
Citation: Pile, B.; Warren, D.; Hassall,

C.; Brown, L.E.; Dunn, A.M.

Biological Invasions Affect Resource

Processing in Aquatic Ecosystems:

The Invasive Amphipod

Dikerogammarus villosus Impacts

Detritus Processing through High

Abundance Rather than Differential

Response to Temperature. Biology

2023, 12, 830. https://doi.org/

10.3390/biology12060830

Academic Editors: Paraskevi

K. Karachle, Elena Tricarico,

Giorgio Mancinelli and

Baran Yoğurtçuoğlu
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Simple Summary: Ecosystems are affected by multiple stressors, which interact in ways that can
be difficult to predict. Stressors such as climate warming and introductions of non-native species
and parasites can impact processes vital to the functioning of ecosystems. In temperate freshwater
ecosystems most nutrients originate from leaf litter, which is processed by invertebrate shredder
species. Focusing on the invasive killer shrimp, which is replacing native species, we investigated
how the stressors interact to impact rates of shredding and survival of the shredder species to make
predictions of how temperature and invasive species may alter the function of temperate freshwater
ecosystems. Increasing temperature was found to increase rates of shredding up to an optimum, after
which shredding decreased. The native shredders had a higher rate of shredding than the invasive
species at all temperatures. However, the invasive killer shrimp reached a much higher abundance
than the native and we demonstrated that the total population of the introduced shredders processed
far more leaf litter at invaded sites. While this may make the ecosystems more productive in the
short term, it may lead to the exhaustion of the leaf litter resource, with negative consequences for
the function of the ecosystem over time.

Abstract: Anthropogenic stressors such as climate warming and invasive species and natural stres-
sors such as parasites exert pressures that can interact to impact the function of ecosystems. This
study investigated how these stressors interact to impact the vital ecosystem process of shredding
by keystone species in temperate freshwater ecosystems. We compared metabolic rates and rates
of shredding at a range of temperatures up to extreme levels, from 5 ◦C to 30 ◦C, between invasive
and native amphipods that were unparasitised or parasitised by a common acanthocephalan, Echi-
norhynchus truttae. Shredding results were compared using the relative impact potential (RIP) metric
to investigate how they impacted the scale with a numerical response. Although per capita shredding
was higher for the native amphipod at all temperatures, the higher abundance of the invader led
to higher relative impact scores; hence, the replacement of the native by the invasive amphipod is
predicted to drive an increase in shredding. This could be interpreted as a positive effect on the
ecosystem function, leading to a faster accumulation of amphipod biomass and a greater rate of fine
particulate organic matter (FPOM) provisioning for the ecosystem. However, the high density of
invaders compared with natives may lead to the exhaustion of the resource in sites with relatively
low leaf detritus levels.
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1. Introduction

Ecosystems worldwide are subject to impacts from multiple abiotic and biotic stres-
sors, which stem from a combination of natural and anthropogenic drivers [1]. Abiotic
factors such as climate warming, ocean acidification, pollution and land-use change act
by influencing species’ physiology and extirpate those organisms for which conditions
shift beyond physiological limits. Biotic stressors such as species introductions, predation,
parasitism, disease and spatiotemporal decoupling from food resources act at a population
level to influence demographic processes [2–4]. To reflect the complexity of natural systems,
more research is needed on the effects of multiple factors in synergy, rather than considering
the impacts of single stressors in isolation [5–7].

Freshwater habitats are among the most threatened by interacting stressors. These
ecosystems are biodiverse, occupying only 0.8% of the world’s surface and 0.01% of the
world’s water, but harbouring 10% of described species [8,9]. This biodiversity sup-
ports high productivity and provides important resources to adjacent ecosystems and
humankind [10,11]. In temperate freshwater ecosystems, the basal energy resource is often
heavily skewed towards allochthonous riparian leaf litter [12] with macroinvertebrate
shredders contributing to the release of nutrients, dispersing shredded leaf particulates
and transferring biomass up through trophic webs [13–15]. However, research is required
into how this shredding may be impacted by multiple stressors [7,16,17].

Among the most significant biotic stressors facing natural systems are invasive species [18–20].
Successful invaders often outcompete native species by monopolising resources and they may
also prey upon natives, rapidly altering the community structure [21–23]. Alterations of this type
may affect ecosystem functions and resource processing, causing cascading effects across trophic
levels [24–26]. Amphipods are important shredder species in temperate freshwaters [27,28],
but those from the Ponto-Caspian region such as the ‘killer shrimp’ Dikerogammarus villosus
(Sowinsky, 1894) have proved to be highly invasive. D. villosus has invaded major waterways
throughout western Europe, has been present in the UK since at least 2010 and is predicted to
invade North America and Ireland [23,29,30]. This invasion has resulted in the replacement of
native amphipods and impacted wider macroinvertebrate communities through competition
and predation [29,31,32]. Gammarus pulex (Linnaeus, 1758) is the dominant native freshwater
amphipod shredder in Great Britain, but it is outcompeted and preyed on by the invasive D.
villosus, leading to species replacement [32–36].

In addition to anthropogenic stressors, species face a suite of stressors as a result
of their place within ecological networks of interactions. Parasites are a ubiquitous part
of natural communities that may alter patterns of host survival and can also affect host
traits, including behaviour and feeding rates [37–40]. The native amphipod G. pulex is
commonly parasitised by acanthocephalans, including Echinorhynchus truttae (Schrank,
1788), which uses the amphipod as an intermediate host and can have a prevalence of up to
70% in host populations [41]. Parasite manipulation by E. truttae alters both anti-predator
avoidance [41–44] and the feeding behaviour of the amphipod host [40,45].

Alterations to host feeding behaviours may be due to energetic costs exerted by
parasites and reflected in changes to metabolic rates. The effect of the acanthocephalan
infection of amphipods by Polymorphus minutus and Pomphorhynchus laevis on the basal
metabolic rate (BMR) has previously been demonstrated, but E. truttae has not previously
been studied in relation to its effect on the host BMR [46,47]. In contrast to the native species,
D. villosus has benefitted from enemy release in much of its new range, with some parasites
from its native range absent from invader populations and no evidence of infection by E.
truttae in invaded areas [48,49].

Climate change has long been established as a threat to biodiversity due to higher mean
temperatures as well as an increase in the frequency and intensity of extreme events [50,51].
High temperatures experienced during heatwaves can impact on the structure and function
of communities [52,53]. Climate change may also make ecosystems more vulnerable to the
impact of additional stressors such as invasive species [54–56], which may have different
thermal optima than their native analogues. Tolerance to a wide range of conditions is a
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characteristic of successful invasive species, facilitating establishment and spread; however,
survival and behaviour become less predictable at high temperatures [57–59]. Experimental
work is, therefore, required to investigate how invasive species survive and function
in high temperatures in comparison with native analogues. Previous studies comparing
shredding rates of G. pulex and D. villosus reported a positive correlation between shredding
rates and temperature, but comparisons between the native and invader conflicted [60,61].
Interactions between parasites and hosts can also be influenced by temperature, with
outcomes difficult to predict when the thermal optima of hosts or parasites are exceeded
due to species-specific interactions [62–65]. Previous studies have not considered the impact
of extreme temperatures and of parasitic infections on shredding efficiency.

This study investigated how survival and shredding differed between native and
invasive amphipods as a function of two significant stressors: temperature and a common
parasite of native amphipods, E. truttae. We hypothesised that the invasive D. villosus
would outcompete the native G. pulex partly through higher rates of shredding, which may
be underpinned by differences in metabolic rates. The metabolic theory of ecology (MTE)
proposed that the rates of almost all activities undertaken by biological organisms—for
example, survival, growth, development and reproduction—are determined by metabolic
rates. Metabolic rates, the rates of energy uptake, processing and allocation, are determined
by other factors in turn. One of the main factors affecting an individual’s metabolic
rate is temperature [66,67]. As temperature rises, the rates of metabolic reactions within
organisms increase, raising demands for resource acquisition. Previous studies have shown
both D. villosus and G. pulex increased their shredding efficiency at higher temperatures [60],
but they did not directly measure metabolic rates. Additionally, interspecific biological
interactions have been shown to influence temperature effects on metabolic scaling in some
amphipods [68,69], but the effects of parasite infections on the relative performance of G.
pulex/D. villosus have not yet been considered.

The native species G. pulex suffers more parasitism than the invasive D. villosus in
Great Britain [70], so the impact of the common parasite E. truttae was tested to determine
whether the metabolic demands of the parasite altered the behaviour and survival of the
native amphipod. The lesser competitive power of the native was hypothesised to be
exacerbated by parasitism. We aimed to identify whether species and parasitise status
interacted with temperature to alter survival and behaviour to investigate whether multiple
stressors could have amplified impacts on the ecosystem process of shredding. We also
used the relative impact potential (RIP) metric to compare shredding data in respect of
a numerical response due to the high densities in which the invasive D. villosus is found
at invaded UK sites in order to test the hypothesis that the high densities of the invasive
species would lead to a higher potential impact for D. villosus [71,72].

2. Materials and Methods

Gammarus pulex were collected by kick-sampling from Meanwood Beck at Golden Acre
Park (53.8687◦ N, −1.5884◦ E) and Meanwood Park, West Yorkshire (53.8301◦ N, −1.5746◦ E),
UK. Dikerogammarus villosus were collected from Grafham Water, Cambridgeshire (52.2909◦ N,
−0.0323◦ E), UK. The mean freshwater temperature in the UK is 11 ◦C, with a 95th percentile
minimum and maximum of 2.5 ◦C and 20.3 ◦C, respectively [73], although the shallowness
of the Meanwood Beck site may have led to significantly lower minimum temperatures
and higher maximum temperatures; however, recorded temperature data were unavailable.
All animal collections were carried out between February and April, when mean UK river
temperatures are approximately 8.20 ◦C [74]. All amphipods were kept for a minimum of
5 days prior to experiments in order to acclimate to laboratory conditions in species-specific
communal tanks in a controlled temperature room maintained at 15 ± 0.1 ◦C SD with a
12:12 h light/dark cycle (08:00–20:00) (Figure 1). The animals were not sexed, but were
roughly size-matched, ensuring that all were at the same mature life stage.
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Figure 1. Schematic of basic experimental workflow for survival/shredding experiment.

Tanks were filled with aerated aged tap water and the study organisms were fed
ad libitum with leaf litter. Parasitised animals were identified by a visual examination.
Individuals parasitised by E. truttae were identifiable by an orange acanthocephalan cys-
tacanth visible through the cuticle [75]. Only hosts with a mature cystacanth were used,
which facilitated pre-experimental identification. The infection status was confirmed after
experiments by dissection and a visual identification [76].

The leaf material selected for experimental use was common alder (Alnus glutinosa) as
amphipod species have demonstrated a preference for the leaf detritus of this species [77].
Alder is a nitrogen-fixing species, producing nutrient-rich leaf litter relatively low in carbon,
which is favoured by detritivorous species in fresh waters [77,78]. Alder is also a common
riparian species throughout temperate areas of the northern hemisphere [79] and is found
at the locations where the experimental animals were collected. Leaves were collected
as natural autumn leaf fall and dried. Leaves were then conditioned for two weeks in
water from Meanwood Beck, West Yorkshire, to promote microbial colonisation and to
increase the palatability of the detritus for amphipods [77]. Once conditioned, a cork-borer
was used to cut 6 mm diameter discs of leaf, avoiding the lignified and less palatable
midrib and veins. Leaf discs were air-dried and then weighed out in sets of 15 (mean
mass = 27.0 ± 1.9 mg SD) and subsequently conditioned in Meanwood Beck stream water
for 48 h immediately prior to the experimental period. The drying of the discs prior to
weighing killed the microbes that had accumulated as a biofilm during the initial leaf
conditioning while leaving a nitrogen-rich mass. The reconditioning was carried out so
that some live microbial film was present when fed to the experimental animals in addition
to the previously accumulated nitrogen-rich biomass.

The leaf shredding and survival rates of D. villosus and G. pulex that were either unpar-
asitised or parasitised by E. truttae were measured at a range of temperatures. Survival and
shredding data were derived from the same experiment, with mortality being recorded
if suffered during the shredding experiment. Amphipods were roughly size-matched in
order to ensure all were at the same mature life stage to minimise possible differences in
the mass-specific thermal sensitivity of metabolic rates [80]. Animal sizes were represen-
tative of mature individuals found at the field sites, with some selection for a size match.
Individual amphipods were placed on a paper towel to remove excess water and weighed
(unparasitised G. pulex mean mass was 0.050 ± 0.012 g, parasitised G. pulex mean mass was
0.031 ± 0.011 g and D. villosus mean mass was 0.063 ± 0.015 g). Animals were individually
placed in transparent, circular plastic containers (diameter of 7 cm and depth of 5 cm) with
250 mL of aged tap water. Two transparent glass beads were placed in the containers to
provide a refuge and to prevent excess swimming due to thigmotactic behaviours [81,82]
while still allowing observations (Figure 2). The containers were then placed in incubators
at 15 ◦C with a 12:12 h light/dark cycle and the animals underwent a 24 h starvation period
to standardise hunger, during which the temperature was gradually increased or decreased
at a rate of 1 ◦C every 2 h until the desired temperature for the treatment was reached.
Temperature treatments were between 5 and 30 ◦C in 5 ◦C increments with the following
number of replicates for the initial survival experimental data: 5 ◦C (unparasitised G. pulex
n = 16, parasitised G. pulex n = 13 and D. villosus n = 16), 10 ◦C (unparasitised G. pulex n = 16,
parasitised G. pulex n = 14 and D. villosus n = 16), 15 ◦C (unparasitised G. pulex n = 15,
parasitised G. pulex n = 16 and D. villosus n = 16), 20 ◦C (unparasitised G. pulex n = 16,
parasitised G. pulex n = 15 and D. villosus n = 16), 25 ◦C (unparasitised G. pulex n = 16,
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parasitised G. pulex n =14 and D. villosus n = 16) and 30 ◦C (unparasitised G. pulex n = 16,
parasitised G. pulex n = 16 and D. villosus n = 16).
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Figure 2. An individual D. villosus sheltering by a glass bead in a container with partially shredded
A. glutinosa leaf discs. Shredded leaf matter FPOM and amphipod faeces are visible.

After the starvation period, 15 weighed leaf discs were added to each container.
Animals were checked every 24 h and mortality was recorded. Mortality was identified
as a lack of pleopod beating and the absence of a reaction to a physical stimulus. These
treatments were selected to test outcomes at a range of temperatures up to and beyond
known thermal limits. Water levels in each container were maintained, with oxygenated
water at the relevant temperature being added if required.

After 6 days, the experiment was halted and any remaining leaf discs, hereon identi-
fied as coarse particulate organic matter (CPOM), were stored in ethanol to stop further
microbial decomposition before reweighing. For the measurement of CPOM samples, metal
weighing boats were heated in a drying oven for 24 h at 60 ◦C and weighed. Individual
CPOM samples were allocated to a weighing boat to then be heated in the drying oven
for 24 h at 60 ◦C. Boats and leaves were then weighed together and the mass of CPOM
was calculated.

The metabolic rates of D. villosus (unparasitised) and G. pulex (unparasitised/parasitised)
were measured at 10 ◦C (unparasitised G. pulex n = 17, parasitised G. pulex n = 17 and D. villosus
n = 12), 20 ◦C (unparasitised G. pulex n = 21, parasitised G. pulex n = 11 and D. villosus n = 18)
and 25 ◦C (unparasitised G. pulex n = 17, parasitised G. pulex n = 16 and D. villosus n = 20).
Separate subsets of animals were used for the metabolic rate and survival/shredding
experiments. Animals were size-matched as much as possible to minimise differences in the
mass-specific thermal sensitivity of metabolic rates [80]. Animal sizes were representative
of mature individuals found at the field collection sites but with some selection for a size
match (unparasitised G. pulex mean mass was 0.041 ± 0.010 g, parasitised G. pulex mean
mass was 0.033 ± 0.008 g and D. villosus mean mass was 0.072 ± 0.020 g). Animals were
individually placed in plastic containers as used in the shredding experiment above with
glass beads and aged tap water, with the temperature gradually changed as required.
The animals underwent a 24 h starvation period, ensuring that measurements were post-
absorptive and unaffected by metabolism of food [83]. Amphipods were dabbed dry
on paper towels before being weighed and placed in a closed-circuit respirometry vial
(diameter of 15 mm, height of 48 mm and volume of 4 mL; © OXVIAL4) containing fully
aerated water at the relevant temperature. A small section of plastic mesh was also inserted
into the vial to restrict amphipod movement and encourage natural clinging and resting
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behaviours to allow the measurement of the basal metabolic rate [84]. The amphipods
were acclimated for 30 min before measurements were taken. An optical oxygen sensor
(Pyroscience© Piccolo2) was used to measure the dissolved oxygen content of the water
in mg/L (ppm) at the beginning of the test and again after a 30 min period, giving a
decrease in milligrams of oxygen per litre of water. This figure was converted to a rate by
calculating the reduction in oxygen per hour adjusted for amphipod size to give a rate of
oxygen consumption per gram of amphipod.

The impact of the invasive species and parasitism on resource processing depends on
both the leaf shredding capability and relative abundance. The RIP metric incorporates
the relative consumer abundance response as a means of scaling relative per capita effects
to compare the relative impact potential of invasive versus native species. We applied the
RIP to test the hypothesis that the high densities of the invasive species would lead to a
higher impact potential for D. villosus. The metric was used to compare the relative impact
potential of these freshwater amphipod species using abundance data and the results of the
survival/shredding experiment. To calculate the relative impact potential, the functional
response asymptotes or maximum feeding rates of the native and invasive species as well
as their relative abundances were compared.

RIP =

(
Invader FR
Native FR

)
×

(
Invader abundance
Native abundance

)
When the result of this equation is >1, the invader can be regarded as having a greater

potential impact on the invaded ecosystem than that exerted by the native resident. The
higher the RIP score, the higher the impact of the invasive species relative to the native.
The RIP metric has previously been extensively used to compare the relative impact of
invasive predators [72] and of algal uptake by filter feeders [85]. Here, we applied this
metric for the first time to explore the impact of biological invasion on the key process
of leaf shredding. As leaf detritus was supplied in excess, the feeding rate on leaf matter
was used as the measure of consumption representative of the functional response curve
asymptote maximum feeding rate. Abundance data were taken from Warren et al. [76], a
study that was undertaken using the same field sites as this study, with additional data on
parasite prevalence calculated as a percentage of the animals collected for this study.

Data Analysis

All analyses were produced using R, with plots for shredding, metabolic rates and
relative impact potential created using the “ggplot2” package [86,87]. Due to the signifi-
cantly higher mass of D. villosus compared with G. pulex (Student’s t-test; t = −14.36 and
p < 0.001) and unparasitised G. pulex being larger than parasitised conspecifics (t = 4.19 and
p < 0.001), data were standardised by body mass (g). A general additive model (GAM) was
constructed using the “mgcv” package to assess the effect of amphipod species, tempera-
ture and parasitised status on the rates of shredding [88]. Temperature was modelled using
a tensor smooth, which improved the model fit, and the mass of leaf consumed per gram
of amphipod was transformed using the natural log, which reduced heteroscedacity and
improved the residual distribution.

Survival statistics were modelled using a Cox proportional hazards model, with plots
produced using Kaplan Maier product limit estimator curves using the “survival” package
in R [89]. To determine the activation energy of shredding efficiency, temperature was stan-
dardised to 1/kTc–1/kT, with k representing the Boltzmann constant (8.62 × 10−5 eV K−1),
T representing temperature in ◦ Kelvin and c representing the allocated intercept tempera-
ture of 15 ◦C or 288.15 ◦K. A linear regression model was used to analyse the ln-transformed
rates of grams of leaf shredded per gram of amphipod per day against a standardised
temperature [61,90]. Data for shredding rates at 5, 10 and 15 ◦C were used for this analysis
to enable comparisons with Kenna et al. [61], who used the same experimental set-up but a
different resource (Acer pseudoplatanus leaves). ANCOVA was used to compare shredding
rates between amphipod treatments with pairwise Tukey’s post hoc tests.
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The metabolic rate was calculated by measuring milligrams of oxygen consumed per
hour per gram of subject amphipods. To test for differences in metabolic rates between am-
phipod species and parasitised status, a Quade’s ANCOVA was carried out with Wilcoxon
pairwise post hoc tests. A one-way ANOVA was carried out to test for differences in
metabolic rates for amphipods between temperature regimes and post hoc Tukey’s tests
were used for pairwise comparisons of metabolic rates between temperatures.

In the field, the abundance of G. pulex parasitised by E. truttae was extremely low, at a
mean of 4.38 individuals per m2 compared with 164 per m2 for unparasitised individuals
and 1176 individuals per m2 for D. villosus. Therefore, due to the low abundance, an RIP
analysis was not carried out using parasitised G. pulex. The abundance data showed that
there were differences in the abundances of the native and the invasive amphipods in the
field. Estimates were made based on multiple counts at multiple locations, with mean abun-
dances of 83.280 (±15.710) individuals per m2 for D. villosus and 17.378 (±4.486) per m2

for G. pulex [72]. Mortality did not differ between species by temperature treatment; there-
fore, the abundance data did not need to be adjusted as the ratio of species’ abundances
remained the same as both suffered mortality at the same rate under each temperature
regime. Variation and uncertainty were accounted for by using standard deviations of all
data in probability density functions [71].

3. Results
3.1. Shredding

The shredding rate significantly differed between amphipod species (F(1244) = 142.30;
p < 0.001), with G. pulex having a higher rate of shredding than D. villosus (Figure 3) (Table 1).
Temperature had a significant effect on rates of shredding (F(5240) = 76.07; p < 0.001). There
was no significant interaction between temperature and species (F(5244) = 2.37; p = 0.13),
but temperature and parasitism status were found to significantly interact to affect rates of
shredding (F(10, 228) = 4.25; p = 0.02). The shredding rates of unparasitised G. pulex and D.
villosus peaked at 15 and 20 ◦C, respectively, while the shredding of G. pulex infected with
E. truttae had an accelerating rate of increase as the temperature increased, with a greater
variation than the other treatments (Figure 3). Comparing G. pulex treatments, there was
no difference between parasitised and unparasitised amphipods (F(1155) = 0.65; p = 0.42),
but parasitised status significantly interacted with temperature (F(11, 155)) = 7.50; p = 0.01)
(Supplementary Table S1).

The activation energy of shredding between 5 and 15 ◦C for unparasitised G. pulex
was 0.39 eV (95% CI: 0.17–0.60) and G. pulex parasitised by E. truttae was 0.36 eV
(95% CI: 0.09–0.63) (Figure 4). However, the activation energy for D. villosus was higher
than predicted by the MTE at 0.90 eV (95% CI: 0.72–1.09) (Table 2) [90]. The ANCOVA
showed a significant difference between amphipod treatments (F(2, 134) = 9.45; p < 0.001),
with pairwise Tukey’s post hoc tests finding significant differences between unpara-
sitised G. pulex and D. villosus (t(87) = 2.40; p = 0.05) and between G. pulex parasitised with
E. truttae and D. villosus (t(89) = 4.34; p < 0.001), but no difference was detected between
unparasitised and parasitised G. pulex (t(87) = 1.90; p = 0.14).

3.2. Survival

Temperature had a significant effect on survival (z = 7.79; p < 0.001), with a strong
negative correlation identified (Figure 5a–c). An increase in temperature was associated
with a 1.25 greater hazard of mortality (95% CI: 1.18, 1.32). Survival did not differ between
species of amphipods (z = 0.73; p = 0.47) and no interaction was found between temperature
and species (z = −1.32; p = 0.19). Survival over the experimental period did not differ
between parasitised and unparasitised G. pulex (z = −1.28; p = 0.20), but an interaction was
detected between temperature and time to mortality for unparasitised G. pulex (z = 2.66;
p = 0.01). There was an increased likelihood of mortality occurring earlier in the G. pulex
that were not parasitised by E. truttae than parasitised conspecifics, with a 1.06 greater
hazard of earlier mortality (95% CI: 1.02, 1.11) (Figure 5b).
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Table 1. Shredding rates of each amphipod (species and parasitised state) and temperature treatment.

Amphipod Treatment Temperature
(◦C)

Mean Shredding Rate (g Leaf Eaten
Amphipod g−1 day−1) St. Dev. Shredding Rate

G. pulex unparasitised 5 0.0263 0.0083
G. pulex infected with E. truttae 5 0.0301 0.0153

D. villosus 5 0.0093 0.0033
G. pulex unparasitised 10 0.0337 0.0127

G. pulex infected with E. truttae 10 0.0498 0.0151
D. villosus 10 0.016 0.0059

G. pulex unparasitised 15 0.0479 0.0233
G. pulex infected with E. truttae 15 0.0644 0.0793

D. villosus 15 0.0343 0.0111
G. pulex unparasitised 20 0.0548 0.0149

G. pulex infected with E. truttae 20 0.063 0.0636
D. villosus 20 0.0327 0.015

G. pulex unparasitised 25 0.0247 0.0128
G. pulex infected with E. truttae 25 0.0626 0.023

D. villosus 25 0.0325 0.0182
G. pulex unparasitised 30 0.036 0.0072

G. pulex infected with E. truttae 30 0.135 0.116
D. villosus 30 0.021 0.008

3.3. Metabolic Rate

There was a significant difference in the rate of oxygen consumption between tem-
perature treatments (ANOVA F(2, 147) = 18.36; p < 0.001) (Table 3). Post hoc Tukey’s tests
found significant differences between all temperature treatments (10 ◦C, 20 ◦C and 25 ◦C)
in pairwise tests (10 and 20 ◦C (p < 0.001), 10 and 25 ◦C (p < 0.001) and 20 and 25 ◦C
(p < 0.01)). No significant interaction between species and temperature on metabolic rates
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was found using Quade’s ANCOVA (F(2, 4) = 5.64; p = 0.07). Post hoc Wilcoxon pairwise
tests revealed no significant differences in metabolic rates between species (p = 0.75) or
parasitised status (p = 1) (Figure 6).
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Table 2. Regression parameters for ln-transformed shredding rates by Boltzmann−averaged stan-
dardised temperature for each amphipod treatment.

Amphipod Treatment Intercept ± 1 SE Multiplier 95% CI p-Value R2

G. pulex unparasitised −3.16 ± 0.10 0.39 (0.17, 0.60) <0.001 0.24
G. pulex parasitised −2.99 ± 0.12 0.36 (0.09, 0.63) <0.001 0.14

D. villosus −3.47 ± 0.09 0.90 (0.72, 1.09) <0.001 0.69

3.4. Invader Relative Impact Potential

In all temperature regimes, the invasive D. villosus had mean RIP scores > 1 (Table 4).
This indicated greater density-scaled shredding rates in the invader relative to the native
species, with an increasing RIP score indicating a greater relative shredding rate. There
was a general trend of increasing mean RIP scores with increasing temperature, from 4.82
at 5 ◦C to the highest RIP of 20.85 at 25 ◦C, with the RIP then falling to 7.56 at 30 ◦C.

The higher potential impact of D. villosus was due to the extremely high densities at
which this species was found at the invaded sites compared with the much lower densities
at which G. pulex was found. Despite the lower maximum shredding rate of the invasive
species, the higher abundance of the invader led to higher RIP values, which predicted
higher rates of shredding in ecosystems where the invader was present (Figure 7).
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Table 3. Metabolic rate results comparing Dikerogammarus villosus with unparasitised Gammarus pulex
and G. pulex parasitised by Echinorhynchus truttae at temperatures between 10 and 25 ◦C.

Amphipod Treatment Temperature
(◦C)

Mean Metabolic Rate (mg/L Oxygen
Consumed Hour−1 Amphipod Gram−1) St. Dev. Metabolic Rate

G. pulex unparasitised 10 51.2 20.5
G. pulex infected with E. truttae 10 56.2 18.1

D. villosus 10 31.2 16.9
G. pulex unparasitised 20 78.6 15.9

G. pulex infected with E. truttae 20 74.4 23.0
D. villosus 20 78.1 17.2

G. pulex unparasitised 25 73.8 21.3
G. pulex infected with E. truttae 25 78.3 22.5

D. villosus 25 46.1 21.7
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Table 4. Relative impact potential (RIP) results by temperature treatment comparing the invasive
Dikerogammarus villosus with the native Gammarus pulex. RIP scores > 1 indicate a predicted impact of
the invasive species compared with the native species in leaf shredding rate.

Temperature
(◦C) Mean RIP

95% Confidence Interval % Probability
RIP > 1

% Probability
RIP > 10Lower Limit Upper Limit

5 4.82 0.08 29.83 61.0 10.8
10 6.80 0.10 42.31 68.6 15.4
15 11.07 0.16 69.42 78.2 23.9
20 8.01 0.12 49.92 72.3 18.1
25 20.85 0.24 133.94 86.0 36.3
30 7.56 0.13 46.49 72.3 17.4
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4. Discussion

The invasive amphipod D. villosus is likely to affect shredding rates and, hence,
nutrient availability in freshwater systems as a result of its propensity to reach a high
abundance and maintain a high density and dominance in invaded communities post-
invasion [91]. Although the native species G. pulex has a higher per capita shredding rate,
it occurs at lower densities than the invasive species in the UK, with the invasive D. villosus
currently restricted in distribution to a few specific locations [72,92]. The high predatory
and competitive abilities [32,36] as well as the enemy release experienced by D. villosus in
Great Britain [70] facilitates high-density populations, which are likely to alter shredding
and the nutrient flow in invaded freshwater systems. Parasitism affected amphipod
shredding, with the highest rate of shredding in G. pulex parasitised with E. truttae. At
lower temperatures, parasitised G. pulex maintained a similar shredding rate to the other
amphipod treatments; however, at 20 ◦C and above, the shredding rate for parasitised
G. pulex individuals rapidly increased. This correlated with a previous study that found
predatory behaviour increased with temperature in G. pulex parasitised with E. truttae [93].
Although this increased food intake could suggest a higher energy demand by parasitised
individuals, this was not reflected in an increase in metabolic rate, which contrasted with
the findings of some other studies that found that biological effects could alter MTE scaling
coefficients [68,69]. The relatively low prevalence of E. truttae infection indicated that the
increased shredding at higher temperatures was not likely to have a significant ecosystem
effect, especially as the shredding rates increased most at temperatures at which survival
was reduced through species’ thermal limits being exceeded. No difference was found
between amphipod species in temperature sensitivity of metabolic rates, which may reflect
similarities in these relatively closely related species. Although previous research has
found conspecifics with larger body sizes to be more negatively impacted by temperature
increases, most likely due to limitations to metabolic processes or supply of oxygen to
tissues, these Gammaridae family members do not appear to significantly differ in metabolic
temperature sensitivity [80]. While this study used alder as a food source for shredders, the
results were similar to previous experiments using sycamore, with D. villosus shredding
rates lower than those of G. pulex [61]. It has been suggested that rates of shredding can be
determined by leaf nutrient quality, but the activation energy results in this experiment for
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both species of amphipod were similar to those found in the experiment using sycamore, a
lower quality resource than alder [61].

Temperature was the significant factor affecting amphipod survival, with no interac-
tion with species. This was in accord with some previous studies [94], whereas in other
studies, the native G. pulex was found to be slightly more tolerant of high temperatures
than D. villosus [95]. Mortality may have been due to cumulative deleterious impacts
on mitochondria as a previous experiment found that temperatures of 30 ◦C and above
limited ATP production in G. pulex [96]. Population densities are also influenced by the
effect of temperature on fecundity and development. Data are lacking for D. villosus, but
research on other amphipod species indicates that higher temperatures generally decrease
brood size and also decrease the development time [97–99]. Additional research is required
to investigate how this would alter the population size and structure of both native and
invasive amphipods as impacts of temperature may be amplified or lessened by changes
in density over time. No effect on survival was exerted by parasitism in G. pulex. A low
virulence would be adaptive for the acanthocephalan as parasites are transmitted from the
intermediate invertebrate host when it is predated by the definitive host; hence, the survival
of the intermediate host is vital to allow for the trophic transmission of the parasite.

Parasitism did not affect the metabolic rate of the host, in contrast with the findings of
Labaude et al., who reported an increased metabolic rate in G. pulex infected with the acan-
thocephalan P. laevis [47]. The relatively large size of E. truttae meant it was surprising that
the metabolic rate was not affected, but the results may reflect an equivalence in metabolic
activity for G. pulex and E. truttae tissues by mass as well as selection on the parasites to
trade off energetically and metabolically costly processes such as growth with the survival
of their host [100]. The parasitism of G. pulex did not change the temperature scaling of
the shredding behaviour, with a similar activation energy for amphipods parasitised by E.
truttae as unparasitised individuals. Testing a range of different parasite species may pro-
duce contrasting results, as indicated in a previous study [101]. The oxygen requirements
and temperature-related mortality did not differ between the native and invasive species,
suggesting that the invasive species was not better adapted to climate change warming or
an increasing frequency of high-temperature extremes.

The impact of the invasive D. villosus on resource processing depends on its leaf
shredding capability relative to the native species that it replaces, its predation of native
shredders to alter the shredder community structure and on its relative abundance in
an invaded location. D. villosus typically reaches much higher densities in their invaded
range compared with the densities reported for G. pulex [23,72] The RIP metric has pre-
viously been used to predict the potential ecological impact of predation by invasive
species [71,102], including D. villosus, which was found to have a higher predatory impact
on native shredders than the native G. pulex [103]. Here, we used the RIP metric to explore
the potential impact of species and temperature on amphipod shredding. Although per
capita shredding was higher for G. pulex than D. villosus at all temperatures, the higher
abundance of this invader led to higher RIP scores for D. villosus at all temperatures; hence,
the replacement of the native by the invasive amphipod was predicted to drive an increase
in shredding. This could be interpreted as a positive effect on the ecosystem function, with
a higher rate of shredding leading to a faster accumulation of amphipod biomass and a
greater rate of FPOM provisioning for the ecosystem. However, the high density of invaders
compared with natives may lead to the exhaustion of the resource in sites with relatively
low leaf detritus levels. In addition, the flexible feeding habits of D. villosus could affect the
community structure as competition for resources may lead to the increased predation of
macroinvertebrates and fish eggs as the detrital resource reduces, the D. villosus population
matures and its trophic level increases [104,105]. The high density of invasive shredders
may also increase the nutrient load of affected water courses, with an increase in FPOM
leading to possible eutrophication in freshwater systems with high seasonal allochthonous
inputs [106]. Such increases in the nutrient load can alter planktonic communities, leading
to algal blooms and cascading impacts to food webs [107].



Biology 2023, 12, 830 14 of 18

5. Conclusions

The results demonstrated that an interaction of the stressors of temperature, invasive
species and parasites could affect the ecosystem process of shredding. The invasive am-
phipod D. villosus had a lower per capita rate of shredding than the native G. pulex, but
existed in higher densities in the environment, which indicated that its replacement of the
native species could be predicted to lead to the increased processing of detritus resources.
Although the rates of shredding were found to increase with temperature, it is likely that the
processing of detritus will severely decline if temperatures exceed the thermal tolerances of
the amphipod shredders. Once thermal optima are exceeded, it is likely that shredders will
seek thermal refugia, which may limit shredding activity compared with normal foraging
behaviour. Thus, shredding activity would be limited by mortality or amphipods moving
away from detrital resources to seek a more favourable thermal situation [61].

The fine particulate organic matter (FPOM) produced by shredding activity supports
a community of collector species, from gathering collectors (including mayfly nymphs and
midge larvae) to filtering collectors such as blackfly larvae and mussels [108]. The combined
effects of invasive species and increasing temperatures could have significant impacts on
freshwater communities and potentially cascading effects to connected ecosystems [26].
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//www.mdpi.com/article/10.3390/biology12060830/s1, Table S1: Parametric coefficients of GAM
for shredding experiment.
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23. Rewicz, T.; Grabowski, M.; MacNeil, C.; Bącela-Spychalska, K. The Profile of a ‘Perfect’ Invader—The Case of Killer Shrimp,
Dikerogammarus villosus. Aquat. Invasions 2014, 9, 267–288. [CrossRef]

24. Doherty-Bone, T.M.; Dunn, A.M.; Jackson, F.L.; Brown, L.E. Multi-Faceted Impacts of Native and Invasive Alien Decapod Species
on Freshwater Biodiversity and Ecosystem Functioning. Freshw. Biol. 2019, 64, 461–473. [CrossRef]

25. DeBoer, J.A.; Anderson, A.M.; Casper, A.F. Multi-Trophic Response to Invasive Silver Carp (Hypophthalmichthys Molitrix) in a
Large Floodplain River. Freshw. Biol. 2018, 63, 597–611. [CrossRef]

26. de Omena, P.M.; Srivastava, D.S.; Romero, G.Q. Does the Strength of Cross-Ecosystem Trophic Cascades Vary with Ecosystem
Size? A Test Using a Natural Microcosm. Freshw. Biol. 2017, 62, 724–736. [CrossRef]

27. MacNeil, C.; Dick, J.T.A.; Elwood, R.W. The Trophic Ecology of Freshwater Gammarus Spp. (Crustacea: Amphipoda): Problems
and Perspectives Concerning the Functional Feeding Group Concept. Biol. Rev. Camb. Philos. Soc. 1997, 72, 349–364. [CrossRef]

28. Dangles, O.; Malmqvist, B. Species Richness-Decomposition Relationships Depend on Species Dominance. Ecol. Lett. 2004, 7,
395–402. [CrossRef]

29. Grabowski, M.; Bacela, K.; Konopacka, A. How to Be an Invasive Gammarid (Amphipoda: Gammaroidea)–Comparison of Life
History Traits. Hydrobiologia 2007, 590, 75–84. [CrossRef]

30. Species Alerts—GB Non-Native Species Secretariat. Available online: http://www.nonnativespecies.org/alerts/index.cfm?id=3
(accessed on 17 June 2018).
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