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Simple Summary: The Mediterranean marine forests of canopy brown algae are important habitats
that have been in decline in recent decades. This study examines the distribution and status of
macroalgal communities in relation to the populations of the main herbivores (fish and sea urchins)
in the eastern Mediterranean. In the warmer South Aegean and Levantine Sea, invasive herbivorous
fish seem to drive canopy algae towards shallower waters, while native sea urchins have become
rare, indicating population collapses. In the North Aegean, macroalgal forests were observed in
intermediate depths, and native sea urchins still thrive and appear to exert grazing pressure on
macroalgal forests in shallower waters. Our results provide useful information for policymakers and
help guide future research and conservation efforts.

Abstract: Canopy-forming macroalgae, such as Cystoseira sensu lato, increase the three-dimensional
complexity and spatial heterogeneity of rocky reefs, enhancing biodiversity and productivity in
coastal areas. Extensive loss of canopy algae has been recorded in recent decades throughout the
Mediterranean Sea due to various anthropogenic pressures. In this study, we assessed the biomass of
fish assemblages, sea urchin density, and the vertical distribution of macroalgal communities in the
Aegean and Levantine Seas. The herbivore fish biomass was significantly higher in the South Aegean
and Levantine compared to the North Aegean. Very low sea urchin densities suggest local collapses
in the South Aegean and the Levantine. In most sites in the South Aegean and the Levantine, the
ecological status of macroalgal communities was low or very low at depths deeper than 2 m, with
limited or no canopy algae. In many sites, canopy algae were restricted to a very narrow, shallow zone,
where grazing pressure may be limited due to harsh hydrodynamic conditions. Using Generalized
Linear Mixed Models, we demonstrated that the presence of canopy algae is negatively correlated
with the biomass of the invasive Siganus spp. and sea urchins. The loss of Cystoseira s.l. forests is
alarming, and urgent conservation actions are needed.

Keywords: canopy-forming macroalgae; marine forests; Cystoseira sensu lato; herbivory; tropicalization;
invasive species

1. Introduction

Macroalgal forests are important and prominent habitats of the Mediterranean Sea’s
rocky reef ecosystems. Such forests are mostly dominated by bushy brown algae and can
cover a substantial portion of the rocky intertidal and subtidal zones in many regions of
the Mediterranean basin [1–3]. These mostly perennial macroalgae serve as ecosystem en-
gineers, creating structurally complex communities that provide shelter and food, making
them permanent homes and nursery habitats for numerous organisms. This enhances the
biodiversity and productivity in coastal areas [4–6]. Macroalgal forests are fundamental to
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coastal ecosystem functioning, contributing to primary productivity, and supporting vari-
ous provisioning, regulating (a potential for Blue Carbon) and cultural ecosystem services
including food provision, ocean nourishment, climate regulation, life cycle maintenance,
recreation and tourism [1,7–9] retaining high natural capital [10].

In Mediterranean rocky reefs, the most prominent canopy-forming perennial macroal-
gae are Fucales species of the genus Cystoseira sensu lato, which includes the genera
Cystoseira, Gongolaria and Ericaria [11], or of the genus Sargassum. Cystoseira s.l. is an
important indicator of ecological status in the context of the European Water Framework
Directive (WFD 2000/60/EC) [12]. Moreover, Cystoseira s.l. is listed as strictly protected in
Annex I of the Bern Convention (Council of Europe, 1979), and some species are listed in
Annex II of the Barcelona Convention. Photophilic communities with canopy-forming algae
in Mediterranean infralittoral and upper circalittoral rocky reefs, dominated by Cystoseira
s.l., have been assessed as an endangered habitat [13].

Alarming documentation of declining Cystoseira s.l. forests has been reported in the
Mediterranean Sea over the past few decades [14–20]. These declines result from both direct
anthropogenic pressures, such as water quality decrease and habitat destruction [21–25],
and indirect anthropogenic pressures, such as climate change through global warming and
ocean acidification [26,27] and overgrazing by herbivores (mainly in the southeast basin
due to biological invasions of rabbitfish or trophic cascades caused by overfishing that
lead to an increase in sea urchin populations) [28–31]. It is essential to prioritize effective
management actions to halt the loss of Mediterranean marine forests and conserve these
keystone rocky reef habitats. Recently, canopy restoration methods have been developed
and proposed as a management tool for the conservation of Cystoseira s.l. forests in the
Mediterranean Sea [32–37].

Herbivory is a crucial factor that affects the structure of marine benthic primary pro-
ducers [38]. In the Mediterranean, the sea urchins Paracentrotus lividus and Arbacia lixula
have been identified as the primary invertebrate grazers that regulate macroalgal vege-
tation [39–45]. The indigenous herbivorous fish Sarpa salpa can also significantly deplete
canopy-forming fucoid macroalgae [46,47], potentially affecting restoration efforts [48].
Furthermore, omnivorous fish such as Diplodus vulgaris may also act as grazers when
attempting to feed on the resident macrofauna of macroalgal communities [49]. In the
southeastern Mediterranean basin, the tropical invasive rabbitfishes Siganus luridus and
S. rivulatus have become a significant part of the fish community [19,30,50,51], contributing
to the formation of a novel eastern Mediterranean marine food web [52]. Their grazing
impact on macroalgal communities has been detrimental, leading to the formation and
maintenance of extensive barrens or depauperate turf-dominated communities [30,31,53,54].
At the easternmost edge of the Mediterranean, populations of the sea urchin P. lividus are
collapsing due to elevated water temperatures caused by climate change [31,55]. Acting
in synergy with ocean warming, the invasive Siganus are introducing further adverse
effects on P. lividus [31] and S. salpa [56] through competition for shared resources. Due
to their negative effects on Mediterranean ecosystems, both Siganus species have been
assessed as among the worst invasive species to have been introduced to the Mediterranean
basin [57,58]. Canopy-forming species distribution is also determined by abiotic parameters
including the level of wave exposure [46,59,60], temperature [60,61], salinity [60] and depth.
Depth, in particular, is strongly correlated with solar radiation, which affects the lower
distribution limit of the forests [60,62]. Light penetration across the water column increases
towards the southeastern Mediterranean [63]. Nevertheless, most observations of deep
macroalgal forests, reaching depths of up to 40–50 m, have been reported primarily in the
western Mediterranean [64–66]. Occasional records of Fucales reaching similar depths have
been reported from the eastern Mediterranean [67]. Nonetheless, our knowledge of the
distribution of deep macroalgal forests, particularly in the eastern Mediterranean, remains
largely unknown.

In this study, we examined the ecological status of macroalgal communities and sea
urchin density across various depth zones in the Levantine Sea (Cyprus and Israel) and
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the Aegean Sea (Lesvos, Skyros and Crete Islands). We also investigated the differences
in fish assemblage biomass between sites as a potential corollary. All selected sites were
dominated by rocky reefs and had at least some coverage of Cystoseira s.l. The sites were
chosen along a gradient of climate change and biological invasions, ranging from the highly
impacted Levantine Sea to the less impacted northern Aegean. We hypothesized that in the
northern Aegean sites, which are cooler and less invaded, alien dominance will be lower
and the status of the native grazers and algal forests will be better.

2. Materials and Methods
2.1. Study Area

The study area included the Aegean Sea (Greece) and the Levantine Sea (Cyprus
and Israel) in the eastern Mediterranean Sea. The Mediterranean Sea’s biotic and abiotic
compartments are geographically heterogeneous. It is characterized as a semi-enclosed
concentration basin with high evaporation outfluxes, which dominate over freshwater
inflows from land and precipitation. Atlantic surface waters enter the basin through the
Gibraltar Strait and travel towards the eastern Mediterranean, where they become warmer
and more saline due to intense evaporation. These waters reach the eastern Mediterranean
where they sink and form the dense Levantine intermediate water, which travels back to
the western Mediterranean to exit the basin through the Strait of Gibraltar [68]. The western
and northern parts of the Mediterranean are characterized by colder waters with lower
salinities and higher productivity. In contrast, the eastern Mediterranean is characterized
by warmer, more saline, and more oligotrophic waters [69–71]. The tidal range in the
Mediterranean Sea typically does not exceed one meter [72], which restricts intertidal
habitats to relatively narrow zones. During winter, waves propagate towards the east and
southeast throughout the basin, while in the summer, waves mainly propagate southwards
from the Aegean and Levantine Seas [73].

In total, 17 sites were sampled across four different islands (Lesvos, Skyros, Crete,
Cyprus) and the Israel coastline (Figure 1). Sampling sites were distributed across a
temperature gradient (Table 1). Sampling at Crete and Skyros took place from late July to
early August 2020, the Cyprus sites were sampled in early October 2020, and the Lesvos
sites were sampled in November 2021 (except for L1, which was sampled in July 2020). The
Israeli coast sites were sampled in spring 2021 or 2022. The sampling design in Israel differs
from the other study sites as investigations were conducted by independent research teams,
which consolidated their data post hoc.

Table 1. Sea surface temperature (SST) and Secchi transparency depth (ZSD) data at each study site
for the time period between 2017 and 2022. The spatial resolution for SST data is ~1 × 1 km and
4 × 4 km for the ZSD data. The obtained values serve as an indication of the broader regime in
the region; they do not fully describe the study sites as they do not consider the coastal pecu-
liarities and land–sea interactions due to the size of the spatial resolution. Data were obtained
from EU Copernicus Marine Service Information (https://marine.copernicus.eu/ accessed on
16 May 2023) [74].

Site Average SST (◦C) Average Annual
Maximum SST (◦C)

Average Annual
Minimum SST (◦C) Average ZSD (m)

IS1 23.4 30.3 16.8 21.4
IS2 23.4 30.4 16.8 17.8
IS3 23.4 30.4 16.7 20.0

CY1 22.5 29.6 16.5 25.6
CY2 22.4 29.6 16.5 28.6
CY3 22.3 29.2 16.4 27.3

https://marine.copernicus.eu/
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Table 1. Cont.

Site Average SST (◦C) Average Annual
Maximum SST (◦C)

Average Annual
Minimum SST (◦C) Average ZSD (m)

CY4 22.0 28.4 16.6 26.9
CY5 22.5 29.2 16.5 28.2
CR1 20.8 27.2 15.1 25.7
CR2 20.9 26.9 15.3 27.6
CR3 21.2 27.4 15.7 27.3
S1 19.3 27.4 13.9 20.9
S2 19.4 27.3 14.0 22.8
S3 19.3 27.1 13.9 23.2
L1 19.5 25.7 14.9 22.3
L2 18.9 25.6 14.4 20.7
L3 18.9 25.4 14.5 22.4
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Figure 1. Sampling sites in the Aegean and the Levantine Sea, in the eastern Mediterranean. The
sampling sites are labeled based on the respective sampling island.

2.2. Ecological Status of Macroalgal Communities

At each sampling site, the ecological status of the macroalgal communities was evalu-
ated using the Ecosystem-Based Quality Index (reef-EBQI), developed by Thibaut et al. [75]
that utilizes a scoring system to assess the rocky reef environmental status based on various
ecological indicators, including the established macroalgal communities. The reef-EBQI
framework was applied in five different depth zones (8 or 6, 5, 2, 1, 0–0.5 m) in most
sampling sites. At depths of 8 (or 6 m if there were no reefs at 8 m), 5, 2 and 1 m, the
macroalgal community status was assessed using photo-quadrats (50 × 50 cm) placed
every 5 m along a 50 m transect line (sampling size: n = 10). A smaller photo-quadrat
(25 × 25 cm) was used every 5 m at the depth zone of 0–0.5 m to enable the diver to take
photo-samples under the effect of waves; by forming four osculated photo-samples of the
smaller quadrat, the sampling surface remained the same as in deeper sampling zones.
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Surveys in Israel were conducted at depths of 2 and 7 or 8 m using a total of 15 quadrats
(50 × 50 cm) per depth along a 30 m transect.

Each photo sample was categorized based on Thibaut et al.’s [75] scoring system
(Table 2). The median of all status scores at each depth zone was used to assess the status
score for that specific depth zone. The status score was determined by the dominant stratum
present and its coverage. Five ordinal categories (from 0 to 4) were defined (Table 2).

Table 2. Status scores of the macroalgal communities, adapted from Thibaut et al. [75]. Scores were
determined based on the coverage of arborescent perennial species (Cystoseira s.l. and Sargassum
spp.), shrubby and turf/encrusting alga.

Status 4 (Very
Good) 3 (Good) 2 (Moderate) 1 (Low) 0 (Very Low)

Cover Type
Arborescent

perennial
≥50%

Arborescent
perennial 5 to

50%

Shrubby
≥50%

Shrubby 5
to 50%

Turf
Encrusting

2.3. Sea Urchins Densities Estimations

Sea urchin density (individuals m−2) was estimated at each studied depth zone by
counting the sea urchins in ten 1 × 1 m quadrat frames along a 50 m transect line. The
recorded species were the native sea urchins P. lividus, A. lixula, Sphaerechinus granularis and
Centrostephanus longispinus, and the alien Diadema setosum. Sea urchins with test diameter
< 3 cm were not considered in this study because they are challenging to detect and thus
could result in high bias in density estimations [75]. In Israel, sea urchins were surveyed at
2 and 7 or 8 m depth, counting individuals at 50 × 50 cm quadrats (n = 15).

2.4. Fish Biomass Estimations

To estimate the fish biomass at each sampling site, a diver swam along a transect
line in the 5 m depth zone, covering six replicated strips of 25 × 5 m at a constant speed.
During the process, the diver recorded the encountered fish species and estimated the total
length of each individual [76]. To mitigate any potential observer bias in length estimations,
the observer underwent specialized training with depictions of fish silhouettes or objects
of different sizes [77]. Fish biomass (g wet mass m−2) was estimated using the length–
weight relationship from the available literature [78,79]. The fish were categorized into four
trophic groups: planktivores, piscivores, invertivores and herbivores, based on Thibaut
et al. [75]. The variability in fish biomass composition among sites was assessed using
non-metric multidimensional scaling based on Bray–Curtis dissimilarity. Additionally, a
cluster analysis was conducted to group the sites based on the Bray–Curtis dissimilarity.
Non-metric multidimensional scaling and cluster analysis was performed using PRIMER-E
v6 [80]. In Israel, fish were recorded in two 30 × 2 m transects: one at 2 m and the other at
a 7 or 8 m depth.

2.5. Modelling Canopy Algae Presence

To investigate how herbivorous fish, sea urchins, and depth may partly explain the
variability in the presence of perennial macroalgae, generalized linear mixed models
(GLMMs) were constructed using the “lme4” R package [81]. The models used a binomial
distribution and a logit link function [82]. The dependent variable (Canopy) was the presence
of perennial macroalgae with more than 5% coverage (scores ≥ 3), which was recorded as
a binary variable (Canopy = 1 if present, Canopy = 0 if absent). The independent variables
included the biomass of alien (AlienH) and native (NativeH) fish herbivores, sea urchin
density (Su) and depth (Depth). The site was considered a random variable, as samples
within sites were dependent. The full model was:

Prob(Canopyi = 1) = logit−1(β0 + β1 AlienHi + β2NativeHi + β3Depthi + β4Sui + asite
j )

asite
j ∼ N

(
0, σ2) f or j = 1, . . . , 17
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The probability of canopy presence for observation i depends on both fixed and
random effects, which are assumed to be normally distributed with zero mean and a
variance of σ2. We constructed sixteen candidate models using all possible combinations
of independent variables (Supplementary Table S1). The most parsimonious model was
selected based on the Akaike information criterion corrected for small samples (AICc).
We estimated the variance inflation factor (VIF), using the “car” R package [83], to check
for multicollinearity. No variable used had a VIF score greater than two, indicating low
collinearity [84]. Model validation was conducted using the “Diagnostics for HierArchical
Regression Models” (DHARMa) workflow, which involved inspecting scaled residuals
simulated from fitted models [85]. To investigate the variation explained by individual
independent variables, we calculated both the marginal R2 (variance explained by the fixed
effects) and the conditional R2 (variance explained by both fixed and random effects) using
the “partR2” package [86]. The 95% confidence intervals were obtained using parametric
bootstrapping (1000 iterations). The packages “ggplot2” [87], “sjPlot” [88] and “egg” [89]
were used for the visualization of the results. Analyses were carried out in R studio [90]. All
maps were generated using ArcGIS Pro 2.6.0 software (https://www.arcgis.com accessed
on 17 May 2023).

3. Results
3.1. Macroalgal Communities’ Ecological Status

The reef-EBQI status scores of the macroalgal community revealed differing perennial
vegetation bathymetric trends between the North Aegean sampling sites and the sampling
sites of the South Aegean and Levantine Seas (Figure 2 and Supplementary Figure S1). In
the North Aegean, most sampling sites (except L2) had good or very good status scores in at
least one depth zone, indicating the presence of Cystoseira s.l. forests. In the southern sites, in
Crete and Cyprus, high-status scores indicating high cover of Cystoseira s.l. were primarily
observed in the shallower zones of 0–0.5 m and 1 m depth. In Israel, the status scores
revealed an impoverished macroalgal community dominated by shrubby and turf algae,
characterized by absent or sparse perennial fucoid vegetation, except for the shallow water
in IS2 (the Shikmona coast in Haifa). The limited number of depth zones investigated in
the Israeli sites did not allow for clear elaboration of the vertical distribution of macroalgae.

3.2. Sea Urchin Density

The sea urchin density estimations revealed the collapse of sea urchin populations in
most of the southern sites of Crete, Cyprus and Israel (Figure 3). Sea urchins were absent or
exhibited very low densities in all but one southern sampling site (CR1 in Crete) (Figure 3).
In contrast, sea urchin populations in the North Aegean were abundant, with the highest
densities recorded in the 1 and 2 m depth zones. In the North Aegean, the mean sea urchin
density values and their 95% confidence intervals across the sites were 1.12 [0.70, 1.73], 6.13
[4.98, 7.37], 4.60 [3.60, 5.7], 0.85 [0.57, 1.20] and 1.00 [0.60, 1.58] individuals per m2 for the
0, 1, 2, 5 and 8 m depth zones, respectively (Figure 4). In most islands and depth zones,
A. lixula and P. lividus were the most abundant species. The non-native sea urchin D. setosum
was only recorded in the South Aegean and Levantine Sea.

https://www.arcgis.com
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and South AegeanCyprus sites (SAC) for different depth zones (bootstrapped results). The different
colors in stacked bars represent the different sea urchin species recorded. The sea urchin density in
Israel was zero; these records are not included in the mean values of the southern sites depicted here.

3.3. Fish Biomass

The fish biomass estimations indicated a disparity in herbivore fish biomass between
the southern sites of Crete, Cyprus and Israel against the northern sites of Lesvos and
Skyros (Figure 5). Specifically, herbivorous fish contributed more significantly to the
total fish biomass in the southern sites (ranging from 35 to 75%, with a mean value of
58%) than in the northern sites (ranging from 0 to 52%, with a mean value of 31%). The
most abundant herbivorous fishes in the southern sites were S. rivulatus and S. luridus,
followed by Sparisoma cretense, whereas in the northern sites, S. salpa and S. cretense were
the dominant recorded fish herbivores (Figure 6). The nMDS analysis also revealed that the
fish biomass composition in the southern sites (Crete, Cyprus and Israel) differed from that
in the northern Aegean sites (Figure 7), with the exception of site CR2 in Crete, which was
clustered with the northern sites.
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based on cluster analysis.

3.4. Modeling Canopy Algae Presence

The most parsimonious GLMM describing canopy algae vegetation included alien
herbivores biomass, sea urchin density, and depth. Based on the inspection of scaled
residuals analysis, no violations of the model’s assumptions were identified (Figure S2).
All independent variables were significantly and negatively correlated with the presence of
perennial macroalgae (Table 3).

Table 3. Results of the most parsimonious GLMM describing the presence of perennial macroalgae.

Predictors β Estimates Odds Ratios Z-Value p-Value

(Intercept) 1.46 4.30 2.15 0.031
Alien

Herbivores −0.46 0.63 −2.25 0.024

Depth −0.25 0.78 −2.33 0.020
Sea urchins −0.69 0.50 −2.06 0.039

N site 17
Observations 76

Marginal
R2/Conditional

R2
0.352/0.364

Log-likelihood −40.291

The fixed effects accounted for 35.2% (CI = 14.8–80%) of the variance explained, which
increased to 36.4% (CI = 17.5–79.9%) when combined with random effects. The sea urchin
density contributed the most to the variation in the probability of the presence of macroalgae
(semi-partial R2 = 0.32 and 95% CI = 0.13–0.79), followed by the depth zone (semi-partial
R2 = 0.16 and 95% CI = 0.00–0.74) and alien herbivore fish biomass (semi-partial R2 = 0.039
and 95% CI = 0.00–0.70) (Figure 8 and Supplementary Table S1; Figure S3).
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4. Discussion

The present study provides an overview of the environmental status of macroalgal
communities in the eastern Mediterranean Sea. Significant differences were found in the
bathymetric distribution of macroalgal vegetation between the North Aegean Sea and the
South Aegean–Levantine Seas, presumably defined by grazing pressure from sea urchins
and invasive fish. A healthier macroalgal community was found in the northern sites,
with perennial vegetation coverage observed throughout the depth zones, even peaking at
the deeper zones (5 and 8 m). In contrast, an impoverished macroalgae community was
recorded in the south, with canopies primarily limited to shallow waters (0–1 m), better
protected from grazers, and sparse or absent in deeper waters accessible to grazers.

An important distinction between the northern Aegean and southern sites (Crete,
Cyprus and Israel) is the higher contribution of herbivorous fish biomass to the total fish
biomass in the south compared to the north. This difference is mainly due to the higher
abundance of the two Lessepsian Siganus species in the southern sites and their less frequent
occurrence in the North Aegean. Other studies have also highlighted the abundant siganid
populations in the South Aegean, which decrease in higher latitudes [51,76]. This pattern
is consistent with the typical spatial distribution of thermophilic Lessepsian species, with
high species richness and abundance in the warmer Levantine region declining towards
the colder northern and western Mediterranean regions (Figure 9a) [91,92].
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Figure 9. Current (1990–2020) (a) and future (2050–2080) (b) temperature conditions in the eastern
Mediterranean. The values depicted correspond to the mean annual sea surface temperature. Source
of simulations: NEMOMED8 climatic model [93] acquired from Med-CORDEX (https://www.
medcordex.eu/ accessed on 10 April 2020); future climate data based on projections of IPCC’s Fifth
Assessment Report under the “business as usual” climatic scenario RCP8.5.

Our results indicate a local collapse of sea urchin populations in the southern sites.
This phenomenon has been previously reported along the coast of Israel, where it was
found that the continuous sea warming primarily and the intensified competition for
food resources from invasive rabbitfish secondarily caused the sea urchin collapse [31,55].
Although the current results only show local sea urchin population collapses in Crete and
Cyprus, and a larger-scale study is required to verify the finding regionally, it is a fact that
continuous sea warming in the eastern Mediterranean basin and the competitive impact
of abundant rabbitfish populations can be detrimental to sea urchins in these islands. The
edible P. lividus is considered a delicacy in most Mediterranean regions and it is harvested
in some areas in the eastern Mediterranean. However, there is no current evidence linking
human harvest with the recent local collapse in the Levantine. In contrast, in the North
Aegean, where sea temperatures are lower, sea urchins continue to thrive and exert grazing
pressure on macroalgae, which is not always sufficient to cause the decline of algal forests.
Based on the GLMMs, canopy coverage was negatively correlated with sea urchin density,
despite the better status of perennial algal forests in the North Aegean sites. In most North
Aegean sites, the highest densities of sea urchins were observed at depths of 1 or 2 m,
coinciding with the lowest macroalgal ecological status in this subregion. Similar negative
correlations between sea urchins and canopy algae have been previously reported in the
Aegean Sea [29,44]. The availability of nutrients is a crucial environmental factor that
determines the resilience of macroalgal communities to grazing pressure [94]. The waters of
the Aegean Sea show increasing oligotrophy from the north to the south [95], and the more
eutrophic and productive waters of the North Aegean could contribute to maintaining a
healthier macroalgal ecological status, despite the grazing pressure.

The contrasting vertical distribution of arborescent macroalgae species, specifically
Cystoseira s.l., between the northern Aegean and the South Aegean–Levantine sites is pre-
sumed to be linked to the abundance of the two main herbivorous groups, sea urchins and
fish, as indicated by our modeling results. In the North Aegean, sea urchin populations are
most dense at shallow depths and are likely responsible for the low macroalgae cover in
some sites. Our analysis did not find a significant relation between native fish biomass and
canopy algae presence; native herbivorous fish are likely not abundant enough to reduce
arborescent algal cover in the study area significantly. Scientific evidence suggests that

https://www.medcordex.eu/
https://www.medcordex.eu/
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Cystoseira s.l. forests can flourish even in areas with high S. salpa abundance at intermediate
depths (~5 m) [46]. In the South Aegean and Levantine sites, sea urchins are rare and
thus do not control algal cover at shallow depths. On the other hand, rabbitfish are highly
abundant and effective at depths greater than 1 m, removing most erect algae [53]. Some
Cystoseira s.l. species produce chemical compounds that serve as a defense mechanism
against herbivory [96]. However, whether these defense mechanisms work against the inva-
sive Siganus species remains unclear. The only constraints that may prevent Siganus species
from eradicating the remaining arborescent forests of shallow waters in the southeastern
sites are the wave action and emergence of shallow parts of the reefs. Recent experiments
have shown that sea level rise in the region may expose intertidal macroalgal populations
to grazing by rabbitfish, leading to reduced algal cover in very shallow waters in the long
term [97]. Further, the species forming the forests may be vulnerable to the effects of ocean
warming and ocean acidification [26,27]. For instance, Gongolaria rayssiae, a species endemic
only to Israel and Lebanon, completely loses its branches in early summer and its optimum
temperature matches spring temperatures [98].

The loss of macroalgal forests can have detrimental effects on ecosystems [99–101],
and this extended loss in the Levantine Sea is a matter of deep concern. Our results
suggest that a gradient of change exists from southeast to northwest, primarily due to
the combined effects of invasive species and climate change [31]. The changes observed
in the southeastern sites are likely a glimpse into the future of the northwestern parts of
the Mediterranean (Figure 9b). The alarming rate of change calls for immediate action.
Restoration efforts and research must consider region-specific threats, both current and
future, to be effective and sustainable. Thorough investigation and support for innovative
restoration ideas, coupled with mitigation strategies, such as targeted fishing to control
herbivore densities, should be pursued. Some scientists have argued that a large proportion
of Mediterranean biota is doomed to local or global extinction. Therefore, conservation
planning and management should focus on preserving ecosystem functioning instead of
native species, even if functioning is secured by alien species [102,103]. However, current
scientific knowledge supports that introduced macroalgae species in the Mediterranean
cannot be an equivalent surrogate for Cystoseira s.l. forests [104,105]. Mitigation strategies,
such as reducing grazing pressure by fishing alien rabbitfish and protecting top predators
that control herbivores [106], may effectively restrict the loss of macroalgal forests. However,
it is crucial to restore lost habitats through restoration efforts, and continuous ecological
monitoring is essential to evaluate the success of these measures.

5. Conclusions

Mediterranean ecosystems are undergoing contrasting changes between the colder
and warmer parts of the basin. In warmer areas, local biodiversity is collapsing, including
the native sea urchin P. lividus. Meanwhile, invasive rabbitfish exert strong herbivory
pressure on macroalgal communities, limiting Cystoseira s.l. forests to the shallowest
parts of rocky reefs. In the North Aegean, sea urchins are the primary drivers of the
vertical distribution of canopy algae. Given the critical ecological role of Cystoseira s.l., the
extensive loss of these habitats is alarming. The current state of the Levantine Sea provides
valuable insights into the future state of the Mediterranean. We argue that conservation
and restoration actions must consider these future threats. The long-term viability of
endemic Mediterranean macroalgal forests depends on mitigating the cumulative effects of
anthropogenic pressures, including the grazing pressure from invasive rabbitfishes. We
also join the calls for the urgent need to reduce global stressors through the mitigation
of greenhouse gas emissions and control of bioinvasion vectors to ensure the survival of
Mediterranean ecosystems.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12060763/s1, Figure S1: Photo-quadrat samples taken
at stations CY2 and S2 and the quadrat scores based on the reef-EBQI index; (a) CY2 at the 0-0.5 m
depth zone quadrat scored as 4, (b) CY2 at the 2 m depth zone quadrat scored as 1, (c) CY2 at the 8 m
depth zone quadrat scored as 0, (d) S2 at the 0-0.5 m depth zone scored as 2, (e) S2 at the 2 m depth
zone scored as 3 and (f) S2 at the 8 m depth zones scored as 4. Note that quadrats in pictures (a) and
(d) are 25 × 25 cm and all others are 50 × 50 cm; Figure S2: DHARMa diagnostics on the left Q-Q plot
with added tests for corrected distribution (Kolmogorov-Smirnov test), dispersion and outliers. On
the right residuals are plotted against the predicted value with quantile regression lines; Figure S3:
Forest plot for the best model displaying the estimated semi-partial R2 and related 95% confidence
intervals for different independent variables and combinations; Table S1: Generalized mixed models
built with a binomial distribution and logit link function. Candidate models are ranked by the Akaike
Information Criterion corrected for small samples (AICc).
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