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Simple Summary: The importance of stem cells for regenerative medicine has grown significantly in
recent years. This is because stem cells can differentiate into multiple cell types and are often easy to
recover. Dental pulp stem cells can differentiate into odontoblasts (dentin), osteoblasts, chondrocytes,
adipocytes and nerve cells. They are easy to recover and can proliferate, migrate and differentiate
in vitro. The regeneration of damaged tissue depends on the homing of the recruited cells and thus
on cell migration. However, not all stem cells are equally capable of migrating. Indeed, they may use
different modalities, different times or different stimuli. Amoeboid and mesenchymal migration are
commonly utilized by mesenchymal stem cells to move, including dental pulp stem cells. Recently,
migracytosis and dynamic blebs also appear to be two modalities used by mesenchymal stem cells,
although there is still no experimental evidence for their use in dental pulp stem cells. Cells move in
response to environmental stimuli interacting with specialized cell receptors. Environmental stimuli
can be of a different nature: chemical or physical, including mechanical, which depends on forces
that interact with the cells. This review aims to shed light on the characteristics used by dental pulp
stem cells to migrate in relation to differentiation options.

Abstract: Human dental pulp stem cells (hDPSCs) are adult mesenchymal stem cells (MSCs) ob-
tained from dental pulp and derived from the neural crest. They can differentiate into odontoblasts,
osteoblasts, chondrocytes, adipocytes and nerve cells, and they play a role in tissue repair and
regeneration. In fact, DPSCs, depending on the microenvironmental signals, can differentiate into
odontoblasts and regenerate dentin or, when transplanted, replace/repair damaged neurons. Cell
homing depends on recruitment and migration, and it is more effective and safer than cell trans-
plantation. However, the main limitations of cell homing are the poor cell migration of MSCs and
the limited information we have on the regulatory mechanism of the direct differentiation of MSCs.
Different isolation methods used to recover DPSCs can yield different cell types. To date, most studies
on DPSCs use the enzymatic isolation method, which prevents direct observation of cell migration.
Instead, the explant method allows for the observation of single cells that can migrate at two different
times and, therefore, could have different fates, for example, differentiation and self-renewal. DPSCs
use mesenchymal and amoeboid migration modes with the formation of lamellipodia, filopodia and
blebs, depending on the biochemical and biophysical signals of the microenvironment. Here, we
present current knowledge on the possible intriguing role of cell migration, with particular attention
to microenvironmental cues and mechanosensing properties, in the fate of DPSCs.

Keywords: hDPSCs; PIEZO1; ATP; migracytosis; blebbing; YODA1; leader and follower;
mechanotransduction

1. Introduction

Adult stem cells are a resource for living organisms that allow for the repair and/or
regeneration of damaged tissues. In general, there are two different approaches to re-
generate damaged tissue using stem cells: cell homing and cell transplantation, both of
which imply cell migration. Mesenchymal stem cells (MSCs) are found mainly in the
bone marrow (BM), but also in the adipose tissue and in the pulp of the tooth. They can
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give rise to osteoblasts, chondrocytes and adipocytes. Dental pulp stem cells (DPSCs) are
unique because they arise from the ectomesodermal embryonic tissue that forms the neural
crest. For this reason, in addition to the cell types described above, they can give rise to
odontoblasts (specialized osteoblasts) and nerve cells (astrocytes, glia cells and oligoden-
drocytes). The microenvironment in which stem cells are found affects their differentiation.
In the case of naïve DPSCs, the niches in which they are located are innervated, supplied
with blood and inside a rigid structure (tooth). The decision between the renewal and
migration/differentiation of DPSCs depends on their interactions with stromal cells and
ECMs in the niches. Different niches possess different DPSCs. As an example, after tooth
injury in the apical part of the pulp, there was a population of highly proliferative potential
which was Notch2-positive [1], whereas in the perivascular niches, DPSCs were positive
for Oct3/4 stemness markers [2]. It has been shown that in vivo human (h) DPSCs migrate
and can repair dentin by regenerating damaged odontoblasts in the tooth [3]. Furthermore,
hDPSCs transplanted into mice can promote bone regeneration in defective calvaria [4]
or migrate to ischemic areas, i.e., areas of cerebral infarction, and express specific neural
markers [5]. Additionally, when induced in vitro as neural cells, they can differentiate
in vivo into mature neurons or astrocytes [6]. However, hDPSCs can also repair damaged
nerve tissue through paracrine mechanisms involving chemotaxis and the proliferation of
endogenous neural stem cells (NSCs) [7], or they can reduce ischemic damage through the
inhibition of microglial activation and the expression of pro-inflammatory cytokines [8].
When comparing MSC transplantation with the practice of homing for tissue regeneration
in preclinical animal models, the latter is safer and more effective [9]. However, the main
limitations are the poor cell migration of MSCs and the limited information we have on the
regulatory mechanism of the direct differentiation of MSCs.

In this review, we describe the migration modes and time used by hDPSCs in response
to different microenvironmental cues, focusing on the different cell fates, especially the
specification of odontoblasts/osteoblasts and/or nerve cells, where reported.

2. HDPSCs

HDPSCs can be purified from dental pulp essentially by two methods. The first is
based on the enzymatic digestion of the dental pulp with collagenase and dispase and/or
trypsin [10] (Table 1).

The harvested cells were dispersed in the medium, plated and left to proliferate. In
turn, they formed colonies of heterogeneous cells, including stem cells from various niches
in a mixture, and epithelial cells, stromal cells, perivascular cells, etc. [19] (Figure 1A). In
this regard, heterogeneous cells expanded in a serum-free medium produced two DPSC
subtypes, those being adherent (ADH) and non-adherent (non-ADH) populations according
to their differential adhesion to plastic; however, both populations displayed osteogenic
and neurogenic differentiation [23,26]. The second method consisted of putting the pulp,
or fragments, directly in a plate with a culture medium and waiting for the DPSCs to
come out after about 10–15 days (explant method) (Table 1, Figures 1B and 2A) [16]. The
tissue piece is present during the primary culture and therefore, DPSCs reside in the dental
niches with stromal cells and extracellular matrix (ECM), since no proteolytic enzymes
are added in the culture. DPSCs take a long time to come out from the pulp, but they
take advantage of the presence of other cells and the ECM. This method makes it possible
to observe the cells that are induced to migrate. Indeed, DPSCs gradually emerge from
the tissue, whereas non-migrating cells remain inside the tissue and can migrate later (for
agreement with DPSCs residing in different niches, see [1], or if they are not stem cells, they
undergo apoptosis [1,2,49]). However, DPSCs obtained by the explant method produce
a more homogeneous population (i.e., subsequent waves, see [20]), and unattached and
adherent cells, different from DPSCs, are present in the culture [24]. However, unattached
cells will be gradually removed after refreshing the culture media, and adherent cells are
unable to survive/proliferate and will be lost during the first few subcultures [20,49].
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Table 1. Schematic list of the manuscripts cited in the review divided according to the DPSC
recovery method.

Digestion Method Explant Method Not Specified Cell Line

[3] [1] [8] [11]

[5] [2] [12] [13]

[6] [7] [14] [15]

[10] [16] [17] [18]

[19] [20] [21] [22]

[23] [24] [25]

[26] [27] [28]

[20] [29]

[27] [30]

[31] [32]

[33] [34]

[35] [36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
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(B) explant method and (C) differentiation of DPSCs.
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the nucleus is often lateral or in the back. Moreover, in response to environmental cues, 
many cells have the capacity to turn off their default migration mode from mesenchymal 
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Figure 2. DPSCs harvested using the explant method from the third molar extracted for orthodontic
reasons. Examples include: (A) DPSCs recovered by explant method (10×) (B,C) mesenchymal
migration (20×), (D) FA (20×), (E) lamellipodia (20×), (F) filopodia (20×), (G) blebs and ameboid
migration (20×), (H) migrasomes (20×). Light Microscopy (Zeiss Axio). DPSCs were isolated with
the explant method from teeth removed for orthodontic reasons and the patients agreed to the use of
their samples for research purposes. Bar = 20 µm; 50 µm.

Therefore, the two isolation methods yielded different subpopulations of cells, even
though regardless of the recovery method, DPSCs showed the same trilineage differentia-
tion potential when not pre-selecting for specific marker expressions [24,27,50]. In general,
in vitro hDPSCs are most likely induced to migrate and proliferate following environmental
cues such as chemical and biophysical stimuli, for example, changes in stiffness and rigidity
(both are mechanical stimuli) [51,52]. However, in the explant method, a wound healing
response is triggered due to the production of cytokines and factors released by the injured
tissue, which promote migration [31,49]. Cells harvested with the explant method migrate
as “leaders” and “followers”, where leaders migrate first as single cells [29,53] and guide
the migration and followers follow the guide, connoting a subdivision of the group into
distinct fractions [54].

Many mathematical models (stochastic models) have been developed to explain the
various types of cell migration. However, these models are often based on the migration of
clustered cells (tumors) or activated lymphocytes (taxis), whereas DPSCs, as said before,
can migrate as single cells [55]. In addition, some models are based on the idea that the
nucleus occupies a central position, but this is not always true. For example, in DPSCs,
the nucleus is often lateral or in the back. Moreover, in response to environmental cues,
many cells have the capacity to turn off their default migration mode from mesenchymal to
ameboid and vice versa [56]. Another important feature to take into consideration is given
by the stimuli that recruit the “leaders”, which is not fully understood and can be single or
double. To date, the literature is still scarce concerning mathematical models that explain
cell migration in the presence of two stimuli. The first cue concerns the choice of direction
and the second, usually of mechanical origin, concerns the speed that the cell can reach
going in that direction [57–59]. Speed is important because the fastest cells (leader) can lead
the others (follower). However, further studies are needed to define a good mathematical
model that accounts for the migration of DPSCs.

3. Migration

Migration is an essential activity for MSCs to reach damaged sites and contribute to
repair and differentiation. The migration of single cells occurs essentially by mesenchymal
and amoeboid movement and numerous studies have been done by analyzing in vitro
cell migration on different components of the ECM as well as on other biomaterials [60].
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However, cell migration depends on various microenvironmental cues such as soluble
factors (chemotaxis) [61], substrate-related factors (haptotaxis) [62–64] and mechanical
signals (durotaxis) [65,66].

Mechanistically, migration and adhesion depend on the presence of a network con-
sisting essentially of two proteins: actin and myosin (non-muscular). In general, actin
is organized in an array which depends on its ability to assemble and disassemble the
domains according to different contexts and environmental signals. Indeed, actin domains
are organized in filaments that give rise to plasma membrane protrusions known as lamel-
lipodia, filopodia and blebs [67]. Instead, the myosin is organized in bipolar filaments,
which slide over the actin array and generate the forces necessary to move the cells [68]. In
addition, a thin mesh of actin, myosin filaments and associated proteins is found under the
plasma membrane, forming a cortex which contributes to the changes in the shape of the
cells themselves [69].

3.1. Lamellipodia

Lamellipodia are dependent on the generation of a branched Arp2/3 complex, which
produces forces, thus overcoming membrane tension and driving protrusion. They are fre-
quently associated with mesenchymal migration, for example, in fibroblasts, hematopoietic
cells, innate immunity cells, tumor cells, embryonal stem cells and DPSCs (Figure 2B,C),
both in 2D and 3D (named ruffles) and also in vivo [70,71].

In addition, the lamellipodium is the site for most cell–matrix adhesions [72], formed
through integrins binding to ECM proteins and subsequent clustering in focal complexes
or focal contacts at the distal margin of the lamellipodium. It is noteworthy that some
focal complexes mature into focal adhesions (FAs) that are connected to bundled actin
stress fibers (SFs) (see SF paragraph below) (Figure 2D) [68,73]. Interestingly, DPSCs use
lamellipodia to migrate [29] independently of substrate stiffness (Figure 2E). As stiffness
decreases, FA decreases and migration rate increases [33].

3.2. Filopodia

Filopodia, unlike lamellipodia, are independent of the Arp2/3 complex. They are
protrusions of the cytoplasmic membrane filled with actin, which polymerize, generating
forces towards the membrane which rapidly extend and retract the protrusions [74,75]
(Figure 2F). In general, cells can sense the surrounding environment by using filopodia and
this includes sensing other cells and ECM to adhere or interact with them [76]. They can
also serve as bridges between cells for the transport of various cargoes [35,77–79]. Many
studies reported the presence of filopodia/lamellipodia in hDPSCs [29], evenly cultured
over a porous surface and used for migration [76].

3.3. Stress Fibers

In animal cells, the actin cortex is composed of very ordered actin–myosin structures
called SFs. SFs are used by cells that migrate according to the mesenchymal modality, while
these fibers are not evident in amoeboid cells [79,80]. In migrating cells, SFs are found
mostly in the back of cells and under or near the nucleus, contributing to tail retraction
during migration [80,81]. Indeed, the nucleus of migrating polarized mesenchymal cells
is in the back of the cell, pushed by forces dependent on myosin activity [82,83]. SFs
are present in DPSCs [30], in association with FAs, especially in cells plated on a stiff
matrix (plastic wells), or following the application of forces, representing an important
mechanosensitive mechanism for cells [84,85].

3.4. Blebbing

Blebs are spherical swellings of the plasma membrane formed by amoeboid cells that
show plasticity and a high degree of deformability. Amoeboid migration does not require
active F-actin polymerization, but depends on myosin II-mediated contractility, which
generates hydrostatic pressure against the plasma membrane, producing blebs [68,86,87]
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(Figure 2G, Supplementary Movie S1). Their formation can be induced by numerous
mechanical and chemical stimuli, including changes in external stiffness and osmolarity.
Amoeboid motility is widely used, including, for example, use by human embryonal stem
cells (hESCs). In this case, blebbing is driven by ROCK–myosin activity [88] and depends
on the substrate and attachment of cells through an integrin-FAK pathway [89]. However,
little is known about the upstream signaling of dynamic blebbing. Many studies underrep-
resent the role of purinergic P2 receptors (see Mechanosensing and Mechanotransduction
paragraph) in cell types, including hepatocytes [90] thymocytes [91], macrophage cell
lines [92] and hESCs [89]. To our knowledge, there are no data on the phenomenon of
dynamic blebbing in DPSCs.

However, these three types of protrusions (lamellipodia, filopodia, blebs), which
generate different types of migration (mesenchymal and ameboid), are interconnected.
Indeed, it has been demonstrated that interfering with lamellipodia formation promotes
plasma membrane bleb generation [68].

3.5. Migrasomes

Migrasomes have been discovered very recently in many cell types, including macro-
phages, primary neurons, ESCs and in the circulating blood. They are organelles produced
by migrating cells which depend on the polymerization of actin and are positive for
tetraspanin 4 (Tspann4) [93]. As the cells migrate, long, thin membrane projections called
retraction fibers (RFs) are left in their wake at the rear of the cell [94]. Migrasomes have been
highlighted on these fibers, taking on the appearance of a pomegranate-type structure with
an oval organelle with diameters from 0.5 µm to 3 µm and cytosolic contents, which include
proteins without a signal peptide [93] (Figure 2H). Eventually, the retraction fibers break up
and migrasomes are released into the medium or directly taken up by surrounding cells.

The primary function of migracytosis is probably cell-cell communication. The great
importance of migracytosis is given by the fact that the cells releasing migrasomes (out-
going) give spatial and biochemical information that can be acquired by the following
cells (incoming) [95,96]. Indeed, it has been reported that migrasomes could play a role in
cellular chemotaxis [95]. In all cases, the migrasomes left along the way are endocytosed by
the recipient cells and modify the cells [97]. However, the question arises as to why these
organelles are not degraded with their contents by the lysosomes of the recipient cells. To
date, there is no clear answer. One hypothesis is that a similar mechanism occurs during
DNA transfection, but this is unclear [96].

Eventually, migrasome formation depends on cell migration, and they are known to
be used by migrating cells as signals for other cells. The DPSC “leader” subtype could
use this mechanism to signal the “follower” subtype on which direction to take, as it has
been shown that more migrasomes are released from faster and more persistent cells [98].
However, further studies are needed to better elucidate the process and the possibility that
DPSCs use this type of signaling to direct migration in vitro and in vivo.

4. Mechanosensing and Mechanotransduction

Since stem cells are exposed to mechanical forces, they have developed many ways to
adapt and protect themselves from the mechanical challenges they continually experience
in environmental niches [99]. Mechanosensing and mechanotransduction are mechanisms
by which cells sense the extracellular environment, mechanical stimuli in particular, and
convert into intracellular biological signals. Several receptors are present on the cell mem-
brane with the function of transducing mechanical signals, including mechanosensitive
ion channels such as PIEZO, G protein-coupled receptors (GPCRs) and integrins [100–102].
These receptors can interact directly or indirectly with microtubules and/or actin filaments
inside the cell by modifying their structure [103]. Several classical signaling pathways can
transduce mechanical signals to biochemical input, including mitogen-activated protein
kinases (MAPKs) [11]. These biochemical cascades promote transcription factor activation
and transcriptomic changes, which are crucial for stem cell fate decisions [104]. As a result,
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cells can remodel their cortical cytoskeleton and cell membrane, adapting to the mechanical
forces they are subjected to until they encounter new stimuli [105]. In this way, cells can
develop processes that allow them to grow, proliferate and migrate to survive and protect
themselves from excessive mechanical force [106].

Among the main types of forces, there are those external to cells and those “outside-
in”, for example, fluid flow-induced shear stress, osmotic stress and pressure-induced
membrane stretch [107]. Other types of mechanical forces are those generated by actin–
myosin traction in FA zones, i.e., “inside-out”, which is used by cells to examine the
mechanical and spatial properties of the ECM, move cargo inside the cells, determine cell
shape and support cell substrates [107,108].

Mechanistically, a recent study demonstrated that YODA1 (ion channel-specific activator)
activated PIEZO1 and stimulated hDPSC migration in vitro through the noncytolytic release
of ATP [12] and its downstream signaling pathways (MEK/ERK, p38 MAPKs) [109,110].
Many other studies underrepresent the role of PIEZO1-ATP in DPSC migration [87,111],
proliferation and differentiation through P2 purinergic receptors (P2X ionotropic and P2Y
metabotropic receptors) [14,37,38,112]. Transcriptional coactivators, yes-associated protein
(YAP) and transcriptional coactivator with PDZ-binding motif (YAP/TAZ), are identified as
mechanotransducing transcription factors. They respond to a series of mechanical stimuli
(stiffness, topology and stretching of the ECM), promoting genes and proteins expression
when translocated into the nucleus [113], as in the case of YAP/TAZ-regulated genes, CTGF
and ANKRD1 [39], and OC, OPN and BSP in DPSCs [114].

5. The hDPSC Fate

Self-renewal and differentiation are stem cell choices that need to be considered to
define a good DPSC migration model. These two characteristics may depend on envi-
ronmental cues where the cells grow (niches, in vitro substrates) and on some correlated
factors, including the stiffness or composition of the ECM and materials, the presence of
cytokines, chemokines, hormones and growth factors, the concentration of O2 and of course,
mechanical stress forces. Indeed, DPSCs can migrate, proliferate and/or differentiate into
multiple cell lineages under the influence of the biophysical and biochemical properties of
the microenvironment.

Substrate stiffness can modulate cell morphology, adhesion, migration and differentiation
through cytoskeleton arrangement. Topographic cues can be provided by differences in
stiffness, roughness and the pore size of scaffolds produced in the laboratory. Several studies
have investigated this matter and found a relationship to changes in cell morphology and
movement that depend on the actin’s network. In addition, these changes can influence
stem cell behavior by promoting the preferential osteogenic/odontogenic differentiation of
DPSCs [13] and adipose stem cells (ASCs) [115]. Usually, substrates with different rigidity
prompt a preferential direction of migration from a stiff to soft matrix. However, DPSCs can
unexpectedly move from the soft to the stiff substrate and vice versa without any preferential
direction, independent of the myosin II activity and of YAP nuclear translocation, through the
activity of lamellipodia and mesenchymal migration [33]. Therefore, in the absence of factors
that can recruit the DPSCs in vivo, such as those released during dentin damage or pulp
inflammation, the stem cells are free to move randomly without a precise direction but retain
the ability to differentiate into odontoblasts. Magnetic materials are used in dental clinics
and provoke a static magnetic field (SMF). This stimulus can provoke the rearrangement of a
DPSC cytoskeleton, promoting DPSC migration and proliferation through MMP-1, MMP-2
and FGF-2, TGF-β and VEGF gene expression [13,39]. An interesting study analyzed the
effect of SMF on migration, proliferation and differentiation in DPSCs obtained with the
explant method [29]. The results showed that the SMF-treated group moved by mesenchymal
collective cell migration behavior, whilst the sham-exposed groups moved mainly by single-
cell migration and with a random direction. Both groups differentiated in odontoblasts even
though the SMF-treated group of DPSCs did so more efficiently [29].
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The ECM varies greatly in composition depending on the microenvironment; there-
fore, many studies have been conducted using the hydrogel as a matrix with different
coated ECM proteins used to evaluate the migration. The hydrogels containing hyaluronic
acid (HA) influence the chondrogenesis differentiation of MSCs [116], whereas hydrogel-
containing gelatin and fibrin enhanced cell migration and induced the odontogenic differ-
entiation of DPSCs [17].

Emblematic of factors eventually present on the ECM is the example of stromal cell-
derived factor 1 (SDF1), which is a chemokine released by injured tissues as brain, hearth
and bone. In vitro studies showed that SDF1 improved DPSC migration [15,40] and in
combination with other chemo-attractants such as bone morphogenetic protein 7 (BMP-7),
parathyroid hormone (PTH) and exendin-4 (EX-4), improved the efficiency of the osteogenic
differentiation of DPSC and periodontal ligament stem cells (PDLSC) [18,41,42,117]. Other
growth factors, such as glial cell-derived neurotrophic factor (GDNF) [22] and insulin-like
growth factor-binding protein 5 (IGFBP5), promoted DPSC migration and enhanced the
osteo/odontogenic and neurogenic differentiation of DPSCs [43]. Injured tissues can secrete
the neuropeptide substance P (SP), which may exert immunomodulatory and stem cell
recruitment roles [118,119]. Very recently, SP has been implicated in the odontoblastic
differentiation of DPSCs during the reparative genesis of dentin. In addition, the SP/NK1R
signaling pathway, expressed in DPSCs, plays a fundamental role in the regulation of cell
recruitment upon damage, suggesting a role as a migration/differentiation inducer [32].

The inflammatory microenvironment, which is generated in the dental pulp because
of an insult (trauma or infection), represents an essential prerequisite for tissue healing
and regeneration and can influence the fate of DPSCs. Indeed, it has been reported that
Pentraxin-3 (PTX3), which is an inflammatory mediator, is involved in the migration and
osteogenic/odontogenic differentiation of hDPSCs [25]. The chemokine receptor CXCR3
(CD183) was found on 30% of the adherent (ADH)-DPSCs [23], associated with neuroin-
flammatory responses and their potential involvement in homing neural progenitors to sites
of brain damage [120]. Another study showed that human-concentrated growth factors
(hCGFs) alone and in combination with LPS increased DPSC migration and osteogenic dif-
ferentiation [121]. A conditioned medium, such as human gingival fibroblast-conditioned
medium (hGF-CM), increased the migration, proliferation, cell viability and odontogenic
differentiation of DPSCs after H2O2 exposure [44].

Other interesting studies focused on the exosomes (Exos) and extracellular vesicles
(EVs), which can cargo pivotal molecules for cellular recruitment and differentiation. Ex-
osomes produced by undifferentiated or angiogenic differentiated hDPSCs (DPSC-Exos)
contributed to the homing and angiogenesis of naïve DPSCs [34]. Other studies on Exos-
DPSCs have used the enzymatic purification method to recover stem cells. In this regard,
DPSC-Exos promoted cutaneous wound healing-related biological processes in mice, such
as the positive regulation of cell motility, migration, proliferation, vasculature development
and angiogenesis [44]. Exos obtained from DPSCs under hypoxic conditions (Hypo-Exos)
demonstrated that LOXL2, an enzyme that catalyzes the crosslinking of elastin and collagen,
is a key molecule mediating the angiogenic effect by promoting migration and prolifera-
tion [46]. EVs from Schwann cells (SCs) successfully increase the proliferation, migration
and osteogenic differentiation of hDPSCs [47].

Little is known about the conditions that can induce preferential neural differentiation
of DPSCs. Very recently, a study showed that a combination of EGF and bFGF are sufficient
to induce neural phenotypic changes and biomarker expression on DPSCs, but these
changes depend on proliferation rate [21] and ECM composition [36,48]. The damaged
tissues release homing and growth factors, which can induce the recruitment of DPSCs
from nearby sites. Indeed, in a model of neurodegeneration of hippocampal neurons, the
upregulation of homing factors (SDF-1alpha, CXCR-4, VCAM-1, VLA-4, CD44, MMP-2)
are induced in vitro and DPSC migration is increased [28]. Furthermore, in vivo systemic
administration of DPSC/BM-MSC in an animal model with temporal lobe epilepsy (TLE)
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and an impaired blood-brain barrier (BBB), induced stem cell homing in the CNS and
attenuated symptoms of neurodegeneration and neuroinflammation [28].

6. Conclusions

Based on what has been described in the previous paragraphs and our experimental
observations, we want to suggest a hypothesis on the relationship between the migration,
self-renewal and differentiation of DPSCs. We assume that the pulp of the tooth placed
in culture without enzymatic digestion favors the leakage of stem cells, which sense the
biochemical and mechanical stimuli represented by the injured tissue. These cells (leaders)
are probably induced to migrate as single cells by the presence of two stimuli: one is
represented by the release of factors following tissue damage (wound healing response)
and the second is represented by the stiffness of substrate (plastic plate), which guides cell
migration through their mechanosensing and mechanotransduction properties. Along the
way, leaders can leave migrasomes, which can be engulfed by following cells (followers).
Thus, topographic cues are obtained due to the content of the migrasomes, indicating a
precise direction to move. The leaders proliferated and formed colonies far from the pulp,
and they can potentially differentiate based on microenvironmental cues. After some time,
other DPSCs emerge from the pulp, probably coming from other niches (with stemness
properties) and containing a self-renewal capacity, which can be attracted by the signals
released by the first cells that emerged (leaders). These cells do not migrate far, but remain
close to the pulp and are induced to proliferate, suggesting a high self-renewal capacity.
Surely, even these cells, if induced by appropriate environmental signals, would be able
to differentiate into appropriately specialized cells. Eventually, in our opinion there are at
least two different subtypes of DPSCs, likely residing in different niches: one capable of
migrating and exploring the microenvironment in response to biochemical and mechanical
stimuli, with the immediate ability to differentiate into specialized cells and repair damaged
tissue; and another subtype that is able to proliferate and maintain a self-renewal capacity.
However, more studies are needed to clarify these aspects of DPSCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12050742/s1, Supplementary Movie S1. DPSCs moving
with blebs.
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