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Simple Summary: There have been reports on alternate feeding between diets based on different
lipid sources, but how the intestinal microbiota of fish responds to alternate feeding strategies and
its relevant roles in the host’s health have not been reported. The present study provides novel
results in this area. The main objective of the study was to assess how the intestinal microbiota of fish
responds to alternate feeding between diets based on different lipid sources. Foremost, the juvenile
turbot accepted alternate feeding between diets based on different lipid sources with no negative
effects on survival or growth performance. Additionally, novel results were observed regarding
the different bacterial compositions, microbial co-occurrence networks, and functional predictions
among the different alternating feeding strategies. The results of this study indicate that a more
comprehensive evaluation should be conducted from the perspective of intestinal microorganisms
when a new feeding strategy is applied in aquaculture practices. These results will contribute to the
nutritional regulation of aquatic animals from the perspective of microorganisms.

Abstract: A nine-week feeding trial was conducted to investigate changes in the intestinal microbiota
of turbot in response to alternate feeding between terrestrially sourced oil (TSO)- and fish oil (FO)-
based diets. The following three feeding strategies were designed: (1) continuous feeding with the
FO-based diet (FO group); (2) weekly alternate feeding between soybean oil (SO)- and FO-based
diets (SO/FO group); and (3) weekly alternate feeding between beef tallow (BT)- and FO-based diets
(BT/FO group). An intestinal bacterial community analysis showed that alternate feeding reshaped
the intestinal microbial composition. Higher species richness and diversity of the intestinal microbiota
were observed in the alternate-feeding groups. A PCoA analysis showed that the samples clustered
separately according to the feeding strategy, and among the three groups, the SO/FO group clustered
relatively closer to the BT/FO group. The alternate feeding significantly decreased the abundance of
Mycoplasma and selectively enriched specific microorganisms, including short-chain fatty acid (SCFA)-
producing bacteria, digestive bacteria (Corynebacterium and Sphingomonas), and several potential
pathogens (Desulfovibrio and Mycobacterium). Alternate feeding may maintain the intestinal microbiota
balance by improving the connectivity of the ecological network and increasing the competitive
interactions within the ecological network. The alternate feeding significantly upregulated the KEGG
pathways of fatty acid and lipid metabolism, glycan biosynthesis, and amino acid metabolism in
the intestinal microbiota. Meanwhile, the upregulation of the KEGG pathway of lipopolysaccharide
biosynthesis indicates a potential risk for intestinal health. In conclusion, short-term alternate feeding
between dietary lipid sources reshapes the intestinal microecology of the juvenile turbot, possibly
resulting in both positive and negative effects.

Keywords: dietary lipid source; soybean oil; beef tallow; gastro-intestinal tract; intestinal health;
Scophthalmus maximus

Biology 2023, 12, 650. https://doi.org/10.3390/biology12050650 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12050650
https://doi.org/10.3390/biology12050650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-1000-9928
https://orcid.org/0000-0002-7471-9021
https://doi.org/10.3390/biology12050650
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12050650?type=check_update&version=1


Biology 2023, 12, 650 2 of 16

1. Introduction

Fish oil (FO) is the most important lipid source in aqua feeds [1]. However, due to
supply shortages and the rising costs of FO, terrestrially sourced oils (TSOs) have been
widely used as alternative lipid sources in fish feeds [2]. Soybean oil (SO) and beef tallow
(BT) are important TSOs. However, an FO replacement with high levels of SO or BT usually
results in decreased growth performance, excessive hepatic lipid deposition, reduced n-3
long-chain polyunsaturated fatty acid (LC-PUFA) contents, and increased inflammatory
responses [3–6]. Feeding strategies are being modulated to spare FO in fish feeds. Alternate
feeding between FO- and TSO-based diets is receiving increasing attention. Francis et al.
reported that the retention and deposition of EPA and DHA in Murray cod (Maccullochella
peelii) were more efficient when canola oil- and FO-based diets were regularly alternated in
a series of weekly cycles [7]. Eroldoğan et al. also investigated the same feeding strategy
in gilthead sea bream (Sparus aurata) and reported that the growth performance and the
EPA and DHA contents were elevated when gilthead sea bream were subjected to a daily
alternation of canola oil- and fish oil-based diets [8]. Similarly, our previous studies have
confirmed that alternate feeding weakened the negative effects of TSO on the growth
performance and fillet quality of turbot [9]. However, how the intestinal microbiota of
fish responds to alternate feeding strategies and its relevance to the host’s health have not
been reported.

Intestinal microbiota play a vital role in intestinal health and nutrient
metabolism [10–12]. Complex and relatively stable microbe–microbe and host–microbe
relationships exist in animal gastrointestinal microecosystems [13–15]. The composition
of the intestinal microbiota of marine fish can be affected by many factors. These factors
include host ones, such as genotype, physiological status, and nutritional level, as well
as environmental ones, such as diet, water temperature, and water salinity [16–18]. It has
been reported that dietary lipids can alter the intestinal microbiota of marine fish [19,20].
In the present study, we adopted a feeding strategy for juvenile turbot where TSO- and
FO-based diets were alternated weekly. The present study was aimed at assessing how
the intestinal microbiota of fish responds to alternate feeding between TSO- and FO-based
diets. The microbe–microbe and host–microbe interactions under this feeding strategy
were also investigated. These results will contribute to the nutritional regulation of aquatic
animals from the perspective of microorganisms.

2. Materials and Methods
2.1. Experimental Diets

The experimental diets based on FO, SO, and BT, respectively, were formulated and
contained approximately 12% crude lipid and 50% crude protein (Table 1; the fatty acid
composition is shown in Table 2). The FO-based diet was used as the control diet. In the
other two experimental diets, FO was completely replaced by SO or BT. The diets were
prepared as previously described [21].

2.2. Fish Husbandry

The healthy juvenile turbot used in this experiment were obtained from Kehe Ocean
Co., Ltd. (Weihai, Shandong Province, China). Before the feeding experiment, the fish
were acclimated to the experimental conditions for 7 days, during which they were fed
a low-lipid commercial diet. Then, the fish with similar sizes (an initial mean weight of
26 g) were randomly assigned to nine polyethylene tanks (500 L; 35 fish per tank). All of
the fish were cultured in a flow-through seawater system (indoor). Three replica tanks
were randomly assigned to each feeding strategy. The seawater was pumped from the
deep well, aerated, and then pumped into the fish rearing system. The feeding schedules
were as follows: (1) the FO group (control) was fed with the FO-based diet continuously;
(2) the SO/FO group was fed with weekly alternations of the SO- and FO-based diets; and
(3) the BT/FO group was fed with weekly alternations of the BT- and FO-based diets. The
9-week feeding trial started and ended with the TSO-based diets (Figure 1). Following
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the principle of apparent satiation feeding, the fish were fed twice daily at 7:30 and 17:30.
A third of the rearing water was changed after 2 h of each feeding. During the experiment,
the conditions were as follows: the water temperature was 13.2–15.2 ◦C; the dissolved
oxygen was 6–8 mg/L; the salinity was 27–29‰; and the pH was 7.5–8.0.

Table 1. Formulation and proximate composition of the experimental diets (% dry matter). 1 Mineral
premix (g kg−1 diet): iron, 37.14; zinc, 16.43; manganese, 3.03; cuprum, 0.95; cobalt, 0.04; and
iodine, 0.1, which were designed for sea fish and purchased from Qingdao Master Biotech Co., Ltd.,
Qingdao, China. 2 Vitamin premix (mg kg−1 diet): vitamin A, 376.2; vitamin D3, 4.5; vitamin E, 7600;
menadione, 1200; riboflavin, 1350; vitamin B6, 1100; vitamin B12, 7.5; vitamin B3, 4500; biotin, 47.5;
folic acid, 456; nicotinamide, 700; and inositol, 10,000, which were designed for sea fish and purchased
from Qingdao Master Biotech Co., Ltd., Qingdao, China. 3 Containing 50% calcium propionic acid
and 50% fumaric acid.

Ingredients Fish Oil Soybean Oil Beef Tallow

Fish meal 40 40 40
Soy protein concentrate 5 5 5

Soybean meal 10 10 10
Wheat meal 21.98 21.98 21.98

Casein 4 4 4
Brewer’s yeast 8 8 8

Mineral premix 1 0.5 0.5 0.5
Vitamin premix 2 0.2 0.2 0.2

Monocalcium phosphate 1 1 1
L-ascorbyl-2-polyphosphate 0.2 0.2 0.2

Choline chloride 0.2 0.2 0.2
Betaine 0.3 0.3 0.3

Ethoxyquin 0.02 0.02 0.02
Mold inhibitor 3 0.1 0.1 0.1

Soya lecithin 1 1 1
Fish oil 7.5

Soybean oil 7.5
Beef tallow 7.5

Proximate composition
Moisture 8.08 7.55 7.94

Crude protein 51.81 51.49 51.57
Crude lipid 11.56 11.87 11.70

Ash 9.50 9.76 9.46

Table 2. Fatty acid composition of the experimental oils and diets (% total fatty acid). ND: non-detectable.

Fatty Acid
Oil Diet

Fish Oil Soybean Oil Beef Tallow Fish Oil Soybean Oil Beef Tallow

C14:0 6.88 0.09 2.67 4.82 1.51 2.65
C16:0 20.80 11.00 36.50 18.52 13.06 24.60
C18:0 4.37 4.02 20.30 4.27 3.76 11.69
∑SFA 34.98 16.35 61.61 27.62 18.33 38.93

C16:1n-7 6.50 0.09 1.38 4.71 1.54 2.05
C18:1n-9 15.44 26.85 32.37 12.34 17.50 19.57
C20:1n-9 4.67 0.56 0.12 2.64 0.46 0.26
C22:1n-9 0.65 ND ND 0.41 0.05 0.04
C24:1n-9 0.64 ND ND 0.65 0.21 0.23
∑MUFA 27.90 27.49 33.87 20.75 19.76 22.15
C18:2n-6 8.04 50.50 3.86 11.84 31.37 8.37
C20:4n-6 1.06 ND 0.05 0.76 0.22 0.25

n-6∑PUFA 9.50 50.86 3.94 12.89 31.73 8.76
C18:3n-3 2.50 5.24 0.26 2.15 3.44 0.95
C20:3n-3 0.28 ND ND 0.20 0.05 0.05
C20:5n-3 9.52 ND ND 7.96 2.90 2.92
C22:6n-3 14.8 ND ND 13.26 4.49 4.58

n-3∑PUFA 27.10 5.24 0.26 23.56 10.89 8.50
n-3/n-6 2.85 0.10 0.06 1.83 0.34 0.97
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Figure 1. Flowchart of the feeding trial. Sampling for the present study was conducted at the end of
week 9.

2.3. Sample Collection

At the end of week 9 and after 24 h of starvation, the fish were weighted. Considering
that our study aimed for an intestinal autochthonous microbial composition, as described
in our previous study, the 24 h hunger period ensures intestinal emptying in the turbot [9].
Two fish per tank (six fish per group) were randomly selected for the intestinal microbiota
analysis. In brief, the exterior of the fish was wiped with 70% alcohol. After that, the
hindgut was dissected with sterile anatomical tools near an alcohol burner and transferred
into 2 mL sterile tubes (Corning, Corning, NY, USA), frozen in liquid nitrogen, and stored
at−80 ◦C before use. All animal care and handling protocols were approved by the Animal
Care and Use Committee of the Yellow Sea Fisheries Research Institute (recorded case
number: IACUC202003154258).

2.4. Intestinal Microbiota DNA Extraction, 16S rRNA Sequencing, and Data Analysis

The bacterial DNA was extracted using the QIAamp® Fast DNA Stool Mini Kit (Qia-
gen, Hilden, Germany), according to the manufacturer’s instructions. Detailed information
on DNA extraction and sequencing can be found in a previously published article [9]. To
evaluate the diversity of the host microorganisms and the differences among the microbial
communities, alpha and beta diversity analyses were performed. The dissimilarity among
the microbial communities was evaluated with the unweighted UniFrac distance. A MetaS-
tat analysis identified genera with different abundances between the groups. In addition, a
co-occurrence network analysis was assessed by calculating the relative abundance matrix
based on the genus level using the psych package in R, version 3.6.0. To compare the
co-occurrence patterns of the bacteria, three networks were generated based on the feeding
strategies. The Spearman’s rank correlation coefficient (r > 0.6 at p < 0.05) was utilized to
calculate the correlation. Based on the calculated correlation, the networks were constructed
with the nodes representing the bacterial genera and the edges representing the significant
correlation (positive or negative interactions) between the nodes. Furthermore, the number
of nodes and edges, graph density, modularity, average path length, and average degree
were calculated for each network. The correlation matrix was visualized using Gephi 0.9.2.

2.5. Functional Predictions of Intestinal Microbiota

The Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt 2.3.0-b) was used to predict the functional profiles of the microbial com-
munities under the three feeding strategies. Then, by standardizing the copy number of
the data with a new OTU table, the relative Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway abundance was obtained. The output files of the PICRUSt used STAMP
(Statistical Analysis of Metagenomic Profiles) for the statistical analysis and visualization.
Welch’s two-sided t-test was used to predict the significant differences in the metagenomic
pathway, and Benjamini–Hochberg FDR was used to eliminate the KEGG false-positive
pathway generated by the multiple comparisons.
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2.6. Calculation and Statistical Methods

Survival = final number of fish/initial number of fish × 100
Weight gain = (final weight − initial weight)/initial weight × 100
Feed efficiency ratio = (final weight − initial weight)/total dry feed × 100
Viscerosomatic index (VSI) = wet viscera weight/fish body weight × 100
Hepatosomatic index (HSI) = wet liver weight/fish body weight × 100
In addition to the microbiota sequencing data, other statistical analyses were per-

formed using SPSS 26.0. The data were subjected to a one-way analysis of variance
(ANOVA), followed by a Tukey’s test. The results were presented as means ± standard
errors. A p value of < 0.05 in the statistical tests was considered significant.

3. Results
3.1. Growth Performance and Somatic Parameters

At the end of the feeding trial, the alternate feeding between the TSO- and FO-based
diets did not induce alterations in the growth performance or somatic parameters of the
juvenile turbot. As shown in Table 3, there were no significant differences in the final
weight, survival rate, weight gain, feed efficiency ratio, VSI, or HSI among the groups
(p > 0.05).

Table 3. Growth performance and somatic parameters of the experimental turbot. The values are
the means of three tanks ± SEM. The mean values in the same row were not significantly different
(p > 0.05). VSI: viscerosomatic index; HSI: hepatosomatic index.

Parameters FO SO/FO BT/FO

Growth performance
Initial weight g 25.99 ± 0.01 25.98 ± 0.03 26.01 ± 0.01
Final weight g 56.28 ± 4.31 58.92 ± 1.52 55.31 ± 9.44

Survival % 63.86 ± 5.95 56.19 ± 3.30 61.43 ± 10.10
Weight gain % 116.50 ± 16.70 126.80 ± 5.80 132.9 ± 14.10

Feed efficiency ratio 0.94 ± 0.16 0.88 ± 0.08 0.80 ± 0.08
Somatic parameters

VSI % 5.70 ± 0.42 5.00 ± 0.08 5.72 ± 0.19
HSI % 1.35 ± 0.30 1.21 ± 0.17 1.71 ± 0.31

3.2. OTU Taxonomic Statistics and Venn Diagrams

The statistical results of the OTU classifications showed that a total of 8188 OTU se-
quences were generated with≥97% sequence similarity. A total of 1071 genera, 485 families,
317 orders, 144 classes, and 66 phyla were obtained. The rarefaction curves approached
the saturation plateau, indicating that all samples were sequenced completely (Figure S1).
It can be seen from the Venn diagram that 3221 OTUs were shared by each group. The
OTU numbers unique to the FO, SO/FO, and BT/FO groups were 639, 1017, and 1386,
respectively (Figure S2).

3.3. Effects of Feed Alteration Strategies on Intestinal Microbiome Structure

The alpha diversity indices, including the Chao1 index, ACE index, Shannon diversity,
and Simpson diversity, were significantly higher in the intestinal microbiota of the fish
in the SO/FO and BT/FO groups (Figure 2A). The principal coordinate analysis (PCoA)
showed that the samples clustered separately based on the diets (Figure 2B). The intestinal
bacterial compositions of the SO/FO and BT/FO groups were distinctly separated from the
FO group, but the SO/FO group clustered relatively closer to the BT/FO group (Figure 2B).
Moreover, a similar result could be observed in the unweighted pair-group method with
arithmetic mean (UPGMA) analyses (Figure 2C).
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Figure 2. Alpha and beta diversity indices of the intestinal microbiota of turbot under different
feeding schedules (six replicates per group). (A) Alpha diversity index of the intestinal microbiota of
the experimental turbot. The results were expressed as means ± S.E., and the different letters (a, b,
and c) above the bars indicate significant differences (p < 0.05). (B,C) Beta diversity of the intestinal
microbiota of the turbot under different feeding schedules. The principal coordinate analyses (PCoAs)
using PC1 versus PC2 axes and the UPGMA clustering trees of the samples were all based on the
unweighted UniFrac distance. The line and circle indicate the cluster of samples calculated based on
the unweighted UniFrac distance.

3.4. Effects of Alterative Feeding on Intestinal Microbiome Composition

At the phylum level, the top ten dominant bacterial phyla in the three groups in-
cluded Firmicutes, Proteobacteria, Bacteroidota, Acidobacteriota, Actinobacteriota, Gem-
matimonadota, Myxococcota, Verrucomicrobiota, Cyanobacteria, and unidentified_Bacteria
(Figure 3A). At the genus level, Mycoplasma, Sphingomonas, Mucinivorans, Acinetobacter, Lach-
nospiraceae_NK4A136_group, Lactobacillus, Corynebacterium, MND1, unidentified_Chloroplast,
and Staphylococcus comprised the top ten abundant intestinal genera of the intestinal bacte-
rial community (Figure 3B).
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3.5. Analysis of Differential Bacteria among Groups

Additional MetaStat analyses at the genus level showed significant changes in the
intestinal microbiome among the different groups. Compared to the control group, the
SO/FO group significantly (p < 0.05) increased the relative abundance of Blautia, Clostrid-
ium, Akkermansia, Streptococcus, Romboutsia, Faecalibaculum, Desulfovibrio, and Mycobacterium
(Figure 4A), whereas the BT/FO group significantly (p < 0.05) increased the relative abun-
dance of Blautia, Streptococcus, Ruminococcus, Faecalibaculum, Corynebacterium, and Desul-
fovibrio (Figure 4B).

3.6. Microbial Co-Occurrence Network

In order to clarify whether alternate feeding is beneficial for interactions among specific
bacteria and contributes to the stabilization of intestinal microbiota community structures,
the co-occurrence patterns among the groups were analyzed using a network analysis.
After the relative abundance of each genus was obtained, all genera with an abundance of
less than 0.07% were filtered, and 42, 59, and 75 genera were obtained in the FO, SO/FO,
and BT/FO groups, respectively (Figure 5). More significant co-occurrence relationships
were observed in the SO/FO and BT/FO groups compared to the FO group. The dominant
interactions in all three networks were positive interactions. Compared to the FO network,
the competitive interactions among the intestinal bacteria were enhanced in the SO/FO
and BT/FO networks. SO/FO was the most connected group, and the average degree was
12.441. Three main phyla (Firmicutes, Proteobacteria, and Bacteroidota) contributed to
most networks. The modularity index and average path length were higher for the SO/FO
and BT/FO groups compared with the FO group. The co-occurrence networks indicate
that the complexity of the intestinal microbiota in the three groups was different.
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Figure 4. MetaStat analysis of key bacteria in the distal intestinal mucosa of the experimental turbot
(six replicates per group). (A) MetaStat analysis of the bacterial communities between the FO and
SO/FO groups. (B) MetaStat analysis of the bacterial communities between the FO and BT/FO
groups. * means significant differences between the FO group and the SO/FO or BT/FO groups,
evaluated by a t-test (* p < 0.05; ** p < 0.01).

3.7. Functional Predictions of Intestinal Microbiota

The functional potential of the intestinal microbiota of turbot under different feeding
strategies at the KEGG 2 (metabolic functional gene subclasses) and KEGG 3 (specific
metabolic pathways) levels was predicted using the PICRUSt software (Figure 6). Com-
pared to the FO group, the microbial functions related to xenobiotic biodegradation and
metabolism and amino acid metabolism were significantly upregulated in the SO/FO
group, as well as some microbial functions involved in the biosynthesis of other sec-
ondary metabolites, amino acid metabolism, glycan biosynthesis and metabolism, and
xenobiotic biodegradation and metabolism were significantly upregulated in the BT/FO
group. In addition, in the lipid metabolic pathways, the abundance of pathways related
to lipopolysaccharide biosynthesis, ether lipid metabolism, fatty acid degradation, steroid
hormone biosynthesis, and alpha-linolenic acid (ALA) metabolism was significantly higher
in the SO/FO and BT/FO groups than those in the FO group. In addition, the KEGG 3 func-
tional pathways revealed that the sphingolipid signaling pathway, fatty acid elongation,
biosynthesis of unsaturated fatty acids (UFA), linoleic acid (LA) metabolism, sphingolipid
metabolism, and steroid biosynthesis were enriched in the BT/FO group.
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Figure 5. Bacterial co-occurrence network of juvenile turbot in the FO group (A), SO/FO group (B),
and BT/FO group (C) (six replicates per group). The network diameter (of each node) corresponds to
a hub value, and the weight of the color of the nodes is proportional to their relative abundance. The
lines (edges and bridges between the nodes) connecting two nodes represent significant co-occurrence
relationships (Spearman′s r > 0.60 and p < 0.05). The blue and red edges inside the network indicate
the positive (cooperative) and negative (competitive) interactions between two bacteria, respectively.
The taxa in brackets are based on annotations suggested by the Silva database.
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4. Discussion

The main objective of the study was to assess how the intestinal microbiota of fish re-
sponds to alternate feeding between TSO- and FO-based diets. Foremost, the juvenile turbot
accepted the alternate feeding between TSO- and FO-based diets with no negative effects on
survival or growth performance. In this study, after short-term alternate feeding between
TSO- and FO-based diets, the overall intestinal microbial community of the juvenile turbot
was analyzed from the aspects of structure, composition, and potential function.

Overall, the differentiation among the intestinal microbial communities among the
three groups was apparent. Separate clustering of the intestinal bacterial communities was
observed according to the experimental groups. Most importantly, in terms of microbial
components and phylogeny, the bacteria in the SO/FO group were relatively closer to
the BT/FO group. This indicates that the dynamic administration of diverse dietary lipid
sources largely modified the intestinal microbial compositions. Regarding the microbial
diversity, higher OTU numbers, Chao1, ACE, and Shannon and Simpson indices were
observed in the SO/FO and BT/FO groups compared to the FO control group, indicating
higher microbial diversity. Higher microbial diversity was generally associated with
balanced intestinal microecology, stable intestinal function, and high resistance to stressful
environments [22,23].

Significant differences in the microbial composition at the phylum and genus levels
were also observed among the groups. The dominant phylum Firmicutes showed a sig-
nificant decrease in abundance in the SO/FO and BT/FO groups, while the abundance of
Bacteroidota and Proteobacteria was significantly increased in these two groups compared
to the FO control group. At the genus level, in the SO/FO group, higher enrichment
of the genera Blautia, Clostridium, Akkermansia, Streptococcus, Romboutsia, and Faecalibacu-
lum was observed. They were considered to be short-chain fatty acid (SCFA)-producing
bacteria. Among them, Blautia and Clostridium can produce acetate, while Faecalibacu-
lum and Romboutsia are butyrate-producing bacteria [24–26]. This type of bacteria can
produce SCFA through carbohydrate fermentation, providing energy and protecting the
intestinal barrier [27–29]. In addition, some SCFA-producing bacteria belonging to the Lach-
nospiraceae family also regulate glucose and lipid metabolisms. Blautia has been shown to
be involved in bile transformation, gastrointestinal function, and lipid metabolism [30,31].
Akkermansia, classified under the phylum Verrucomicobia, is also considered an SCFA-
producing bacterium that supplies energy to intestinal goblet cells [32]. Akkermansia can
promote mucus secretion to enhance the intestinal barrier and maintain intestinal lipid
homeostasis by reducing the excessive production of chylomicrons induced by acute lipid
loads [33,34]. The use of SCFAs and their salts as feed supplements can enhance the growth
and health of farmed fish. This has been evidenced in Nile tilapia (Oreochromis niloticus),
sea bream (Sparus aurata), yellow drum (Nibea albiflora, Richardson), and, most importantly,
turbot [35–38].

In the BT/FO group, enrichment of SCFA-producing bacteria, including Blautia,
Faecalibaculum, Streptococcus, Cutibacterium, and Ruminococcus, was also observed. In addi-
tion to producing secondary metabolites, such as SCFA, as described earlier, the intestinal
microbiota also serves the host by contributing enzymes that improve nutrient digestion in
the host [39,40]. In the present study, the relevant genera Corynebacterium and Sphingomonas
were enriched in the BT/FO group. Corynebacterium has been reported to produce high
levels of polysaccharide hydrolases and lipases [41]. Sphingomonas was believed to be a
good producer of cellulase, protease, and amylase, providing exogenous digestive enzymes
for the absorption of nutrients in the intestine [42].

Although alternate feeding exerted many favorable regulations on intestinal microecol-
ogy, the increase in the abundance of pathogens, such as Desulfovibrio and Mycobacterium, by
alternate feeding was also noteworthy. Desulfovibrio, which is a Gram-negative bacterium,
produces endotoxins [43]. Hydrogen sulfide produced by these bacteria inhibits intestinal
epithelial cell metabolism, impairs intestinal epithelial mucosa, and induces inflammation
responses [44]. Usually, the abundance of sulfate-reducing bacteria increases after feeding
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on lipid-enriched or high-saturated lipid diets. This may be related to the number and
chain length of some fatty acids in the feed, which remain to be further studied [45,46].
Mycobacterium is a Gram-positive, acid-resistant, and inactive bacterium. It causes chronic
diseases in many cultured and wild fish, such as turbot, European seabass (Dicentratrchus
labrax), and striped bass (Morone saxatalis) [47–49]. The high abundance of Mycobacterium in
the SO/FO group may be due to the presence of phytosterols in the soybean oil, which can
be used by Mycobacterium [50].

In spite of the enrichment of pathogens by the alternate feeding mentioned above, a
lower abundance of Mycoplasma was observed in the intestine in two of the alternate-feeding
groups, especially the BT/FO group. Some species of Mycoplasma have been recognized as
pathogens of human and animal diseases [51]. Massive colonization of Mycoplasma on fish
gills leads to severe damage to the gill epithelium [52,53]. Nevertheless, studies have also
reported that Mycoplasma is part of the normal microbiota of Atlantic salmon (Salmo salar),
which is not pathogenic in its natural host and may play an unknown role in the host’s
health [54,55].

Bacteria in the intestine form a complex ecological network via their interactions with
each other, and they rely on this network to keep a dynamic balance [56]. The network
connections between the bacteria may be caused by the functional similarity or complemen-
tarity between the species [57]. This cooperation is unfavorable to the stability of the system
due to positive feedback, whereas competition between the species can improve the stability
of microecology [56]. In this study, Firmicutes and Proteobacteria have been proven to be
the main components of the three types of ecological networks, occupying a key position in
the network. Most importantly, the alternate feeding significantly enriched the competitive
interactions. Therefore, the bacteria’s ecological networks in the SO/FO and BT/FO groups
tended to be stable. The modularity, path length, and clustering coefficient were also
used to evaluate the effects of alternate feeding on the ecological network of the intestinal
microbial community. Modularity indicates the strength of a network divided into modules.
The network with high modularity has densely connected nodes in the module [58,59]. The
modularity of the SO/FO and BT/FO groups was much higher than that of the FO group,
indicating that they had relatively stable intestinal microbiota homeostasis. The bacteria
in the intestine rely on each other’s ecological networks to maintain a dynamic balance.
The above results are based on a short-term alternate feeding trial of 9 weeks. However,
according to the current information, whether a stable microbiome has been established is
unknown, which may need to be further investigated by a longer feeding duration.

In addition to the profoundly altered microbial community composition, alternate
feeding between dietary lipid sources also affected the nutritional metabolism of the
microbiota. The results of the functional predictions of the intestinal microbiota showed
that the SO/FO and BT/FO groups had more active lipid metabolism pathways, specifically
the ALA metabolism. In the BT/FO group, the LA metabolism and the biosynthesis of
the UFA pathways were significantly enriched. Connections between dietary fatty acid
compositions and intestinal microbe functions have been observed in previous studies. The
lipid metabolism (especially the biosynthesis of unsaturated and saturated fatty acids) in
the intestinal microbiota was more active in Atlantic salmon when a high-lipid diet was fed
for 116 days [60]. In gilthead sea bream, feeding a diet with 60% camelina oil increased the
KEGG pathway of fatty acid synthesis in the intestinal microbiota [61]. Low-lipid uptake
and high activation of the lipid metabolic pathways (especially LA) were also observed
concurrently in wild rainbow trout (Oncorhynchus mykiss) populations [62]. Linoleic acid
and ALA are the precursors of n-3 LC-PUFA biosynthesis. The enhancement of pathways,
such as ALA metabolism, LA metabolism, and biosynthesis of UFA, in low n-3 LC-PUFA
groups in the present and previous studies may compensate for the dietary n-3 LC-PUFA
deficiency. Besides the fatty acid and lipid metabolisms, there was also a significant increase
in the amino acid metabolism and glycan biosynthesis and metabolism in the intestinal
microbiota of the SO/FO and BT/FO groups. However, the mechanisms involved warrant
future studies. Beyond nutrient metabolism, there were higher levels of pathways involved
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in lipopolysaccharide (LPS) biosynthesis in the intestinal microbiota of the SO/FO and
BT/FO groups compared to the FO group. Increased LPS biosynthesis suggests an increase
in the stimulation of Gram-negative bacteria. Collectively, the increase in Gram-negative
bacteria and LPS biosynthesis can induce intestinal inflammatory responses and increase
the permeability of intestinal tight junctions by upregulating the expression of toll-like
receptors [63]. The enrichment of LPS biosynthesis also suggests the potential risk of
alternate feeding between dietary lipid sources for the intestinal health of turbot.

5. Conclusions

The composition and structure of the intestinal microbiota of turbot were significantly
changed by weekly alternate feeding using terrestrially sourced oil- and fish oil-based
diets. Alternate feeding can selectively enrich specific microorganisms, including SCFA-
producing bacteria, digestive bacteria, and several potential pathogens. Alternate feeding
may maintain the balance of the intestinal microbiota by improving the connectivity of
the ecological network and increasing the competitive interaction within the ecological
network. In addition, alternate feeding significantly affected the metabolism of the intestinal
microbiota, in particular the fatty acid metabolism and LPS biosynthesis. In fish farming
practices, the effects on the intestinal microbiota of fish cannot be neglected when lipid
source-based alternate feeding strategies are applied.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/biology12050650/s1, Figure S1: Rarefaction curve of the
intestinal microbiota of juvenile turbot, Figure S2: Venn diagram of unique and shared OTUs in the
intestinal microbiota of turbot under different feeding schedules.
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