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Simple Summary: The cell architecture is created and maintained via adhesion molecules, called
cadherins, that keep similar cells bound to each other. E-cadherin is a cadherin encoded by the CDH1
gene, essential in normal epithelia. P-cadherin, encoded by the CDH3 gene, exerts a similar function
but is mainly present in tumours. E- to P-cadherin switch is a common event in several epithelial
tumours. We unveiled a mechanism explaining the E- to P-cadherin switch (CDH1 to CDH3 switch),
which we found to occur in many gastric cancers. We induced this switch by depleting CDH1 in
gastric cancer cells, and, as they started to produce CDH3, this rescued cell-adhesion. Despite this
rescue, cells bearing the switch showed migratory and proliferative features, commonly observed in
aggressive tumours. We observed that CDH1 depletion leads to novel genomic interactions between
the CDH1 and CDH3 gene sequences. We identified the sequences needed for these interactions to
occur, which seem also responsible for controlling the amount of E- or P-cadherin molecules in the
cell. Our data provide evidence that loss of E-cadherin is able to compromise the normal interactions
between the CDH1 to CDH3 gene sequences, allowing the expression of P-cadherin in gastric cancers.

Abstract: Cadherins are cell–cell adhesion molecules, fundamental for cell architecture and polarity.
E-cadherin to P-cadherin switch can rescue adherens junctions in epithelial tumours. Herein, we
disclose a mechanism for E-cadherin to P-cadherin switch in gastric cancers. CDH1 and CDH3 mRNA
expression was obtained from 42 gastric tumours’ RNA-seq data. CRISPR-Cas9 was used to knock
out CDH1 and a putative regulatory element. CDH1-depleted and parental cells were submitted
to proteomics and enrichment GO terms analysis; ATAC-seq/4C-seq with a CDH1 promoter view-
point to assess chromatin accessibility and conformation; and RT-PCR/flow cytometry to assess
CDH1/E-cadherin and CDH3/P-cadherin expression. In 42% of gastric tumours analysed, CDH1
to CDH3 switch was observed. CDH1 knockout triggered CDH1/E-cadherin complete loss and
CDH3/P-cadherin expression increase at plasma membrane. This switch, likely rescuing adherens
junctions, increased cell migration/proliferation, commonly observed in aggressive tumours. E- to
P-cadherin switch accompanied increased CDH1 promoter interactions with CDH3–eQTL, absent in
normal stomach and parental cells. CDH3–eQTL deletion promotes CDH3/CDH1 reduced expres-
sion. These data provide evidence that loss of CDH1/E-cadherin expression alters the CDH3 locus
chromatin conformation, allowing a CDH1 promoter interaction with a CDH3-eQTL, and promoting
CDH3/P-cadherin expression. These data highlight a novel mechanism triggering E- to P-cadherin
switch in gastric cancer.
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1. Introduction

Cadherins are tissue-specific transmembrane glycoproteins that play a key role in
stable cell–cell adhesion, cellular polarization, maintenance of tissue architecture, and
embryogenesis [1,2]. E-cadherin and P-cadherin are encoded by CDH1 and CDH3 genes,
respectively, and present a great degree of sequence and gene structure homology [3].
Despite their homology, both proteins display tissue-specific expression patterns and
functions, being often mutually exclusive at the cellular level [3]. While E-cadherin is
widely expressed in epithelial tissues [4], P-cadherin expression is restricted to organ
regions, such as myoepithelial cells of the breast or mesothelia [5]. Whereas E-cadherin
acts as a tumour suppressor in most epithelial tissues, P-cadherin de novo expression or
upregulation has been linked to mammary cells’ proliferation and migration in mice [6],
tumour-promotion in gastric [7,8] and breast cancer [9,10], and worse prognosis in breast
cancer [11–13].

Aberrant cadherin isoform switching occurs in tumours with implications for patients’
survival [14,15]. E-cadherin to N-cadherin switch is a mark of epithelial to mesenchymal
transition, in which differentiated epithelial cells, expressing E-cadherin, transition to
dedifferentiated mesenchymal-like cells, expressing N-cadherin, and are prone to invade
and metastasize [16]. Evidence of E-cadherin to P-cadherin switching has been observed in
both gastric [17] and breast cancer, with implications for survival in the latter [11].

Mechanisms for E-cadherin to P-cadherin switching have been suggested, mainly
through MiR-34a/WNT1 cascade [18], but fail to explain all observed switching phenotypes.
As CDH1 and CDH3 are juxtaposed genes, derived from gene duplication, and both belong
to the same topological-associating domain (TAD) [19], their expression is most likely
co-regulated and dependent on the tissue-specific 3D chromatin architecture. The 3D
chromatin architecture tightly regulates gene expression in time and space through physical
interactions involving promoters and regulatory elements located in non-coding regions in
their vicinity [20]. These regulatory networks are generally tissue-specific [21], and their
impairment may interfere with the normal 3D chromatin architecture, leading to genes’
misexpression patterns, causing or aggravating disease [22,23].

Herein, we aimed to characterize a potential 3D chromatin architecture re-wiring
process, occurring at the CDH3–CDH1 loci, that may contribute to E-cadherin to P-cadherin
switch in gastric cancer.

2. Materials and Methods
2.1. Samples

Gastric cancers from 43 patients were selected for the study, displaying equivalent
male to female ratio, range of age at diagnosis, distribution of tumour stage, and histological
type. Clinicopathological features were collected from clinical records. The present project
was approved by the Ethical Committee of Centro Hospitalar Universitário de São João on
16 March 2017, with internal reference CES072017.

2.2. RNA Extraction

Tumour areas with at least 75% tumour cells were selected for RNA extraction using
MagMax FFPE DNA/RNA Ultra Kit (Applied Biosystems, Life technologies, Carlsbad, CA,
USA), according to the manufacturer’s instructions. Briefly, sections of paraffin-embedded
tumour samples were de-paraffinized and protease K-digested. RNA was bonded to
magnetic beads, pelleted against a magnetic stand, and the supernatant containing RNA
washed and eluted. Concentrations were determined using Qubit® 2.0 Fluorometer (In-
vitrogen, Life Technologies Europe BV, Porto, Portugal) with RNA high sensitivity assay,
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and integrity was assessed with a 2100 Bioanalyzer Instrument (Agilent Technologies,
Instruments Soquimica, Lisboa, Portugal).

2.3. RNA-Seq and Whole Transcriptome Sequencing Bioinformatics Analysis

RNA was sequenced with Ion AmpliSeq™ Transcriptome Human Gene Expression
Panel kit in an Ion Chef™ 550 NGS instrument. We obtained sequencing reads aligned to
the GRCh37 human genome using TMAP [24] and annotated with USCS GRCh37. Only
canonical transcripts were selected. CDH1 and CDH3 mRNA expression was considered
positive for a threshold of 10 TPM or higher. Processed total RNA-seq from normal stomach
tissue samples ENCSR853WOM, ENCSR471RUK, and ENCSR000AFI was collected from
ENCODE [25–27].

2.4. Cell Lines and Culture

MKN74 human cell line was acquired from the JCRB Cell Bank, cultured in RPMI
medium (GIBCO, Fisher Scientific, Porto Salvo, Portugal) supplemented with 10% fetal
bovine serum (GIBCO, Fisher Scientific, Porto Salvo, Portugal) and maintained at 37 ◦C
and 5% CO2 in a high-humidity atmosphere. STR analysis was used to confirm cell
identification. Cells were free from mycoplasma contamination.

2.5. Generation of CRISPR-Cas9 E-Cadherin Deletion

Single guided RNAs (sgRNAs) were designed to target the CDH1 exon 2 and impair
E-cadherin function, resourced using the Zhang Lab tool, currently available at Benchling
online platform. Individual sgRNAs (Sigma-Aldrich, Merck Life Science, Darmstadt,
Germany) (Supplementary Table S1) were cloned into pSpCas9(BB)-2A-Puro (PX459) V2.0
plasmid (Addgene 62988), in BbsI restriction site (New England Biolabs), according to the
method of Ran and colleagues [28]. Each sgRNA-plasmid was transformed into stbl3 cells
(Invitrogen), and colonies were screened by PCR and Sanger sequenced (Supplementary
Table S1). sgRNAs were transfected in MKN74 cell line. Briefly, cells were seeded in 12-well
plates and grown for 24 h, and pairs of plasmids were transfected with lipofectamine 3000
(Invitrogen), according to the manufacturer’s instructions. Puromycin (Merck, Merck Life
Science, Darmstadt, Germany) treatment started at 48 h and was renewed every 72 h, until
non-transfected cells were dead.

2.6. Genotyping of Edited Clones

gDNA was extracted using NZY Tissue gDNA Isolation kit (NZYTech, Lisboa, Portu-
gal) according to the manufacturer’s protocol. gDNA was amplified with multiplex PCR kit
(Qiagen, Germantown, MD, USA) and primers flanking the edition sites (Supplementary
Table S1, Sigma-Aldrich). Edition was confirmed by Sanger, sequenced using BigDye
Terminator v.3.1 cycle sequencing kit (Thermo Fisher Scientific, Waltham, MA, USA, EUA)
on an ABI-3130 Genetic Analyzer (Applied Biosystems Europe B.V., Porto, Portugal).

2.7. mRNA and Protein Expression Analysis

CDH1/3 mRNA expression was assessed by qPCR in triplicate. Briefly, RNA was
extracted using mirVana RNA Isolation Kit (Invitrogen), according to manufacturer’s pro-
tocol. cDNA was synthesized using 1 µg of template RNA, and SuperScriptII reverse
transcriptase (Invitrogen) was used to synthesize cDNA, according to the manufacturer’s
instructions. CDH1 mRNA expression was analysed by qPCR with KAPA PROBE FAST
qPCR Master Mix (2X) Kit (Sigma-Aldrich) and probes for CDH1 (Hs.PT.58.3324071, IDT),
CDH3 (Hs.PT.51.5028751, IDT), and 18S (custom assay, IDT) as endogenous control. Re-
actions were sequenced on a 7500 Real-Time PCR System (Applied Biosystems). Relative
expression was normalized for the endogenous 18S control and quantified using the 2−∆∆Ct

method [29].
E- and P-cadherin expression was assessed by flow cytometry in triplicate. Cells

were blocked for 30 min with 3% bovine serum albumin–phosphatase buffer saline (BSA,
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NZYTech) and incubated with primary mouse antibodies HECD-1 or P-cadherin (1:100
dilution; 1 h at 4 ◦C; Invitrogen), followed by secondary anti-mouse Alexa Fluor 647
antibody (1:500; 45 min at 4 ◦C; Invitrogen). FACS ARIA (BD Biosciences, Franklin Lakes,
NJ, USA) was used to measure mean fluorescence, and Flow Jo version 10 software was
used to analyse the data.

2.8. Statistical Analysis

GraphPad Prism version 7.00 software (GraphPad Software Inc, San Diego, CA, USA)
was used to perform statistical analysis. Student’s t-test was used for comparison anal-
ysis, assuming equal variance between clones and wild-type samples. Differences were
considered significant for p-value <0.05.

2.9. Immunofluorescence

Cells were fixed for 20 min in 4% paraformaldehyde (Merck Life Science, Darmstadt,
Germany) and blocked with 5% BSA (NZYTech) for 30 min. Cells were incubated with
primary mouse antibody anti-E-cadherin (24E10) or anti-β-catenin (1:50; ON; 4 ◦C, Cell
Signaling Technology, Danvers, MA, EUA) and primary rabbit monoclonal antibody anti-
P-cadherin (#2130; 1:50; ON; 4 ◦C, Cell Signaling Technology), followed by secondary
antibodies Alexa Fluor 488 Donkey Anti-Mouse (1:500; 60 min; Life Technologies) or Alexa
Fluor 594 anti-rabbit (1:500, 60 min; Life Technologies). Cell nuclei were stained with DAPI
(1 µg/mL in PBS; 5 min incubation; Sigma, Merck Life Science, Darmstadt, Germany). All
coverslips were mounted using Vectashield mounting media (Vector Laboratories, Newark,
CA, USA) and cells were analysed by fluorescence microscopy (Imager.Z1, AxioCam
fluorescence microscope or Eclipse TE-2000, both from Zeiss, Oberkochen, Germany) using
AxioVision software (Rockville, White Plains, NY, USA).

2.10. Protein Extraction

Cells were lysed with lysis buffer containing 1% (v/v) Triton X-100 and 1% (v/v)
IGEPAL in PBS, supplemented with phosphatase (Sigma-Aldrich) and protease inhibitor
cocktails (Roche, Mannheim, Germany) at 4 ◦C. Modified Bradford Assay (Bio-Rad, Her-
cules, CA, USA) was used to quantify total protein content of the samples.

2.11. Proteomics Sample Processing

Proteomics was performed according to solid-phase-enhanced sample-preparation
(SP3) protocol [30]. Briefly, proteins were solubilized for 10 min with 100 mM Tris pH
8.5, 1% sodium deoxycholate, 10 mM tris(2-carboxyethyl) phosphine (TCEP), and 40 mM
chloroacetamide at 95 ◦C at 1000 rpm. Proteins were digested with Trypsin/LysC (2 µg;
Thermo Fisher Scientific, Waltham, MA, USA, EUA) overnight at 37 ◦C and 1000 rpm.
Peptides were cleaned up and quantified.

2.12. Protein Identification and Quantification, and Enrichment GO Terms Analysis

Proteome Discoverer 2.1 software was used for identification (UniProt/SwissProt
human database using Mascot (Version 2.5.1, Matrix Sciences)) and/or quantification of
proteins. Carbamidomethylation of cysteines was set as fixed modification and methionine
oxidation as variable modification, with trypsin as selected enzyme. High confidence
master proteins with at least two unique peptides and without contaminants were consid-
ered. Differentially expressed proteins were selected considering adjusted p-value ≤0.05,
abundance ratio ≤0.67 (downregulated) or ≥1.5 (upregulated), and concordance between
replicates. ClusterProfiler (v.4.4.4) R package was used for enrichment GO terms analysis
(q-value < 0.05). Statistics were performed using R (v.4.2.0).

2.13. ATAC-Seq

ATAC-seq data from normal stomach tissue were collected from phase 3 ENCODE
project [31]. ATAC-seq libraries were generated from MKN74 cell line and CDH1 deletion
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clone, as described previously [32]. A total of 5 × 104 cells were lysed and chromatin was
tagmented using Tn5 transposase and purified with MiniElute PCR purification kit (Qia-
gen), following the manufacturer’s protocol. The appropriate number of PCR cycles was
determined using SYBR Green qPCR. Transposed DNA fragments were amplified by PCR
and purified using QIAquick PCR purification kit (Qiagen), following the manufacturer’s
protocol. Quality control of ATAC-seq libraries was accessed by tapestation, and samples
were sequenced in Illumina HiSeqX technology according to standard protocols. ATAC-seq
peaks were mapped resourcing to an ENCODE-DCC ATAC-seq bioinformatics pipeline
with default parameters for adaptors trimming (cutadapt: -e 0.1 -m 5), alignment (bowtie),
quality filtering for mapq < 30, removal of duplicates and mitochondrial reads (piccard),
peak calling (macs2), and replicate statistical analysis (idr, p-value < 0.05).

2.14. C-Seq

Fresh gastric tissue from bariatric surgeries was collected and washed in HBSS 1x
(GIBCO, Fisher Scientific, Porto Salvo, Portugal). Gastric mucosa cells were scraped and
enzymatically dissociated with collagenase type I (Merck Life Science, Darmstadt, Ger-
many), dispase (Merck), trypsin inhibitor (Sigma-Aldrish, Merck Life Science, Darmstadt,
Germany), BSA (Nzytech, Lisboa, Portugal), dithiothreitol (Invitrogen Life Technologies
Europe BV, Porto, Portugal), and HBSS 1× (GIBCO, Fisher Scientific, Porto Salvo, Portugal)
at 37 ◦C and 150 rpm for at least 1 h. From these, 4C-seq libraries were generated, as
previously described [33,34], containing 1 × 107 cells, cross-linked in 2% paraformaldehyde
and lysed. Nuclei suspensions were digested with DnpII (New England Biolabs, EVRY
cedex, Évry-Courcouronnes, France) as primary and Csp6I (New England Biolabs) as
secondary restriction enzymes and re-circularized with T4 DNA Ligase (Thermo Fisher
Scientific). Then, 4C-seq libraries were purified using Amicon Ultra-15 10 kDa (MWCO)
(Millipore) and PCR-amplified with 3.2 µg per reaction (Supplementary Table S2). The
CDH1 viewpoint was designed to target chr16: 68737018-68737215, hg38. Samples were
paired-end sequenced on Illumina HiSeqX technology (150 bp reads) according to standard
protocols. CDH1 interactions on a genome scale were mapped from sequenced 4C libraries,
using a bioinformatics pipeline based on Pipe4C [34] and PeakC [35] with window size
2, alpha fdr 0.1, and minimal distance 500. Collection of bariatric surgeries’ material was
approved by the Ethical Committee of Centro Hospitalar Universitário de São João on 8
May 2020, with internal reference CE 305-19.

3. Results
3.1. CDH1 to CDH3 mRNA Expression Switch Is a Frequent Event in Gastric Cancer

To understand the frequency of and explore potential mechanisms which underly
E- to P-cadherin switching in gastric cancer, we started by analysing RNA-seq data from
43 gastric cancers to evaluate CDH1 and CDH3 mRNA expression. We found that CDH1
downregulation and CDH3 upregulation are the most frequent combination of events in
this cohort, occurring in 42% of all cases, followed by expression of both cadherins (33%)
(Figure 1A). Downregulation of both cadherins occurred in 19% of tumours, while only 7%
of all tumours expressed CDH1 and lacked CDH3 expression (Figure 1A). In this cohort,
75% of the tumours expressed CDH3 (Figure 1A, upper panels), a feature that is acquired
in tumours, as normal stomach epithelial cells do not express CDH3 (Figure 1B). In 42% of
all cases, there was a CDH1 to CDH3 expression switch (Figure 1A, upper left panel).
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and CDH3, orange dots represent gastric cancers with low CDH1 and CDH3 expression, green dots 
represent gastric cancers with high CDH1 and low CDH3 expression. Dashed lines represent 10 TPM, 
the threshold for low or high expression. Data shown in transcripts per million (TPM). (B) CDH1 
and CDH3 mRNA expression in stomach normal tissue from ENCODE [25–27]. Data shown in 
transcripts per million (TPM) (*** p value ≤ 0.001). 
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CDH3 upregulation. 

We used sgRNAs flanking CDH1 exon 2 (Supplementary Table S1), and successful 
removal of exon 2 was confirmed by Sanger sequencing in the MKN74 cell line 
(Supplementary Table S1). This clone carried a homozygous deletion encompassing the 
CDH1 exon 2 (Figure 2A) and presented complete loss of both CDH1 mRNA and E-
cadherin protein expression (Figure 2B). As a consequence of this deletion, both CDH3 
mRNA and P-cadherin protein expression increased by 60% (p-value = 0.05 and p-value = 
0.037, respectively) (Figure 2C). The immunofluorescence data highlight the P-cadherin 
expression increase at the plasma membrane upon E-cadherin expression loss, likely 
rescuing adherens junctions (Figure 2D). Indeed, P-cadherin co-localized with adhesion 
partner β-catenin at the cell membrane in the CDH1 deletion clone, while the parental cell 
line displayed lower (and heterogeneous) P-cadherin, as was the case in the cytoplasm 
(Figure 2D). Altogether, these results support that depletion of E-cadherin, due to gene 
deletions, can trigger E- to P-cadherin switch. 

Figure 1. CDH1 and CDH3 mRNA expression in gastric tissues. (A) Distribution of CDH1 and CDH3
mRNA expression in gastric cancer tumours. Blue dots represent gastric cancers with low CDH1
and high CDH3 expression, red dots represent gastric cancers with high expression for both CDH1
and CDH3, orange dots represent gastric cancers with low CDH1 and CDH3 expression, green dots
represent gastric cancers with high CDH1 and low CDH3 expression. Dashed lines represent 10 TPM,
the threshold for low or high expression. Data shown in transcripts per million (TPM). (B) CDH1 and
CDH3 mRNA expression in stomach normal tissue from ENCODE [25–27]. Data shown in transcripts
per million (TPM) (*** p value ≤ 0.001).

3.2. E-Cadherin Loss of Function Triggers E-Cadherin to P-Cadherin Switch in Gastric Cancer

Given the abundance of gastric cancers bearing simultaneous loss of CDH1 expres-
sion and CDH3 upregulation, we tested whether depleting CDH1 would trigger CDH3
upregulation.

We used sgRNAs flanking CDH1 exon 2 (Supplementary Table S1), and successful
removal of exon 2 was confirmed by Sanger sequencing in the MKN74 cell line (Supple-
mentary Table S1). This clone carried a homozygous deletion encompassing the CDH1
exon 2 (Figure 2A) and presented complete loss of both CDH1 mRNA and E-cadherin
protein expression (Figure 2B). As a consequence of this deletion, both CDH3 mRNA and
P-cadherin protein expression increased by 60% (p-value = 0.05 and p-value = 0.037, re-
spectively) (Figure 2C). The immunofluorescence data highlight the P-cadherin expression
increase at the plasma membrane upon E-cadherin expression loss, likely rescuing adherens
junctions (Figure 2D). Indeed, P-cadherin co-localized with adhesion partner β-catenin at
the cell membrane in the CDH1 deletion clone, while the parental cell line displayed lower
(and heterogeneous) P-cadherin, as was the case in the cytoplasm (Figure 2D). Altogether,
these results support that depletion of E-cadherin, due to gene deletions, can trigger E- to
P-cadherin switch.
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DAPI (blue), and white scale bars represent a distance of 20 µm. (E) Volcano plot illustrating 
differentially expressed proteins in CDH1 deletion vs. parental cells. (F) Enrichment analysis of 
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downregulated proteins. 
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To further dissect the impact of E-cadherin loss, we used proteomics to evaluate the 
differential proteome between the parental cell line and the CDH1 deletion clone. A total 
of 4579 proteins were identified, from which 41 were downregulated and 39 were 
upregulated in the CDH1 deletion clone (Supplementary Table S3). The E- to P-cadherin 
switch was confirmed in the CDH1 deletion clone, with downregulation of the former 
(0.37-fold, p-value = 0.0002) and upregulation of the latter (1.99-fold, p-value = 0.018) 

Figure 2. Characterization of E- to P-cadherin switch. (A) CRISPR-Cas9 design strategy. (B) Char-
acterization of CDH1 deletion in CDH1/E-cadherin mRNA and protein expression. Values rep-
resented as mean ± SEM. Protein expression represented as median fluorescence intensity (MFI)
(**** p value ≤ 0.0001). (C) Characterization of CDH1 deletion in CDH3/P-cadherin mRNA and
protein expression. Values represented as mean ± SEM. Protein expression represented as median
fluorescence intensity (MFI) (* p value ≤ 0.05). (D) Immunofluorescence of parental cells (top) and
CDH1 deletion cells (down) for P-cadherin, β-catenin, and E-cadherin. Nuclei were stained with
DAPI (blue), and white scale bars represent a distance of 20 µm. (E) Volcano plot illustrating differen-
tially expressed proteins in CDH1 deletion vs. parental cells. (F) Enrichment analysis of biological
processes, molecular function, and cellular components in upregulated and downregulated proteins.

3.3. E-Cadherin Expression Loss Triggers Downregulation of Adhesion Complex Partners and
Adhesion-Related Pathways

To further dissect the impact of E-cadherin loss, we used proteomics to evaluate
the differential proteome between the parental cell line and the CDH1 deletion clone. A
total of 4579 proteins were identified, from which 41 were downregulated and 39 were
upregulated in the CDH1 deletion clone (Supplementary Table S3). The E- to P-cadherin
switch was confirmed in the CDH1 deletion clone, with downregulation of the former
(0.37-fold, p-value = 0.0002) and upregulation of the latter (1.99-fold, p-value = 0.018)
(Figure 2D). In addition to E- and P-cadherin expression, other adhesion complex partners
became impaired in the CDH1 deletion clone, namely, CTNNA1 (αE-catenin) and CTNNB1
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(β-catenin), while others remain unchanged, namely, CTNND1 (p120) (Figure 2D). Gene
ontology analysis revealed several adhesion-associated pathways downregulated upon
CDH1 deletion (Figure 2E, Supplementary Table S4), encompassing ‘adherens junction’,
‘cadherin binding’, ‘focal adhesion assembly’, and catenin- and actin-associated pathways
(Figure 2E, Supplementary Table S4). In contrast, the ‘establishment and maintenance
of cell polarity’ pathway became upregulated, likely revealing the rescue by P-cadherin.
Events associated with migration, such as ‘cell projection membrane’ and ‘wound healing’,
were found upregulated in cells with E- to P-cadherin switch (Figure 2E, Supplementary
Table S4). Downregulation of immune-associated pathways ‘macrophage chemotaxis’ and
‘regulation of leucocyte migration’ and upregulation of oncogenic pathway ‘Ras protein
signal transduction’ were also found upon CDH1 deletion (Figure 2E, Supplementary
Table S4).

3.4. D Chromatin Architecture Re-Wiring at the CDH3–CDH1 Loci Contributes to E-Cadherin to
P-Cadherin Switch in Gastric Cancer

In an attempt to identify the mechanism triggering the E- to P-cadherin switch, upon
CDH1 depletion, we analysed regulatory elements within the CDH3–CDH1 loci that may
control expression of cadherins in the stomach. We mined the Ensembl database and
found an eQTL located within the CDH3 intron 2 (chr16: 68661867-68662578 and chr16:
68663306-68670017, hg38) (Figure 3A). Normal epithelial cells from bariatric surgeries,
MKN74 parental cells as well as CDH1 deletion cells, were profiled for CDH1-promoter
interactions with the eQTL using 4C-seq, and for accessibility of chromatin using ATAC-seq.
Normal stomach accessible chromatin was also collected from the ENCODE project and
analysed [31]. In normal stomach, which expresses CDH1 but not CDH3, the chromatin
was not accessible at the CDH3 promoter nor at the CDH3-eQTL, but was accessible at the
CDH1 promoter (Figure 3A, ATAC-seq normal stomach). Neither the CDH3 promoter nor
the CDH3–eQTL interacted with the CDH1 promoter (Figure 3A, 4C-seq normal stomach).
In contrast, upon CDH1 deletion, availability of the chromatin increased around the eQTL
sequence and was maintained as available at the CDH1 and CDH3 promoters (Figure 3A,
ATAC-seq parental vs. ATAC-seq CDH1 deletion). Additionally, new interactions were
established between the CDH1 promoter and the CDH3–eQTL region (Figure 3A, 4C-seq
parental vs. 4C-seq CDH1 deletion). These chromatin architecture changes seem to indicate
that, upon CDH1/E-cadherin depletion, the CDH1 promoter interacts with the CDH3 eQTL,
potentially leading to CDH3/P-cadherin expression increase (Figure 2B–D). If this is the
case, deleting the CDH3–eQTL in a cell line expressing both CDH3 and CDH1 could provide
information on the expression regulatory role of the CDH3-eQTL. To address this, we
CRISPR-Cas9 deleted the eQTL in parental MKN74 cells. This led to a 50% decrease in both
CDH3 and CDH1 mRNA expression (p-value = 0.0196 and p-value = 0.0084, respectively),
and a 30% decrease in P-cadherin and E-cadherin protein expression (p-value = 0.035 and
p-value = 0.0486, respectively) as compared to parental MKN74 cells (Figure 3B). These
results pinpoint CDH3–eQTL as a potential enhancer of both CDH3 and CDH1 in this cell
line. Altogether, these data provide evidence that loss of CDH1/E-cadherin expression
alters the chromatin conformation at the CDH3 locus, allowing interaction of the CDH1
promoter with the CDH3–eQTL, which seems to potentiate CDH3/P-cadherin expression.
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4. Discussion

Herein, we aimed to characterize a potential 3D chromatin architecture re-wiring
process, occurring at the CDH3–CDH1 loci, that may explain the CDH1/E-cadherin to
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CDH3/P-cadherin switch observed in gastric cancer. First, we demonstrated that 75% of
the gastric cancers analysed overexpressed CDH3. Additionally, we observed that, in 42%
of all cases, CDH3 overexpression occurred concomitantly with CDH1 downregulation,
representing an E- to P-cadherin switch. We also found that an eQTL within the CDH3
intron 2, acting as a regulatory element, was able to modulate both CDH1 and CDH3
expression, and that it interacted with the CDH1 promoter upon CDH1 loss of expression.
To the best of our knowledge, this body of results highlights a novel mechanism which
triggers E- to P-cadherin switch in gastric cancer.

Our data suggest that E- to P-cadherin switch is a common event in gastric cancers.
The impact of P-cadherin overexpression in cancer is still controversial, as this molecule
seems to act as tumour-promoting and a marker of a bad prognosis in several cancer
types—namely, in breast, glioblastoma, and gastric cancer [36]—but may also act as a
marker of a good prognosis—namely, in colon cancer [37]. Breast cancer cells presenting
E- to P-cadherin switch, and those expressing both cadherins, reveal increased migration
capacity in vitro [38], while breast cancer epithelial cells expressing E-cadherin and lacking
P-cadherin expression, resembling the normal breast, and cells lacking both cadherins
display reduced migration [38].

Herein, we created a model of E- to P-cadherin switch by using CRISPR-Cas9 editing to
deplete CDH1. This model presented reduced expression of adhesion complex partners, but
maintained β-catenin expression at adherens junctions, which co-localized with P-cadherin
at the cell membrane. This likely represents an adherens junctions rescue by P-cadherin
in E-cadherin-depleted cells, as previously reported [39]. Evidence for E- to P-cadherin
switch has been linked to invasive lobular breast cancer with tubular elements, which show
reduced E-cadherin expression, normal β-catenin expression, and P-cadherin upregulation,
highlighting rescue of adherens junctions in breast tubular elements when E-cadherin is
lost [39].

Our data on differential protein expression and gene ontology analysis in the CDH1
deletion clone, in comparison to an isogenic parental CDH1 cell line, highlighted downreg-
ulation of adhesion-, catenin- and actin-related pathways, as well as upregulation of cell
polarity, all associated with E-cadherin main functions. Despite the fact that E-cadherin defi-
ciency weakens cell-adhesion, cell polarity regulation further supports P-cadherin rescue of
adherens junctions (Christgen et al. 2020). Our gene ontology data also support increased
migration potential of cells with E- to P-cadherin switch, namely, through activation of
the ‘wound healing’ pathway, also described for breast cancer cells [38]. Our findings also
suggest that cells with E- to P-cadherin switch may have increased proliferation through
the activation of Ras oncogenic signalling pathways. As in many published reports, the
abovementioned findings support that E- to P-cadherin switch is associated with more
aggressive tumour phenotypes.

In the present study, we used the abovementioned cell model to identify the mecha-
nism responsible for the E- to P-cadherin switch. We raised the hypothesis that regulatory
elements in the CDH3/CDH1 loci could play a role in the observed E- to P-cadherin expres-
sion switch, as gene expression is tightly regulated through the physical proximity enabled
by the 3D-chromatin architecture (Andrey and Mundlos 2017) [20]. We demonstrated
that, upon CDH1 depletion triggered by a gene deletion, the chromatin re-shuffles at the
CDH3/CDH1 loci, and its promoter becomes physically bound to an eQTL overlapping
accessible chromatin located in CDH3 intron 2; this associates with increased CDH3/P-
cadherin expression. The absence of interactions between the CDH1 promoter and this
eQTL in normal stomach epithelial tissue may explain why CDH3 is not expressed in
this particular tissue. While these data provide a rationale for E- to P-cadherin switch
in gastric cancer, they do not inform whether the eQTL promotes CDH3 expression. To
address this question, we deleted the eQTL in a tumour cell line expressing wild-type E-
and P-cadherins, preventing it from interacting with the CDH1 promoter. This resulted in
downregulation of both P- and E-cadherin expression and demonstrated that the CDH3–
eQTL controlled P-cadherin expression. Taken together, these data provide evidence that
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loss of CDH1/E-cadherin expression alters the chromatin conformation at the CDH3 lo-
cus, allowing interaction of the CDH1 promoter with the CDH3–eQTL, which seems to
potentiate CDH3/P-cadherin expression. Our findings also suggest that the CDH3–eQTL
acts as an enhancer regulating both P- and E-cadherin protein expression, thus regulating
P-cadherin expression in the switch mechanism. Similar findings have been observed for
the ZRS enhancer located within the Lmbr1 gene, also controlling Shh gene expression [40].

Single-cell sorting of CRISPR-Cas9 clones herein described only yielded one homozy-
gous clone for each set of sgRNAs harbouring the intended deletions, which we acknowl-
edge as a study limitation.

5. Conclusions

Overall, this study provides insights into a noncoding regulatory element that controls
E- and P-cadherin expression and triggers E- to P-cadherin switch in the presence of a
CDH1 depletion, through a re-shuffle of the CDH1/CDH3 loci.
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