autoregressive part of order p, I(d) is the degree d of differencing for stationarity,
and MA(q) is the moving average part of order q. Then, respectively, p, d, and q represent
the number of lagged observations, the level of differencing, and the lagged forecast errors.
The ARIMA(p, d, q) model is defined as

ϕ(B)(1− Bd)Yt = $ + ϑ(B)εt,

where ϕ(B) and ϑ(B) denote polynomials of orders p, q; Yt is a random variable with an
observed value denoted by yt; and εt is the model random error. These polynomials should
not have roots inside the unit circle, that is |B| < 1, to ensure the model causality and
invertibility. Note that $ is a constant, and a differencing polynomial of order d is included
in the forecast when $ 6= 0 [6]. It is pertinent to note the backshift operator B, a notation
used for lagged sequences. For a time series yt, the lagged series is written as Byt = yt−1,
and in a broader sense, Bkyt = yt−k.
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The ARIMA model assumes stationarity of the time series, implying a consistent mean
and variance over time. The parameter d in the ARIMA model refers to differencing value,
which is used to achieve stationarity if the series is initially non-stationary.

Differentiation converts the series into differences between consecutive observations
(yt − yt−1), and it can be applied more than once if the series remains non-stationary, as
indicated by the parameter d in the ARIMA(p, d, q) model.

It is common to present the ARIMA(p, d, q) model in an alternate form as

Yt = c + φ1yt−1 + · · ·+ φpyt−p + θ1et−1 + · · ·+ θqet−q + εt,

where Yt is a random variable at time t and its observed values at t− 1, . . . , t− p are
yt−1, . . . , yt−p, respectively; φi are the autoregressive parameters of the model; θi are the
moving average parameters; and εt is the model random error with observed values
(residuals) at t− 1, . . . , t− p being et−1, . . . , et−p, respectively. The parameter p, the order
of the autoregressive part, represents the number of lags of Y to be used as predictors. The
parameter d is the order of integration, representing the number of times the data have
had past values subtracted (also known as differencing), to make the time series stationary.
Then, q is the order of the moving average part, representing the number of lagged forecast
errors that should go into the ARIMA model.

The autocorrelation function (ACF) and partial autocorrelation function (PACF) are
pivotal tools in time-series analysis, particularly for setting the parameters (p, q) of an
ARIMA model. The ACF quantifies the correlation between time-series observations at
different time points relative to the time lag between them, while the PACF determines
the correlation between these observations when considering any correlations due to the
values at shorter lags.

After identifying the model order (p, d, q), the parameters of the ARIMA model can be
estimated, often via ML estimation. This estimation selects parameters that optimize the
likelihood of the observed data given the model.

Suppose y1, . . . , yn is a time series of n observations. The likelihood function for an
ARIMA model is defined as

L(Θ; y1, . . . , yn) = f (y1, . . . , yn|Θ),

where Θ denotes the parameter vector to be estimated, and f is the joint probability density
function of the observed data for the parameter Θ. Often, the log-likelihood function is
used due to its mathematical ease, which is in our case given by

l(Θ; y1, . . . , yn) = log(L(Θ; y1, . . . , yn)).

The likelihood function, L namely, quantifies how well a particular statistical model
explains the observed data. In other words, it is a measure of how likely the observed data
are, given the specific parameters of the model.

For an ARIMA model, the likelihood function assumes the errors at each time point
follow a normal (or Gaussian) distribution. The likelihood function for the model parame-
ters is calculated by evaluating the normal probability density function at each data point
and multiplying these densities for the errors because they are a white noise (independent).
Mathematically, for a sample of size n and errors (independent) ε1, . . . , εn, the likelihood
function is stated as

L(φ, θ, ς2) =
n

∏
i=1

1√
2πς

exp

(
−

ε2
i

2ς2

)
.

The ML estimates are the parameter values that maximize this log-likelihood function.
The parameters to be estimated in an ARMA(p, q) model include autoregressive coefficients
φj, for j ∈ {1, . . . , p}, moving average coefficients θj, for j ∈ {1, . . . , q}, and the error term
variance ς2.
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Different approaches to the initial values of the estimation process, which are usually
unknown, can result in different likelihood versions and parameter estimates. Due to the
high dimensionality of the parameter space and potential multiple local maxima, numerical
optimization methods are generally used to find the ML estimates.

For ARIMA models, automatic model selection can optimize predictive accuracy. The
model order (p, d, q) can be selected minimizing the values of the Akaike (AIC) or Bayesian
(BIC) information criteria expressed as

AIC = −2 log(L) + 2(p + q + k + 1), BIC = AIC + (log(n)− 2)(p + q + k + 1),

where k = 1, if µ 6= 0, and k = 0, if µ = 0.
Through an automatic ARIMA modeling process, beneficially implemented in R [50],

models were selected based on precision, using criteria such as mean absolute percentage
error (MAPE), mean absolute deviation (MAD, also known as mean absolute error), and
mean squared deviation (MSD, also known as mean squared error) to distinguish the best
forecasts. These are common metrics used in statistics and machine learning to measure
the accuracy of predictions or forecasts, especially in the context of regression and time-
series analysis. This automatic process, outlined in Algorithm 1, enables an efficient and
systematic approach to data modeling. The baseline model, representing future COVID-19
case forecasts, is presented as in [51].

Algorithm 1 Automatic ARIMA modeling procedure

Step 1: Select d, for 0 ≤ d ≤ 2, using the Kwiatkowski–Phillips–Schmidt–Shin unit root test.

Step 2: Obtain p, d, and $ by minimizing the AIC after differencing the data d times.

Step 3: Apply a stepwise search through model space to generate a simple model.

In this work, we apply ARIMA models to forecast time series of COVID-19 cases in a
representative sample of Latin American countries, that is, Argentina, Bolivia, Brazil, Chile,
Colombia, Ecuador, Paraguay, Peru, and Uruguay, in South America; Dominican Republic
in the Caribbean; Costa Rica and Belize in Central America; and Mexico in North America.
This selection of countries was driven by the availability of COVID-19 data.

The time series is broken down into its components (data, trend, seasonality, and
remainder) for visualization purposes and was used to predict COVID-19 cases for January
2022. In the process, the Dickey–Fuller and Ljung–Box tests [52] were employed to evaluate
stationarity and examine autocorrelation, respectively [53]. Following these tests, we
generated the ACF and PACF to initiate the order determination for the ARIMA models.

Another prevalent method for forecasting time series employed in this study is the
Holt-Winters method [54]. Renowned for its efficacy with time-series data exhibiting trends
and seasonal patterns, it serves as a valuable tool in our analysis. We used this approach
as a comparative measure, scrutinizing its predictive abilities against those of the ARIMA
models. The Holt-Winters method is characterized by three parameters: level (α), trend (ζ),
and seasonality (λ). The model consists of two variations: additive and multiplicative. On
the one hand, in the additive model, the forecast equation at t + h is represented as

ŷt+h = lt + hbt + st−m + h+m ,

where lt is the level, bt is the trend, and st is the seasonal component. Note that h is the
forecast horizon; m represents the seasonal length; and h+m is the smallest integer greater
than or equal to h/m.

The level, trend, and seasonal equations at t are formulated as

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1)

bt = β(lt − lt−1) + (1− ζ)bt−1

st = λ(yt − lt) + (1− λ)st−m.
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The multiplicative model, on the other hand, uses the forecast equation at t + h
established as

ŷt+h = (lt + hbt)st−m + h+m .

The level, trend, and seasonal equations at t are slightly different and presented as

lt = α

(
yt

st−m

)
+ (1− α)(lt−1 + bt−1)

bt = ζ(lt − lt−1) + (1− ζ)bt−1

st = λ

(
yt

lt

)
+ (1− λ)st−m.

In all these equations, α, ζ, and λ are constants that must be optimized.

2.4. Trend Estimation

To estimate the daily trend of COVID-19 cases in Latin America, we utilize a time-series
model [9] expressed as

m̂ =
1

(2d + 1)

d

∑
i=−d

yt+i,

where yt represents the confirmed COVID-19 cases at time t, and the estimated trend, m̂ say,
is determined by a moving average [9,10]. The constant d governs the range and degree
of smoothing [9]. Decreasing d results in smoother moving averages that capture trends
effectively but may induce false alarms. Conversely, increasing d minimizes false alarms
but may compromise the identification of ongoing trends [9,51]. Given the nature of our
data, we set d = 7, which corresponds to a 15-day window for trend estimation.

2.5. Detection of Trend Shifts

In epidemiological studies, the utilization of statistical models is crucial for understand-
ing the direct impacts of diseases on various social dimensions, including global markets [5].
A valuable tool in these endeavors is the breakpoint methodology, used for estimating
shifts in trends. In the context of the COVID-19 pandemic, we adopted this approach to
discern trend changes across Latin American countries reporting confirmed cases.

Given the unique disease progression in each country, modulated by factors such as
initial exposure date and implemented containment measures, we were able to identify
shifts in trends regarding confirmed cases and fatalities.

Following [10], the detection of trend periods is simplified by identifying the break-
points that divide the series. For a time series, yt namely, with a linear trend, we hypothesize
multiple segments, each potentially displaying a distinct trend. This is represented using a
piecewise linear regression model stated as

Yt =

{
α1 + ζ1t + εt, t ∈ {1, . . . , p};
α2 + ζ2t + εt, t ∈ {p + 1, . . . , T}.

In this formulation, α1, α2, ζ1, ζ2 are the regression model coefficients, and ε(t) repre-
sents a random perturbation with zero mean and constant variance.

To establish p as a change point, we test the hypotheses presented as

H0: α1 = α2, ζ1 = ζ2

H1: α1 6= α2, ζ1 6= ζ2.

The corresponding F-statistic enables us to contrast the residuals of the piecewise
model against an unsegmented model given by

Yt = α + ζt + εt.
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As pointed out in [55,56], we might not know the exact number of breakpoints in
a real-world time series. Therefore, a test is proposed to verify if the series has only m
breakpoints, leading to a piecewise linear model formulated as

Yt = αj + ζ jt + εt, t = tj−1 + 1, . . . , tji, j ∈ {1, . . . , m + 1},

where t0 = 0 and tm+1 = n [56].
Denote the m breakpoints identified in the test as i1, . . . , im. Then, we define the sum

of squared residuals (SRS) for the segments of the model as

SRS(i1, . . . , im) =
m+1

∑
j=1

SRS(ij−1, ij),

where SRS(ij−1, ij) represents the SRS for a given segment, between ij−1th and ijth break-
points. This SRS is calculated by fitting the segmented model to that specific interval
and summing the squares of the differences between the observed values and the values
predicted by the model. As a result, we have that

(î1, . . . , îm) = argmin SRS(i1, . . . , im).

This methodology is applied as a complementary element of the trend estimation, enhanc-
ing our understanding of the time-series trend shifts. We used the function breakpoints
from the strucchange package of the R statistical software for this purpose [50,57]. The
identified breakpoints are visually represented in the time-series plot using blue and red
panels, where each panel denotes a period with the trend remaining consistent.

3. Case Study

In this section, we present the main results obtained based on the methodology
outlined in Section 2 and the analyses conducted throughout that section. We conduct
an exploratory phase of our analysis, which involved the creation of choropleth maps to
represent the distribution of COVID-19 cases across the Latin American countries upon
study. To estimate non-stationarity, we used a moving average model, enabling us to
identify significant shifts in the time-series trends. Subsequently, we calculated the real-
time reproduction number using a Bayesian method. This number was superimposed on
the quarantine timelines for each country in our study to assess the behavior of R0 during
and post confinement. To conclude our analysis, we deploy a SEIR model to determine the
epidemiological curves based on realistic estimates of exposed and infected individuals.

3.1. Data, Methodology, and Software

The data used for this analysis comprise cases and fatalities confirmed by COVID-
19 on a national level in Latin America, drawn from public data repositories at John
Hopkins University and Our World in Data. The open-source repositories can be se-
cured from https://github.com/CSSEGISandData/COVID-19 (accessed on 20 May 2023),
https://github.com/owid/covid-19-data (accessed on 15 April 2022).

We have also consulted the institutional websites of each country to gather officially
recognized dates for the implementation of quarantines. The dataset encompasses the
period from 23 February 2020, when the first COVID-19 case was confirmed among the
thirteen countries included in this study, to 31 December 2021.

https://github.com/CSSEGISandData/COVID-19
https://github.com/owid/covid-19-data
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Our methodology is summarized in Figure 1.

Figure 1. Proposed methodology. Source: The authors.

We utilize the Tableau software [58] for the development of the exploratory analy-
sis graphs, and the R software [50] was instrumental in producing data summaries and
executing the aforementioned methodologies. Data handling was performed using the
dplyr, openxlsx, reshape2, xtable, and tidyverse packages. Forecasting of time series
incorporated the forecast, tseries, TTR, lubridate, and zoo packages, while the ggplot2
package was utilized for the design of graphs.

3.2. Exploratory Data Analysis

The results presented next highlight the distribution of confirmed COVID-19 cases
across Latin America. Figure 2 illustrates that Brazil had the highest number of confirmed
cases throughout the first two years of the pandemic. It is notable that neighboring
countries generally exhibited lower infection rates compared to Brazil, with the exception
of Colombia, which experienced a significant number of cases. Moreover, Belize, with its
smaller population size, had the lowest number of cases, as evident when considering the
incidence rate.

In Latin America, the deaths have been high [59], particularly in Brazil [9] and
Chile [10]. However, there is no consistent relationship between the number of deaths and
the number of confirmed cases in each country, except for Brazil and Belize, which have
the highest and lowest numbers of confirmed cases and deaths, respectively (Figure 3). For
instance, Peru and Chile have similar numbers of confirmed cases (2,296,831 and 1,806,494,
respectively), but Peru has reported 203,399 confirmed deaths compared to Chile that
reported 38,271. Similarly, Costa Rica and Ecuador both have around 570,556 confirmed
cases, but Costa Rica reported 7353 deaths while Ecuador informed 21,043.

To accurately assess the situation in each country, it is important to consider the
national incidence rate, which takes into account the population size. It is crucial to
recognize that having 30,000 cases in a population of 300,000 is different from having
30,000 cases in a population of 3,000,000. Failing to calculate the incidence rate can lead to
incorrect conclusions. Therefore, the incidence rate is calculated by adjusting the number
of confirmed cases and deaths based on the population size in each country.

When examining the incidence rate adjusted by the population size, it reveals in-
teresting insights into the impact of COVID-19 across different countries. Surprisingly,
countries such as Argentina, Uruguay, Costa Rica, and Colombia show higher incidence
rates compared to Brazil, despite not having the highest number of cases. In addition,
Mexico, Colombia, and Ecuador have lower incidence rates, indicating a more consistent
relationship between confirmed cases and population size in these countries (Figure 4).
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Figure 2. Latin America choropleth map of COVID-19 accumulative confirmed cases. The colors
show a scale of confirmed cases, being the color with the lowest tonality the country with the fewest
cases, until 31 December 2021. Source: The authors produced with 2022 Mapbox OpenStreetMap.

Figure 3. Latin America choropleth map of COVID-19 accumulative deaths. The colors show a scale
of confirmed deaths, being the color with the lowest tonality the country with the fewest cases, until
31 December 2021. Source: the authors produced with 2022 Mapbox OpenStreetMap.
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Figure 4. Latin America dot map of COVID-19 incidence rate by country. The size of every dot shows
the incidence rate level, being the dot with the highest size the country with the highest incidence
rate, until 31 December 2021. Source: the authors produced with 2022 Mapbox OpenStreetMap.

3.3. Epidemic Model

Figures 5 and 6 illustrate the behavior of the instantaneous reproduction number (R0)
by presenting its posterior median along with the corresponding posterior distribution
of the parameter. The blue panels superimposed on the figures represent the periods of
quarantine, allowing us to observe the impact of these measures on R0 during and after the
implemented confinement.

In countries such as Argentina, Belize, Bolivia, Brazil, Chile, Dominican Republic,
and Ecuador, the implementation of quarantine measures led to a significant decrease in
the instantaneous reproduction number. However, in Peru and Uruguay, despite having
similar quarantine periods (and longer in some cases), R0 did not decrease significantly.

After the end of the quarantine period, Uruguay experienced a notable increase in
R0, while Peru exhibited a varying behavior with frequent fluctuations throughout the
studied period. The highest values of R0 were observed in Mexico and Belize, ranging
from 10 to 20 units, indicating that one infected individual could potentially transmit the
virus to a range between 10 and 20 other people. In addition, Peru, Paraguay, Costa Rica,
Bolivia, and Argentina had lower reproduction values, with a maximum value of 4 units,
implying lower transmission rates. For the SEIR model, Colombia was considered due to
its relatively small population size compared to other countries such as Mexico and its high
level of contagion. An initial confinement period was defined from the 19th day (counting
from the first confirmed case) and lasted until the 178th day.

The SEIR model parameters were fitted based on the criteria earlier described using
data up to 31 December 2021. Figure 7 shows the prevalence of COVID-19 infected cases
in Colombia and its relationship with the daily confirmed cases. The estimates of the
SEIR parameters are: β̂ = 0.3250, µ̂ = 0.0002, σ̂ = 1.3608, γ̂ = 0.2363, δ̂d = 0.0000, and
δ̂i = 0.0603. The fitting and estimation of the SEIR model provide valuable insights into the
prevalence of the disease, capturing the true number of infections at a given time.
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The model estimates a significant difference between the confirmed cases reported and
the COVID-19 number of infections. This disparity is evident, with the model estimating
up to 60,000 infected individuals compared to the recorded peak of nearly 30,000 cases
during the epidemic. These findings highlight the importance of accounting for undetected
or unreported cases and emphasize the need for comprehensive testing and surveillance
measures to accurately assess the true extent of the epidemic.

Figure 5. Instantaneous reproduction number estimated implementing its posterior median and
disaggregated by country ranging from Mexico to Costa Rica. Source: The authors.

3.4. Main Results

Next, we present the main results obtained based on the methodology outlined in
Section 2 and the analyses conducted throughout that section.

For forecasting purposes, Uruguay was chosen as an example. ARIMA models with
various orders were fitted, and the AIC was used to select the most appropriate model. The
model with the lowest AIC value was chosen. The accuracy of the models was evaluated
using the MAPE and the ARIMA (3,1,1) structure.
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Figure 6. Instantaneous reproduction number estimated implementing its posterior median and
disaggregated by country ranging from Dominican Republic to Uruguay. Source: The authors.

Figure 7. Prevalence of infected cases in Colombia and its relationship with the daily confirmed cases.
Source: the authors.
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To determine the best forecast model, an automatic ARIMA model was also fitted and
compared to the previously selected model. Three models were evaluated for forecasting:
Holt-Winters, automatic ARIMA, and ARIMA (3,1,1). After conducting evaluations using
the same parameters, Holt-Winters was identified as the best-fitted model and provided the
most accurate forecast. Consequently, the forecast was generated using the Holt-Winters
model up until January 2022.

By comparing the forecast made with the model to the behavior of the disease in
the first month of 2022, we can observe a remarkably accurate fit to the empirical data.
The forecasted values closely align with the observed trends and patterns, validating the
effectiveness of the chosen model in capturing the dynamics of the disease. Note that in
countries where the first wave occurred between June and July, there was a noticeable
pattern of sharp increases and decreases in COVID-19 cases throughout 2020 and 2021.
This can be observed in the distinct trends displayed by each country in Figures 8 and 9,
with Dominican Republic exhibiting one of the most significant trend changes. Ecuador
and Belize experienced relatively stable case numbers without a prominent surge or de-
cline. Furthermore, we identify plateau periods in all countries, indicating the impact of
implemented quarantines by the respective health authorities. These stability periods can
be compared to the estimated instantaneous reproduction number superimposed on the
quarantine periods [60], revealing the effectiveness of quarantine measures in controlling
the spread of the disease. It is worth highlighting the situation in Uruguay, where the onset
of COVID-19 waves occurred later compared to other countries. Despite experiencing a sig-
nificant wave when the disease initially entered the country, Uruguay generally maintained
a low infection in subsequent periods.

The present analysis of each Latin American country clearly demonstrates hetero-
geneity, as evident from the identified cutoff dates presented in Table 1. Notably, there is
similarity in the trend changes among Mexico, Brazil, Chile, and Dominican Republic, as
observed in Figures 8 and 9. Table 1 reveals that the first wave of COVID-19 cases occurred
in Mexico, Bolivia, Brazil, Chile, Colombia, and Peru in the early days of June. Similarly,
Colombia, Costa Rica, and Ecuador experienced their first trend change in late June and
early July. Argentina, Belize, and Paraguay encountered their first wave in late August and
early September. Uruguay had the latest onset of the COVID-19 wave, with cases emerging
in early December. The impact of implemented quarantines on the population is reflected
in the dynamics of the instantaneous reproduction number [56].

Table 1. COVID-19 confirmed cases cut-off points by country. Source: the authors.

Country Cut-Off Point
1st 2nd 3rd 4th 5th

Argentina 3 August 2020 13 November 2020 5 April 2021 16 September 2021 N/A
Belize 29 September 2020 09 November 2020 15 August 2021 N/A N/A
Bolivia 8 June 2020 17 September 2020 27 December 2020 7 April 2021 17 June 2021
Brazil 2 June 2020 21 November 2020 2 March 2021 23 September 2021 N/A
Chile 2 June 2020 6 December 2020 17 March 2021 28 June 2021 N/A
Colombia 8 July 2020 10 April 2021 23 June 2021 N/A N/A
Costa Rica 21 June 2020 7 January 2021 18 April 2021 20 September 2021 N/A
Dominican Republic 10 June 2020 18 November 2020 27 February 2021 12 July 2021 N/A
Ecuador 24 June 2020 12 January 2021 15 May 2021 24 August 2021 N/A
Mexico 2 June 2020 18 November 2020 27 February 2021 11 June 2021 20 September 2021
Paraguay 11 August 2020 23 November 2020 7 March 2021 09 July 2021 N/A
Peru 3 June 2020 25 September 2020 19 January 2021 5 June 2021 N/A
Uruguay 6 December 2020 17 March 2021 26 June 2021 N/A N/A
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Figure 8. COVID-19 cases from Mexico to Costa Rica with the moving average superimposed and the
cut-off points from Table 1. The vertical axis of each graph has an own scale according the country.
Source: the authors.
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Figure 9. COVID-19 cases from Dominican Republic to Uruguay with the moving average superim-
posed and the cut-off points from Table 1. The vertical axis of each graph has an own scale according
the country. Source: the authors.

4. Discussion and Conclusions

The central objective of this article was to scrutinize the spread of COVID-19 across
Latin America and assess the effectiveness of implemented quarantines. Through compre-
hensive time-series analysis and the evaluation of trend alterations via moving averages, we
uncovered distinct patterns in COVID-19 cases across neighboring countries. A compelling
example of this emerged in the comparison of Mexico and Belize, which exhibited signifi-
cant differences in their outbreak spread behaviors. These disparities could be attributed to
variations in health infrastructure and economic strength, with Mexico typically having
more robust systems in place. Similarly, our examination revealed parallel trend patterns
between Colombia and Peru, as well as with Peru and Bolivia. Such patterns could be
influenced by unique government strategies and policies enacted in these countries, high-
lighting the significance of diverse factors such as the timing and stringency of measures
when assessing COVID-19 dynamics.

A unique contribution of our research lies in the methodological approach we adopted,
utilizing time-series analysis and moving averages. This provided a refined understanding
of the pandemic’s trajectory and enabled us to dissect differences in outbreak spread
behaviors among neighboring countries. It also allowed us to study the impact of various
factors, including population size and public health policies, on these behaviors.
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In assessing the data, it was evident that larger nations, such as Brazil and Mexico,
experienced a high burden of infections. Yet, smaller countries, such as Colombia, outpaced
Mexico in confirmed cases. This discrepancy underscores the fact that factors beyond
population size can influence the spread and severity of the disease. Furthermore, the
absence of a directly proportional relationship between the number of cases and deaths in
some nations warrants further exploration. This observation underscores the necessity for
in-depth research and more comprehensive studies like our current work, to understand
the complex dynamics of COVID-19 spread and the multitude of influencing factors.

Our research underscores the effectiveness of the forecast models used, as demon-
strated in the comparison presented in Figures 10 and 11. These models have proven to be
valuable tools in understanding the disease’s behavior and forecasting its future trajectory.
The novelty of our contribution lies in applying these models specifically within the Latin
American context, providing a deeper understanding of the region’s situation.

Figure 10. Forecast through the Holt-Winters model in Uruguay to January 2022. Source: the authors.

Figure 11. COVID-19 cases in Uruguay until 20 July 2022. Source: John Hopkins University.
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The study draws parallels with the observation given in [39] regarding the pivotal
role of the reproduction number in epidemic control strategies. Despite a decrease in
this number following quarantine measures, we found a consistent increase in confirmed
COVID-19 cases, indicating the disease’s spread was not effectively halted. This was
particularly notable in Uruguay, where a more extended quarantine period could potentially
have suppressed both the infection surge and reproduction number. These findings suggest
concrete recommendations for policy-makers and public health officials, underlining the
importance of a careful and gradual resumption of everyday activities after the quarantine.

This article considered the COVID-19 incidence by accounting for new cases in Latin
America and considering the incidence rate and population size per country. The primary
focus was to analyze and compare the spread of the disease between countries. However,
we recommend a comprehensive analysis that incorporates the incidence rate for more
accurately evaluating COVID-19 severity in future research.

By modifying the SEIR model to incorporate time-dependent transmission rates, we
provided a closer approximation of the epidemiological situation. In Colombia, for instance,
the estimated infection curve was approximately double the number of registered cases,
revealing a critical discrepancy that needs to be addressed for improved epidemiological
surveillance.

Throughout this work, the different realities experienced during the pandemic in
Latin America were demonstrated. This work reaffirms the critical role of statistical and
mathematical methodologies in understanding and addressing outbreaks. Yet, as new data
and insights become available, continuous refinement and updating of these methodologies
is required.

Future research should consider alternative methodological approaches not explored
in this article, such as principal component analysis for country classification [12,59,61], as
well as a theoretical approach based on the geometric Brownian motion [16–18]. Such
studies can foster the development of more comprehensive, effective, and region-specific
response strategies to future outbreaks.
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