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Simple Summary: Mesenchymal stem cells (MSCs) are a promising option for developing new
treatments for spinal cord injury (SCI). They can help repair damaged tissue, making them an exciting
area of research in regenerative medicine. It is important to study the safety, effectiveness, and best
ways to use MSC-based therapies while addressing challenges in bringing these treatments to the
clinic. Challenges include finding the best source of MSCs, determining when and how to administer
them, and creating standardized methods for handling MSCs. Future research should focus on
understanding the long-term effects of MSC treatments, optimizing their delivery, and conducting
more clinical trials. Combining MSCs with other treatments might also improve outcomes for patients
with spinal cord injuries. By increasing our knowledge of MSCs and their potential, we can offer
hope for better recovery and quality of life for those affected by SCI.

Abstract: Spinal cord injury (SCI) represents a significant medical challenge, often resulting in per-
manent disability and severely impacting the quality of life for affected individuals. Traditional
treatment options remain limited, underscoring the need for novel therapeutic approaches. In recent
years, multipotent mesenchymal stem cells (MSCs) have emerged as a promising candidate for SCI
treatment due to their multifaceted regenerative capabilities. This comprehensive review synthesizes
the current understanding of the molecular mechanisms underlying MSC-mediated tissue repair
in SCI. Key mechanisms discussed include neuroprotection through the secretion of growth factors
and cytokines, promotion of neuronal regeneration via MSC differentiation into neural cell types,
angiogenesis through the release of pro-angiogenic factors, immunomodulation by modulating
immune cell activity, axonal regeneration driven by neurotrophic factors, and glial scar reduction
via modulation of extracellular matrix components. Additionally, the review examines the various
clinical applications of MSCs in SCI treatment, such as direct cell transplantation into the injured
spinal cord, tissue engineering using biomaterial scaffolds that support MSC survival and integration,
and innovative cell-based therapies like MSC-derived exosomes, which possess regenerative and
neuroprotective properties. As the field progresses, it is crucial to address the challenges associated
with MSC-based therapies, including determining optimal sources, intervention timing, and delivery
methods, as well as developing standardized protocols for MSC isolation, expansion, and charac-
terization. Overcoming these challenges will facilitate the translation of preclinical findings into
clinical practice, providing new hope and improved treatment options for individuals living with the
devastating consequences of SCI.

Keywords: multipotent mesenchymal stem cells; spinal cord injury; neuroprotection; neuronal
regeneration; angiogenesis; regenerative medicine

1. Introduction

Spinal cord injuries (SCIs) are life-altering events with far-reaching consequences for
both the individual and society. Each year, thousands of people suffer from SCI, often
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resulting in permanent disability, loss of independence, and a decreased quality of life [1].
Traditional treatment options have focused on rehabilitation and symptom management,
but there remains a pressing need for innovative approaches to promote functional recovery
and improve outcomes for SCI patients [2]. Advances in the field of regenerative medicine
have led researchers to explore the potential of stem cells as a promising therapeutic strategy
for spinal cord injury [3]. Among the various types of stem cells, multipotent mesenchymal
stem cells (MSCs) have gained particular attention due to their ability to differentiate into
multiple cell types, including those of the nervous system [4]. These cells can be sourced
from various tissues, such as bone marrow, adipose tissue, and umbilical cord blood,
making them a versatile option for potential therapies [5]. The application of MSCs in SCI
treatment is based on their capacity to modulate the local environment, encourage tissue
repair, and replace damaged cells [6]. As our understanding of the molecular mechanisms
underlying MSC-mediated repair continues to grow, so too does the potential for their use
in the development of novel therapies for SCI patients [7].

Recent studies offer a comprehensive analysis of current advancements in MSC re-
search, emphasizing their potential to revolutionize SCI treatment [8]. The exploration of
the molecular mechanisms behind MSC-mediated tissue repair highlights the versatility of
these cells, which play a crucial role in various therapeutic processes, such as neuropro-
tection, neuronal regeneration, angiogenesis, immunomodulation, axonal regeneration,
and glial scar reduction [9]. This multifaceted approach demonstrates the ability of MSCs
to address the numerous challenges associated with SCIs, making them a promising can-
didate for future treatment strategies [10,11]. Researchers are also working to translate
preclinical findings into real-world clinical applications for SCI patients [12]. Moreover,
cell transplantation, tissue engineering, and cell-based therapies, such as MSC-derived
exosomes, can harness the regenerative potential of MSCs to facilitate recovery and im-
prove patients’ quality of life [13,14]. These therapeutic strategies hold immense promise
for revolutionizing current treatment options and offering new hope for SCI patients [15].
However, there are challenges and limitations that must be overcome to bring MSC-based
therapies into widespread clinical use [16]. These include optimizing the source, timing,
and delivery methods of MSCs, as well as establishing standardized protocols for their
isolation, expansion, and characterization [17,18]. Additionally, researchers must continue
to assess the long-term safety and efficacy of MSC-based therapies to ensure their successful
implementation in clinical settings [19].

In conclusion, the growing body of research on MSCs and their potential role in SCI
treatment offers a valuable overview of the current state of the field. By examining the
molecular mechanisms by which MSCs promote repair and exploring their potential clinical
applications, researchers showcase the promise of MSC-based therapies for improving
the lives of those affected by SCI [20]. As research progresses, it is essential to continue
refining our understanding of MSCs, optimizing therapeutic strategies, and addressing
the challenges that remain in translating these promising findings into routine clinical
practice. By emphasizing the various molecular pathways and therapeutic strategies to
which MSCs can contribute, the scientific community highlights the exciting future of
MSC-based therapies for spinal cord injury patients while acknowledging the challenges
that must be addressed to ensure their successful clinical translation.

2. Therapeutic Mechanisms of Mesenchymal Stem Cells in Spinal Cord Injury

Stem cells can be categorized based on their differentiation potential and develop-
mental stages. Differentiation potential classifications include totipotent, pluripotent,
multipotent, and unipotent cells, while developmental stage categories consist of embry-
onic, fetal, infant or umbilical cord blood, and adult stem cells (Figure 1). Among these,
MSCs have garnered considerable interest as a promising candidate for SCI treatment due
to their ability to differentiate into various cell types. Recent research has highlighted the
multiple molecular mechanisms through which MSCs can promote recovery following SCI.
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In this discussion, we delve into the diverse functions MSCs perform in SCI repair and
examine the specific molecular components involved.
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Figure 1. Overview of stem cell classifications based on differentiation potential and developmental
stages. Stem cells are classified based on their differentiation potential, which reflects their ability to
form various cell types. Totipotent stem cells, found in early-stage embryos, can differentiate into
all three germ layers, as well as extra-embryonic tissues and placental cells. Pluripotent stem cells,
present in the blastocyst stage of development, maintain the ability to self-renew and differentiate into
the three germ layers and multiple lineages but cannot form extra-embryonic tissues or placental cells.
Multipotent stem cells, also known as adult or somatic stem cells, are undifferentiated cells found in
postnatal tissues. These specialized cells have limited self-renewal capabilities and are committed to
specific lineages. Unipotent stem cells are the most restricted in their differentiation potential, as they
can only give rise to a single cell type, although they still retain the capacity for self-renewal.

2.1. Neuroprotection

MSCs secrete a variety of growth factors and cytokines that exhibit neuroprotective
effects, playing a pivotal role in supporting the recovery of damaged neurons after SCI [21].
Among these factors are vascular endothelial growth factor (VEGF), nerve growth fac-
tor (NGF), insulin-like growth factor-1 (IGF-1), and brain-derived neurotrophic factor
(BDNF), all of which contribute to a supportive microenvironment for neuronal survival
and regeneration [22].
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VEGF, for instance, not only promotes angiogenesis but also exerts direct neuroprotec-
tive effects by inhibiting apoptosis, reducing oxidative stress, and promoting neurogene-
sis [23]. NGF, on the other hand, supports the survival and growth of neurons, particularly
those in the peripheral nervous system (PNS), by binding to its receptors, TrkA and p75NTR,
and activating intracellular signaling pathways that promote neuronal survival [24]. IGF-1
contributes to neuroprotection by promoting neuronal survival, synaptic plasticity, and
neurogenesis [25]. It has been shown to reduce inflammation, inhibit neuronal apoptosis,
and stimulate the proliferation and differentiation of neural progenitor cells [26]. BDNF,
another critical neurotrophic factor secreted by MSCs, enhances neuronal survival and
function by activating the TrkB receptor and downstream signaling pathways, such as the
PI3K/Akt and MAPK/ERK pathways [27].

Furthermore, MSCs can also modulate the expression of pro-inflammatory cytokines,
such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), in microglia
and astrocytes, and promote the release of anti-inflammatory cytokines like interleukin-10
(IL-10) and transforming growth factor-beta (TGF-β) from MSCs themselves as well as
from other cell types, such as microglia and macrophages [28]. This modulation of the
inflammatory milieu creates a more favorable environment for neuronal survival and
recovery [29,30]. Overall, the neuroprotective effects of MSCs are multifaceted and involve
a complex interplay of various growth factors and cytokines that work together to support
the survival and regeneration of damaged neurons after SCI.

2.2. Promoting Neuronal Regeneration

MSCs possess the remarkable ability to differentiate into various neural cell types,
including neurons and glial cells, such as astrocytes and oligodendrocytes [31,32]. Recent
studies have shown that the differentiation of MSCs towards neurons or glial cells is
orchestrated by a complex interplay of signaling pathways, transcription factors, and
epigenetic modifications. For instance, key signaling pathways implicated in the neural
differentiation of MSCs include the Notch, Wnt, and BMP signaling pathways [33,34].
Moreover, transcription factors such as Sox2, Pax6, and Neurogenin-2 play essential roles
in guiding MSC differentiation toward neuronal and glial lineages [35–37]. The ratio of
neurons to glial cells originating from MSCs is determined by the specific combination of
signaling molecules and transcription factors present in the local microenvironment, which
can be modulated by various extrinsic cues and experimental conditions. For example,
the presence of growth factors like epidermal growth factor (EGF) and fibroblast growth
factor (FGF) can promote neuronal differentiation [38,39], while the addition of ciliary
neurotrophic factor (CNTF) can drive glial differentiation. The delicate balance of these
factors ultimately influences the cell fate of MSCs and their potential to contribute to neural
regeneration following CNS injury.

The pro-inflammatory niche within the SCI lesion can indeed affect the differentiation
of MSCs. For instance, inflammatory cytokines, such as TNF-α and IL-1β, have been
reported to influence MSC differentiation, potentially biasing MSCs towards a particular
cell phenotype, such as astrocytes. High levels of these pro-inflammatory cytokines have
been shown to inhibit neuronal differentiation while promoting the differentiation of MSCs
into astrocytes [40,41]. On the other hand, anti-inflammatory cytokines, such as IL-4 and IL-
10, have been reported to promote neuronal differentiation and inhibit glial differentiation
of MSCs [42]. Importantly, MSCs also possess immunomodulatory properties, which may
help mitigate inflammation and create a more favorable environment for tissue repair
and regeneration [43,44]. MSCs can secrete various anti-inflammatory factors, such as
TGF-β and IL-10, as well as modulate the function of immune cells, such as T cells and
macrophages, to reduce inflammation and create a more permissive environment for
tissue repair [45,46]. These MSC-mediated immunomodulatory effects can potentially
counteract the negative influence of the pro-inflammatory niche on MSC differentiation,
thus supporting their therapeutic potential in SCI.
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Most studies have demonstrated that the preferential differentiation of MSCs towards
a particular cell phenotype in the context of the pro-inflammatory niche within the SCI
lesion could be a potential hurdle in using MSCs for post-SCI tissue regeneration. For
example, excessive differentiation of MSCs into astrocytes, potentially exacerbated by the
overexpression of transcription factors like STAT3, may contribute to glial scar formation,
impeding axonal regeneration and functional recovery [47,48]. On the other hand, insuffi-
cient differentiation into oligodendrocytes, possibly hindered by the presence of inhibitory
factors such as chondroitin sulfate proteoglycans (CSPGs), might limit remyelination and
restoration of neuronal connectivity [49,50]. To address these challenges, it is crucial to
gain a better understanding of the factors that influence MSC differentiation in the SCI
environment and develop strategies, such as genetic modifications or controlled release of
growth factors, to direct MSC differentiation towards the desired cell types. For instance,
overexpressing transcription factors like Olig2 in MSCs can enhance their differentiation
into oligodendrocytes and promote remyelination [51,52], while engineering MSCs to se-
crete specific growth factors, such as brain-derived neurotrophic factor (BDNF) or glial
cell-derived neurotrophic factor (GDNF), can support neuronal survival and regenera-
tion [53,54]. These examples highlight the importance of understanding and controlling
MSC differentiation to maximize their therapeutic potential in post-SCI tissue regeneration.

The mechanical properties of extracellular matrix (ECM), such as stiffness, topography,
and 3D architecture, can significantly affect MSC differentiation [55]. MSCs sense and
respond to their mechanical environment through mechanotransduction, which involves
converting mechanical signals into biochemical and cellular responses [56]. For instance,
studies have shown that MSCs cultured on softer substrates with a stiffness similar to that
of the brain tend to differentiate into neural lineages, whereas those cultured on stiffer
substrates resembling bone tissue preferentially differentiate into osteogenic lineages [57].
Additionally, the topography and 3D architecture of the ECM can guide MSC alignment,
migration, and differentiation by providing physical cues that influence cell shape and cy-
toskeletal organization [58,59]. In the context of SCI, optimizing the mechanical properties
of the ECM could potentially enhance the therapeutic efficacy of MSCs by promoting their
differentiation into the desired neural cell types and improving their integration with the
host tissue.

This unique characteristic enables MSCs to replace damaged neural tissue, promote
the regeneration of neuronal circuits, and ultimately contribute to functional recovery after
SCI [27]. The process of neuronal regeneration is facilitated by the secretion of several
trophic factors, such as BDNF, GDNF, NGF, and CNTF, which stimulate the growth, differ-
entiation, and survival of neural cells [60]. Additionally, MSCs can promote the activation
and proliferation of endogenous neural stem cells (NSCs) and progenitor cells within the
injured spinal cord, further enhancing the regenerative process [61]. While it is clear that
MSCs can differentiate into the component parts of neural circuits, the evidence for their
ability to reestablish the correct neural circuits that existed prior to injury is still emerging.
A few studies have reported that MSCs, either directly or indirectly, can contribute to the for-
mation of functional neural circuits after SCI. For instance, Zeng et al. (2015) demonstrated
that MSCs transplanted into the injured spinal cord were able to differentiate into neurons
and form synapses with host neurons, contributing to the restoration of motor function [62].
Another study by Nakajima et al. (2012) showed that MSC transplantation promoted the
growth of host corticospinal tract axons and the formation of new synapses [63].

Another crucial aspect of MSC-mediated neuronal regeneration involves the modula-
tion of ECM components, such as CSPGs and matrix metalloproteinases (MMPs) [64,65].
By regulating the balance between ECM deposition and degradation, MSCs can create
a more permissive environment for axonal growth and neural regeneration [66]. MSCs
can also exert paracrine effects, which involve the release of extracellular vesicles (EVs)
containing various bioactive molecules, such as proteins, lipids, and nucleic acids [67].
These EVs can transfer their cargo to recipient cells in the injured spinal cord, influenc-
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ing their gene expression, proliferation, and differentiation, ultimately contributing to
neuronal regeneration [68].

In summary, MSCs promote neuronal regeneration through various mechanisms,
including their capacity to differentiate into neural cell types, the secretion of trophic
factors, stimulation of endogenous NSCs, modulation of ECM components, and paracrine
effects. These concerted actions of MSCs contribute to the restoration of neuronal circuits
and functional recovery following SCI.

2.3. Angiogenesis

MSCs play a critical role in promoting the formation of new blood vessels by secreting
pro-angiogenic factors, such as VEGF, angiopoietin-1, and basic fibroblast growth factor
(bFGF) [69,70]. The process of angiogenesis is crucial for the recovery of injured spinal
cord tissue, as it improves blood supply, accelerates tissue repair, and supports the survival
of neural cells [71,72]. In addition to the secretion of pro-angiogenic factors, MSCs can
also modulate the expression of various cell adhesion molecules and integrins, such as
intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-
1), which facilitate the recruitment and migration of endothelial cells to the injury site [73,74].
This process contributes to the formation of new blood vessels and enhances the overall
regenerative capacity of the injured spinal cord [75].

MSC-derived EVs also contribute to the angiogenic process by transferring bioac-
tive molecules, such as microRNAs (miRNAs) and proteins, to the recipient endothelial
cells [76]. These transferred molecules can regulate gene expression, promote endothelial
cell proliferation, migration, and tube formation, ultimately stimulating angiogenesis in
the injured spinal cord [77]. Additionally, MSCs can establish communication with other
cell types, such as pericytes and astrocytes, which play essential roles in the stabilization
and maturation of newly formed blood vessels [78]. By engaging in crosstalk with these
cells, MSCs can ensure the proper development and functionality of the newly generated
vascular network within the injured spinal cord [79].

In summary, MSCs contribute to angiogenesis through various mechanisms, including
the secretion of pro-angiogenic factors, modulation of cell adhesion molecules, release
of EVs, and interaction with other cell types involved in vascular development. These
collective actions of MSCs help improve blood supply to the injured spinal cord, facilitate
tissue repair, and support neural cell survival, ultimately contributing to functional recovery
after SCI.

2.4. Immunomodulation

MSCs possess remarkable immunomodulatory properties that contribute to their ther-
apeutic potential in SCI treatment [80]. Their ability to modulate the activity of various
immune cells, such as macrophages, T-cells, B-cells, and natural killer (NK) cells, helps
control inflammation, prevent autoimmune responses, and create a more favorable en-
vironment for tissue repair [81,82]. MSCs can regulate the polarization of macrophages,
promoting a switch from the pro-inflammatory M1 phenotype to the anti-inflammatory
M2 phenotype [83]. This shift in macrophage polarization is essential for controlling in-
flammation and fostering an environment that supports tissue repair and regeneration [84].
Additionally, MSCs can suppress the activation and proliferation of T-cells, modulate
their cytokine secretion profile, and induce the generation of regulatory T-cells (Tregs),
which play a crucial role in maintaining immune tolerance and preventing autoimmune
responses [85,86]. MSCs can also inhibit B-cell activation, proliferation, and antibody
production, further dampening the potential for harmful immune reactions [87].

MSCs can directly interact with NK cells, downregulating their cytotoxic activity and
pro-inflammatory cytokine production [44,88]. Moreover, MSCs can secrete various soluble
factors, such as TGF-β, prostaglandin E2 (PGE2), and indoleamine 2,3-dioxygenase (IDO),
which contribute to their immunomodulatory effects [89]. Another important aspect of
MSC-mediated immunomodulation is the release of EVs, which contain bioactive molecules,
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such as proteins, lipids, and nucleic acids [90,91]. These EVs can mediate intercellular
communication and modulate the function of recipient immune cells, thus contributing to
the overall immunomodulatory effects of MSCs [92].

In summary, MSCs exert their immunomodulatory effects through various mecha-
nisms, including the modulation of immune cell polarization, secretion of soluble factors,
and release of EVs. These actions help control inflammation, prevent autoimmune re-
sponses, and create a more favorable environment for tissue repair and regeneration
following SCI.

2.5. Axonal Regeneration

MSCs play a crucial role in promoting axonal regeneration after SCI through various
mechanisms, including the secretion of diverse neurotrophic factors, such as NGF, CNTF,
and FGF [93–95]. These factors not only stimulate the growth of new axons but also support
the survival and differentiation of neurons, ultimately leading to improved connectivity and
functionality in the injured spinal cord [96]. In addition to secreting neurotrophic factors,
MSCs can influence the local cellular environment by releasing cytokines and chemokines
that recruit endogenous stem cells to the site of injury [97,98]. This recruitment of stem cells
can further support axonal regeneration and promote tissue repair by providing additional
cellular resources for the formation of new neuronal connections [99].

MSCs can also promote axonal regeneration by directly interacting with neurons and
fostering the extension of growth cones [100]. This interaction can be mediated by various
cell adhesion molecules and extracellular signaling molecules, such as N-cadherin and
ephrin family members, which help guide axonal growth and encourage the formation
of new synaptic connections [101]. Moreover, MSCs can enhance the intrinsic growth
capacity of injured neurons, including both central nervous system (CNS) and PNS neu-
rons, such as dorsal root ganglion (DRG) neurons, by upregulating the expression of
regeneration-associated genes (RAGs), such as growth-associated protein-43 (GAP-43),
arginase-1 (Arg-1), and activating transcription factor-3 (ATF3) [102–105]. These RAGs play
a critical role in the regenerative process by supporting the growth and guidance of axons
and promoting synaptic plasticity [106]. Furthermore, MSCs can form cellular bridges
at the injury site, which help guide regenerating axons across the lesion and re-establish
connections with target neurons [107]. This scaffold-like structure created by MSCs can
enhance the overall regenerative capacity of the injured spinal cord, leading to improved
functional recovery.

In summary, MSCs promote axonal regeneration through multiple mechanisms, in-
cluding the secretion of neurotrophic factors, recruitment of endogenous stem cells, direct
interaction with neurons, upregulation of regeneration-associated genes, and formation
of cellular bridges. These combined actions contribute to enhanced axonal growth and
improved functional recovery after SCI.

2.6. Glial Scar Reduction

Glial scar formation is a natural response to SCI, characterized by the activation of
astrocytes and the deposition of various ECM components [108]. Although glial scars
play a protective role in limiting the spread of inflammation and tissue damage, they also
create a physical and biochemical barrier to axonal regeneration, ultimately impeding
functional recovery [48].

MSCs can modulate glial scar formation by targeting multiple aspects of this process.
Firstly, they can regulate the activation and proliferation of astrocytes by secreting anti-
inflammatory cytokines, such as interleukin-4 (IL-4) and interleukin-13 (IL-13) [109]. These
cytokines inhibit the pro-inflammatory signaling pathways that drive astrocyte activation
and proliferation, thereby limiting glial scar formation [110,111]. Secondly, MSCs can
directly influence the production and degradation of various ECM components within the
glial scar. By secreting ECM-modulating enzymes, MSCs can regulate the balance of ECM
synthesis and breakdown, ensuring an optimal remodeling process that supports axonal
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regeneration [112,113]. Additionally, MSCs have been reported to modulate the expression
of genes involved in ECM synthesis, such as fibronectin and laminin [114,115], and genes
involved in ECM degradation, such as MMPs and tissue inhibitors of metalloproteinases
(TIMPs) [116,117]. These MSC-mediated mechanisms impact the composition of the glial
scar and influence its permissiveness for axonal growth. Moreover, MSCs can promote
the infiltration of macrophages and microglia into the glial scar, which can help facilitate
the clearance of inhibitory debris and ECM components [118]. This process is supported
by the secretion of chemoattractants, such as C-X-C motif chemokine ligand 12 (CXCL12),
chemokine (C-C motif) ligand 2 (CCL2), and platelet-derived growth factor (PDGF), which
recruit these immune cells to the site of injury [119,120]. Furthermore, MSCs can alter the
phenotype of reactive astrocytes, driving them toward a more permissive state that supports
neuronal regeneration [60]. This phenotypic switch can be mediated by the secretion of
factors such as insulin-like growth factor-1 (IGF-1), FGF-2, and erythropoietin (EPO), which
promote the expression of genes associated with tissue repair and axonal growth [121,122].

In summary, MSCs play a vital role in promoting neuronal regeneration through a
variety of mechanisms (Table 1). Firstly, their ability to differentiate into neural cell types,
such as neurons and glial cells, enables them to replace damaged tissue and contribute to
repair. Secondly, they secrete trophic factors like BDNF, GDNF, NGF, and CNTF, promoting
growth, differentiation, and survival of neural cells and fostering a supportive regeneration
environment. Thirdly, MSCs enhance regeneration by stimulating endogenous NSCs and
progenitor cells within the injured spinal cord, leading to the formation of new neural cells.
Fourthly, they modulate ECM components, including CSPGs and MMPs, balancing ECM
deposition and degradation to create a permissive environment for axonal growth and neu-
ral regeneration. Finally, MSCs exert paracrine effects through the release of EVs containing
bioactive molecules such as proteins, lipids, and nucleic acids. These EVs transfer their
cargo to recipient cells in the injured spinal cord, influencing gene expression, proliferation,
and differentiation, ultimately contributing to neuronal regeneration. Collectively, these di-
verse mechanisms employed by MSCs collaborate to restore neuronal circuits and enhance
functional recovery following SCI. Exploiting these actions can significantly improve the
therapeutic potential of MSCs for treating spinal cord injuries and other CNS disorders.

Table 1. Therapeutic Mechanisms of Mesenchymal Stem Cells in Spinal Cord Injury.

Mechanism Key Factors/Processes Description References

Neuroprotection VEGF, NGF, IGF-1, BDNF,
Anti-inflammatory cytokines

MSCs secrete growth factors and cytokines that support
neuronal survival and regeneration, reduce inflammation, and
create a supportive microenvironment for damaged neurons.

[21–25,27,29,30]

Promoting
Neuronal

Regeneration

Differentiation, Trophic factors,
Activation of endogenous NSCs,

ECM modulation,
Paracrine effects

MSCs can differentiate into neural cell types, secrete trophic
factors, stimulate endogenous NSCs, modulate ECM

components, and exert paracrine effects, contributing to the
regeneration of neuronal circuits and functional recovery.

[33–39]

Angiogenesis
Pro-angiogenic factors, Cell

adhesion molecules, EVs,
Interaction with other cell types

MSCs promote the formation of new blood vessels through the
secretion of pro-angiogenic factors, modulation of cell adhesion
molecules, release of EVs, and interaction with other cell types

involved in vascular development.

[71–74,76,77]

Immunomodulation Immune cell modulation,
Soluble factors, EVs

MSCs modulate the activity of immune cells, secrete soluble
factors, and release EVs to control inflammation, prevent

autoimmune responses, and create a favorable environment for
tissue repair and regeneration.

[44,81–83,85–91]

Axonal
Regeneration

Neurotrophic factors, ECM
modulation, Direct interaction

with neurons, EVs,
Regeneration-associated genes

MSCs secrete neurotrophic factors, modulate ECM, directly
interact with neurons, release EVs, and upregulate RAGs to
promote axonal regeneration, leading to enhanced axonal

growth and improved functional recovery.

[93–95,97,98,100–106]

Glial Scar
Reduction

Anti-inflammatory cytokines,
ECM degradation, Infiltration of

immune cells, Alteration of
reactive astrocyte phenotype

MSCs modulate astrocyte activation, regulate ECM production
and degradation, promote immune cell infiltration, and alter

the phenotype of reactive astrocytes to reduce glial scar
formation and create a permissive environment

for regeneration.

[48,108–122]
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3. Clinical Applications of Multipotent Stem Cells in SCI Treatment

The unique molecular mechanisms of MSCs render them a promising candidate for
the development of innovative therapies for SCI. In this discussion, we explore the potential
clinical applications of MSCs in the treatment of SCI. We also provide a detailed comparison
of the three MSC-based clinical applications in SCI treatment, highlighting their advantages
and challenges in a more comprehensive manner.

3.1. Cell Transplantation

Direct transplantation of MSCs into the injured spinal cord has emerged as a promising
therapeutic strategy, with MSCs demonstrating the ability to differentiate into neural cells,
modulate the local environment, and promote repair [123]. In addition to their regenerative
potential, MSCs have also been shown to migrate to the site of injury, further highlight-
ing their potential for targeted therapy [94,124]. Clinical trials have shown promising
results, with a study reporting significant improvements in motor and sensory function
following MSC transplantation [125]. In another clinical trial, patients treated with MSC
transplantation showed improvements in motor, sensory, and autonomic functions, as
well as a reduction in neuropathic pain [126]. Moreover, MSC transplantation has been
associated with reduced inflammation, decreased glial scar formation, and enhanced axonal
regeneration, all of which contribute to the overall functional recovery after SCI [127–129].
Despite these promising findings, there are several challenges that must be addressed to
optimize MSC transplantation as a viable therapy for SCI. One such challenge is deter-
mining the optimal source of MSCs, as cells can be isolated from various tissues, such as
bone marrow, adipose tissue, and umbilical cord blood, each with its unique advantages
and limitations [130,131]. The timing of MSC transplantation is another important con-
sideration, as the stage of injury and inflammatory response may significantly impact the
therapeutic outcome [132,133].

Developing safe and effective delivery methods for MSC transplantation is also critical.
Currently, researchers are exploring various routes of administration, such as intravenous,
intrathecal, or intraspinal injections, to determine the most efficient and least invasive
approach [134]. Furthermore, long-term safety and efficacy remain major concerns. Studies
must continue to assess the potential risks associated with MSC transplantation, such
as tumorigenicity [135,136], unwanted differentiation, or immune rejection [137,138]. By
addressing these challenges and refining the MSC transplantation process, researchers will
be better equipped to harness the regenerative potential of MSCs and develop effective
therapeutic strategies for spinal cord injury patients.

3.2. Tissue Engineering

MSCs can be combined with biomaterial scaffolds to create engineered tissue con-
structs that closely resemble the native spinal cord structure [107]. These constructs can
be implanted into the injured spinal cord, offering a supportive environment for tissue
regeneration and functional recovery [107,139]. Scaffolds can be fabricated from natural
materials, such as collagen, chitosan, or hyaluronic acid, or synthetic materials, such as
poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol (PEG), each with specific
properties that can be tailored to support MSC survival, differentiation, and integration into
the host tissue [140,141]. Tissue engineering approaches can also incorporate the controlled
release of growth factors or other bioactive molecules to enhance the regenerative potential
of MSCs [142]. By incorporating these molecules into the scaffold, a sustained release can be
achieved, promoting a more conducive environment for neural regeneration and functional
recovery. Moreover, advances in microfabrication and 3D bioprinting technologies have
enabled the development of more complex and biomimetic scaffold designs [143–145].
These technologies can create spatially defined microenvironments within the scaffold,
allowing for the precise control of cell distribution and organization. This level of control
has the potential to improve the formation of functional neural circuits and enhance the
overall therapeutic outcome.
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Despite the promising results seen in preclinical studies, further research is needed
to optimize scaffold design [146], identify the most effective combination of MSCs and
biomaterials [147], and evaluate the long-term safety and efficacy of these engineered
constructs in clinical settings [148]. By addressing these challenges, tissue engineering
approaches utilizing MSCs have the potential to significantly impact the treatment of
spinal cord injuries, providing novel strategies to facilitate functional recovery and improve
patients’ quality of life.

3.3. Cell-Based Therapies

MSC-derived exosomes have attracted significant attention as a cell-free therapeutic
approach for SCI due to their regenerative and neuroprotective properties [149,150]. These
small EVs are released by MSCs and contain a variety of bioactive molecules, including
growth factors, signaling molecules, microRNAs, and proteins, which can contribute to
tissue repair and functional recovery [151]. Exosome-based therapies offer several advan-
tages over traditional cell transplantation methods. First, they reduce the risk of immune
rejection and inflammatory responses, as exosomes are considered to be immunologically
inert [152]. This makes them particularly suitable for allogeneic transplantation, where the
donor and recipient are not genetically identical [153]. Second, exosome-based therapies are
less likely to induce tumor formation or unwanted differentiation, as they do not contain
live cells that could potentially proliferate uncontrollably or differentiate into undesired
cell types [154,155]. This contributes to an improved safety profile for exosome-based treat-
ments. Third, exosomes are more easily stored, transported, and administered compared to
live cell products, making them a more feasible option for widespread clinical use [17,153].
Moreover, exosomes can be concentrated and purified, allowing for precise control over
dosage and therapeutic potency [156].

Despite these advantages, there are several challenges that must be addressed before
exosome-based therapies can be successfully implemented in clinical settings. Standardiz-
ing exosome isolation and characterization protocols is essential to ensure the reproducibil-
ity of results and the quality of exosome products [157,158]. Additionally, researchers must
develop methods to efficiently deliver exosomes to the site of injury while maintaining
their bioactivity and minimizing potential side effects. Finally, further studies are needed
to evaluate the long-term safety and efficacy of exosome-based therapies in clinical trials.
These trials will provide essential data on the therapeutic potential of MSC-derived exo-
somes in the treatment of SCI and help guide the development of future therapies based on
this promising approach.

In conclusion, MSCs hold great promise for revolutionizing SCI treatment due to
their unique regenerative properties. By exploring their potential in cell transplantation,
tissue engineering, and cell-based therapies, we can work towards improving the lives of
those affected by SCI. As research advances, it’s essential to deepen our understanding
of MSCs, refine therapies, and tackle challenges in translating findings to clinical practice.
This involves optimizing MSC sources, delivery methods, and intervention timing, as
well as standardizing protocols for isolation, expansion, and characterization. Conducting
well-designed clinical trials will help assess the safety, efficacy, and long-term outcomes of
MSC-based therapies (Table 2). By addressing these challenges and building on current
research, we can unlock the full potential of MSC-based therapies and create innovative
treatments for SCI and other neurological disorders. This progress has the potential to
greatly impact the lives of patients and their families, offering hope for a better future.
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Table 2. Detailed comparison of MSC-based clinical applications in SCI treatment.

Clinical Application Advantages Challenges References

Cell Transplantation

MSCs differentiate into neural cells,
replacing damaged tissue

Identifying optimal MSC source (bone
marrow, adipose tissue,
umbilical cord blood)

[130,131]

Modulation of local environment
(immunomodulation, angiogenesis,

axonal regeneration)

Determining the best
timing of transplantation [132,133]

MSC migration to injury site for
targeted therapy

Developing safe, effective
delivery methods [134]

Improved motor, sensory, and
autonomic functions in clinical trials

Long-term safety concerns
(tumorigenicity, unwanted

differentiation, immune rejection)
[135–138]

Tissue Engineering

Controlled release of growth factors or
bioactive molecules

Evaluating long-term safety and efficacy
in clinical settings [142]

Supportive environment for
tissue regeneration

Optimizing scaffold design
(natural vs. synthetic materials) [146]

Customizable scaffolds from natural or
synthetic materials

Identifying the most effective
combination of MSCs and biomaterials [147]

Advanced microfabrication and 3D
bioprinting for biomimetic designs - [148]

Cell-based Therapies
(MSC-derived exosomes)

Reduced risk of immune rejection and
inflammatory responses

Standardizing exosome isolation and
characterization protocols [152]

Lower likelihood of tumor formation or
unwanted differentiation

Developing efficient delivery methods
while maintaining bioactivity [154,155]

Easier storage, transport,
and administration

Evaluating long-term safety and efficacy
in clinical trials [17,153]

Concentration and purification for
precise dosage control - [156]

4. Challenges and Future Directions

While MSC-based therapies hold great potential for revolutionizing SCI treatment,
numerous challenges must be addressed before they can be widely implemented in clinical
settings. A key challenge is optimizing MSC sources, isolation, and culture methods to
ensure the therapeutic efficacy and safety of the cells [159,160]. Identifying the optimal
timing and delivery methods for MSC transplantation is crucial, as these factors greatly
impact treatment outcomes. Long-term assessments of safety and efficacy are necessary to
provide a comprehensive understanding of the potential risks and benefits of MSC-based
therapies [161]. For patients with chronic SCI, MSC-based therapies may offer some hope
for promoting functional recovery. Studies have reported positive effects of MSC transplan-
tation in animal models of chronic SCI, including improvements in functional outcomes,
reduced glial scar formation, and enhanced axonal regeneration [127,129]. However, the
challenges associated with treating chronic SCI, such as the long-standing presence of
inhibitory molecules, glial scar formation, and neuronal loss, necessitate further research
to optimize MSC-based strategies for this patient population. It is important to explore
innovative approaches, such as combinatorial therapies, targeted drug delivery, or tissue
engineering techniques, to enhance the therapeutic potential of MSCs for chronic SCI
patients. Deepening our understanding of the complex SCI microenvironment will help
enhance the regenerative potential of transplanted MSCs and inform the development of
targeted strategies [123,162,163]. Additionally, investigating the potential of combinatorial
therapies, such as integrating MSC-based treatments with rehabilitation, pharmacologi-
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cal interventions, or electrical stimulation, may lead to synergistic effects and improved
therapeutic outcomes [164].

Developing standardized protocols and guidelines for MSC-based therapies is essen-
tial to ensure consistency in treatment approaches and facilitate comparisons of outcomes
across clinical trials. Addressing the regulatory and ethical challenges associated with
MSC-based therapies is also crucial for responsible translation into clinical practice [165].
Moreover, future research should explore innovative therapeutic strategies, such as using
MSC-derived exosomes, gene-modified MSCs, or tissue engineering approaches incor-
porating biomaterials and scaffolds, which may offer additional benefits and overcome
some limitations of traditional MSC-based therapies. By tackling these challenges and
investigating novel therapeutic avenues, the field of regenerative medicine can continue to
advance and improve clinical outcomes for patients with SCI.

Recent studies have investigated the use of MSCs for treating CNS disorders, including
not only SCI but also traumatic brain injury (TBI) [166–168]. However, it is important to
understand the similarities and differences in the molecular and cellular pathogenesis
of TBI and SCI as it relates to MSC-based therapy (Table 3). Although both TBI and SCI
involve damage to the CNS and share common mechanisms, such as inflammation [169],
glial scar formation [170], and neuronal apoptosis [171], they also exhibit distinct molecular
and cellular pathogenesis. These differences impact the functional deficits experienced
by patients, the specific cell types, and the neural circuits involved, as well as the optimal
timing and delivery of MSC-based therapies. For instance, in TBI, MSCs may need to be
delivered earlier to counteract the rapid spread of inflammation and tissue damage [172],
while in SCI, their delivery might be more effective during the subacute phase to promote
tissue regeneration and reduce scar formation [47,173]. Despite these differences, MSCs
appear to have promising therapeutic potential for both conditions. However, when
designing MSC-based therapies, it is crucial to consider the specific cellular and molecular
context of each injury type to optimize their efficacy and safety. For example, the use of
MSCs overexpressing specific growth factors, such as BDNF for TBI [174] or GDNF for
SCI [175], may enhance their therapeutic effects by targeting the unique pathophysiological
features of each injury.

Table 3. Similarities and differences between TBI and SCI in the context of MSCs-based therapy.

Traumatic Brain Injury (TBI) Spinal Cord Injury (SCI)

Similarities

Direct mechanical forces (e.g., contusion, penetration) Direct mechanical forces (e.g., compression, transection)

Inflammation is a common mechanism Inflammation is a common mechanism

Glial scar formation Glial scar formation

Neuronal apoptosis Neuronal apoptosis

MSCs promote neuroprotection, angiogenesis, and immunomodulation MSCs promote neuroprotection, angiogenesis, and immunomodulation

Differences

TBI primarily affects brain regions, leading to cognitive and emotional impairments SCI primarily affects motor and sensory functions of the spinal cord

Blood-brain barrier disruption is more prevalent in TBI Blood-spinal cord barrier disruption is a concern in SCI

MSCs may need to be targeted to specific brain regions in TBI MSCs can be administered locally or systemically in SCI

MSCs may need to promote neuronal circuit repair in TBI MSCs may need to promote axonal regeneration in SCI

MSCs may modulate TBI-induced neuroinflammation (ex: BDNF) MSCs may modulate SCI-induced neuroinflammation (ex: GDNF)

5. Conclusions

Multipotent stem cells represent a promising direction for the development of innova-
tive therapies for spinal cord injuries. The molecular mechanisms by which MSCs promote
tissue repair and their potential clinical applications have generated significant interest
and hope in the field of regenerative medicine. As research progresses, it is imperative to
continue investigating the safety, efficacy, and optimal delivery methods of MSC-based
therapies while addressing the challenges associated with translating preclinical findings
into widespread clinical applications. Such challenges encompass determining the ideal
source of MSCs, the most suitable timing for intervention, and the most effective route of
administration. Additionally, it is crucial to establish standardized methods for isolating,
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expanding, and characterizing MSCs to ensure reproducibility and patient safety. Future
studies should continue to explore the potential of MSCs and their derivatives in treating
spinal cord injuries. This involves investigating the long-term effects of MSC transplanta-
tion, optimizing delivery methods, and conducting further clinical trials to establish the
safety and efficacy of MSC-based therapies. Moreover, the exploration of combinatory
therapies that involve MSCs with other treatment modalities, such as electrical stimulation
or rehabilitative training, may further enhance the therapeutic outcomes for SCI patients.
As our understanding of the molecular mechanisms underlying MSCs’ regenerative prop-
erties deepens, we move closer to realizing the full potential of this promising therapeutic
approach for the millions of individuals living with the devastating consequences of spinal
cord injuries. This progress offers renewed hope for improved recovery and quality of life
for SCI patients and their families, ultimately transforming the landscape of SCI treatment
and management.
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