Next Article in Journal
Boundaries Are Blurred: Wild Food Plant Knowledge Circulation across the Polish-Lithuanian-Belarusian Borderland
Previous Article in Journal
Special Issue: “Biophysics, Arrhythmias and Pacing”
Previous Article in Special Issue
Phylogenomics and Biogeography of the Mammilloid Clade Revealed an Intricate Evolutionary History Arose in the Mexican Plateau
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Advances in Plant Taxonomy and Systematics

PLANTSEED Lab, Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
Biology 2023, 12(4), 570; https://doi.org/10.3390/biology12040570
Submission received: 4 April 2023 / Accepted: 7 April 2023 / Published: 9 April 2023
(This article belongs to the Special Issue Advances in Plant Taxonomy and Systematics)
Systematics and taxonomy are basic sciences and are crucial for all applications dealing with living organisms [1]. Taxonomic classification schemes, sought by early scholars to reflect “natural systems” [2], are nowadays universally accepted to reflect actual systematic relationships among organisms.
Phylogenetic reconstructions based on molecular systematics have provided a stable classification system at class, order, and family levels for many plant groups (see, e.g., [3,4,5]). However, at the genus level, due to a lack of knowledge, many classifications are still unstable and a lot of taxonomic changes have been published [6], with species that are often recombined under different genera or synonymized with others. Taxonomy users, either in the scientific community or in wider society, perceive this as a relevant (and often not fully understood) problem [7,8]. However, these changes are the obvious consequence of an increase in systematic knowledge. In this respect, proposals and ideas to abandon Linnean taxonomy [9,10] have not been accepted so far. Fortunately, nomenclatural and taxonomic databases are becoming increasingly widespread and authoritative (see, e.g., [11]), meaning that this problem could be easily superseded.
At a microevolutionary level, an integrated taxonomic approach [12] using a number of independent lines of evidence [13] is needed to disentangle the complex systematic relationships among units of diversity [14].
Accordingly, on one side, there is the need to build sound taxonomic hypotheses using multiple lines of evidence (see, e.g., [15,16,17,18]); on the other hand, given the ongoing mass extinctions and the decline of taxonomists in academies [19,20], there is the need to speed up the recognition and description of biodiversity on earth. In this respect, citizen science could also be helpful [21], for instance in observing and capturing plant diversity with a coverage and frequency much higher than by just relying on academic scholars.
In the Special Issue “Advances in Plant Taxonomy and Systematics”, all the topics previously mentioned were addressed in 15 high-quality and original studies, involving plant groups and researchers from all continents. In particular, the phylogeny and biogeography of Mammilloid cacti from Mexico (Cactaceae, eudicots) [22], Euphorbiaceae subfam. Acalyphoideae (Malpighiales, eudicots) in the Americas [23], Astragalus sect. Stereothrix (Fabaceae, Fabales, eudicots) [24] and Veronica subg. Pentasepalae (Plantaginaceae, Lamiales, eudicots) [25] from Eurasia were addressed. Whole plastome comparison revealed phylogenetic relationships in Crassula (Crassulaceae, Saxifragales, eudicots) [26] and in the family Magnoliaceae (Magnoliales, early branching angiosperms) [27]. The systematics of polyploid and/or apomictic species complexes was studied in European groups such as the Ranunculus auricomus complex (Ranunculaceae, Ranunculales, eudicots) [28], the Sorbus austriaca complex (Rosaceae, Rosales, eudicots) [29], Crocus ser. Verni (Iridaceae, Asparagales, monocots) [30], and Leucanthemum (Asteraceae, Asterales, eudicots) [31]. Integrated taxonomic approaches were followed for the characterization of the Asian palm genus Bentinckia (Arecaceae, Arecales, monocots) [32], for addressing infraspecific variability in the European Armeria arenaria (Plumbaginaceae, Caryophyllales, eudicots) [33], and for describing a new species endemic to Italy in Adonis sect. Adonanthe (Rancunculaceae) [34]. A thorough morphometric study dealt with the taxonomically debated Mediterranean genus Ophrys (Orchidaceae, Asparagales, monocots), in which between 9 and over 400 species are recognized depending on the authors opinions [35], highlighting that “a serious challenge awaits writers of field guides to the European flora, as they struggle to summarise innumerable indistinguishable ‘species’ carved out of morphological continua”. Finally, images shared by citizen scientists to the iNaturalist platform and on Facebook were particularly helpful, as they aided the identification of four out of the nine Australian species of the carnivorous genus Drosera (Droseraceae, Caryophyllales, eudicots) [36].

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Wheeler, Q. A taxonomic renaissance in three acts. Megataxa 2020, 1, 4–8. [Google Scholar] [CrossRef] [Green Version]
  2. Lorch, J. The Natural System in Biology. Philos. Sci. 1961, 28, 282–295. [Google Scholar] [CrossRef]
  3. Chase, M.W.; Reveal, J.L. A phylogenetic classification of the land plants to accompany APG III. Bot. J. Linn. Soc. 2009, 161, 122–127. [Google Scholar] [CrossRef]
  4. The Angiosperm Phylogeny Group; Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S.; et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef] [Green Version]
  5. PPG, I. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 2016, 54, 563–603. [Google Scholar] [CrossRef]
  6. Nimis, P.L. A tale from Bioutopia. Nature 2001, 413, 21. [Google Scholar] [CrossRef]
  7. Garnett, S.T.; Christidis, L. Taxonomy anarchy hampers conservation. Nature 2017, 546, 25–27. [Google Scholar] [CrossRef] [Green Version]
  8. Morrison, W.R., III; Lohr, J.L.; Duchen, P.; Wilches, R.; Trujillo, D.; Mair, M.; Renner, S.S. The impact of taxonomic change on conservation: Does it kill, can it save, or is it just irrelevant? Biol. Cons. 2009, 142, 3201–3206. [Google Scholar] [CrossRef]
  9. Casiraghi, M.; Galimberti, A.; Sandionigi, A.; Bruno, A.; Labra, M. Life With or Without Names. Evol. Biol. 2016, 43, 582–595. [Google Scholar] [CrossRef]
  10. Brower, A.V.Z. Dead on arrival: A postmortem assessment of “phylogenetic nomenclature”, 20+ years on. Cladistics 2020, 36, 627–637. [Google Scholar] [CrossRef]
  11. Borsch, T.; Berendsohn, W.; Dalcin, E.; Delmas, M.; Demissew, S.; Elliott, A.; Fritsch, P.; Fuchs, A.; Geltman, D.; Guner, A.; et al. World Flora Online: Placing taxonomists at the heart of a definitive and comprehensive global resource on the world’s plants. Taxon 2020, 69, 1311–1341. [Google Scholar] [CrossRef]
  12. Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–415. [Google Scholar] [CrossRef] [Green Version]
  13. Turrill, W.B. The expansion of taxonomy with special reference to spermatophyta. Biol. Rev. Biol. Proc. Camb. Phil. Soc. 1938, 13, 342–373. [Google Scholar] [CrossRef]
  14. Oberprieler, C. The Wettstein tesseract: A tool for conceptualising species-rank decisions and illustrating speciation trajectories. Taxon 2023, 72, 1–7. [Google Scholar] [CrossRef]
  15. De Giorgi, P.; Giacò, A.; Astuti, G.; Minuto, L.; Varaldo, L.; De Luca, D.; De Rosa, A.; Bacchetta, G.; Sarigu, M.; Peruzzi, L. An integrated taxonomic approach points towards a single-species hypothesis for Santolina (Asteraceae) in Corsica and Sardinia. Biology 2022, 11, 356. [Google Scholar] [CrossRef] [PubMed]
  16. Liu, L.; Astuti, G.; Coppi, A.; Peruzzi, L. Different chromosome numbers but slight morphological differentiation and genetic admixture among populations of the Pulmonaria hirta complex (Boraginaceae). Taxon 2022, 71, 1025–1043. [Google Scholar] [CrossRef]
  17. Mátis, A.; Malkócs, T.; Kuhn, T.; Laczkó, L.; Moysiyenko, I.; Szabó, A.; Bădărău, A.S.; Sramkó, G. Hiding in plain sight: Integrative analyses uncover a cryptic Salvia species in Europe. Taxon 2023, 72, 78–97. [Google Scholar] [CrossRef]
  18. Giacò, A.; Varaldo, L.; Casazza, G.; De Luca, D.; Caputo, P.; Sarigu, M.; Bacchetta, G.; Sáez, L.; Peruzzi, L. An integrative taxonomic study of Santolina (Asteraceae) from southern France and north-eastern Spain reveals new endemic taxa. J. Syst. Evol. 2022; in press. [Google Scholar] [CrossRef]
  19. Britz, R.; Hundsdörfer, A.; Fritz, U. Funding, training, permits—The three big challenges of taxonomy. Megataxa 2020, 1, 49–52. [Google Scholar] [CrossRef] [Green Version]
  20. Wheeler, Q. Are reports of the death of taxonomy an exaggeration? New Phytol. 2014, 201, 370–371. [Google Scholar] [CrossRef]
  21. Fontaine, C.; Fontaine, B.; Prévot, A.-C. Do amateurs and citizen science fill the gaps left by scientists? Curr. Opin. Insect. 2021, 46, 83–87. [Google Scholar] [CrossRef]
  22. Delil, A.; Chincoya, S.A.; Felipe Vaca-Paniagua, P.D.; Solórzano, S. Phylogenomics and biogeography of the Mammilloid clade revealed an intricate evolutionary history arose in the Mexican Plateau. Biology 2023, 12, 512. [Google Scholar] [CrossRef]
  23. Külkamp, J.; Riina, R.; Ramírez-Amezcua, Y.; Iganci, J.R.V.; Cordeiro, I.; González-Páramo, R.; Lara-Cabrera, S.I.; Baumgratz, J.S.A. Systematics of Ditaxinae and related lineages within the subfamily Acalyphoideae (Euphorbiaceae) based on molecular phylogenetics. Biology 2023, 12, 173. [Google Scholar] [CrossRef] [PubMed]
  24. Bagheri, A.; Maassoumi, A.A.; Brassac, J.; Blattner, F.R. Dated phylogeny of Astragalus section Stereothrix (Fabaceae) and allied taxa in the Hypoglottis clade. Biology 2023, 12, 138. [Google Scholar] [CrossRef] [PubMed]
  25. Doostmohammadi, M.; Bordbar, F.; Albach, D.C.; Mirtadzadini, M. Phylogeny and historical biogeography of Veronica subgenus Pentasepalae (Plantaginaceae): Evidence for its origin and subsequent dispersal. Biology 2022, 11, 639. [Google Scholar] [CrossRef]
  26. Ding, H.; Han, S.; Ye, Y.; Bi, D.; Zhang, S.; Yi, R.; Gao, J.; Yang, J.; Wu, L.; Kan, X. Ten plastomes of Crassula (Crassulaceae) and phylogenetic implications. Biology 2022, 11, 1779. [Google Scholar] [CrossRef]
  27. Yang, L.; Tian, J.; Xu, L.; Zhao, X.; Song, Y.; Wang, D. Comparative chloroplast genomes of six Magnoliaceae species provide new insights into intergeneric relationships and phylogeny. Biology 2022, 11, 1279. [Google Scholar] [CrossRef]
  28. Hodač, L.; Karbstein, K.; Tomasello, S.; Wäldchen, J.; Bradican, J.P.; Hörandl, E. Geometric morphometric versus genomic patterns in a large polyploid plant species complex. Biology 2023, 12, 418. [Google Scholar] [CrossRef]
  29. Hajrudinović-Bogunić, A.; Frajman, B.; Schönswetter, P.; Siljak-Yakovlev, S.; Bogunić, F. Apomictic mountain whitebeam (Sorbus austriaca, Rosaceae) comprises several genetically and morphologically divergent lineages. Biology 2023, 12, 380. [Google Scholar] [CrossRef]
  30. Raca, I.; Blattner, F.R.; Waminal, N.E.; Kerndorff, H.; Ranđelović, V.; Harpke, D. Disentangling Crocus series Verni and its polyploids. Biology 2023, 12, 303. [Google Scholar] [CrossRef]
  31. Oberprieler, C.; Ott, T.; Vogt, R. Picks in the fabric of a polyploidy complex: Integrative species delimitation in the tetraploid Leucanthemum Mill. (Compositae, Anthemideae) representatives. Biology 2023, 12, 288. [Google Scholar] [CrossRef]
  32. Kadam, S.K.; Mane, R.N.; Tamboli, A.S.; Gavade, S.K.; Deshmukh, P.V.; Lekhak, M.M.; Choo, Y.-S.; Pak, J.H. Cytogenetics, typification, molecular phylogeny and biogeography of Bentinckia (Arecoideae, Arecaceae), an unplaced Indian endemic palm from Areceae. Biology 2023, 12, 233. [Google Scholar] [CrossRef] [PubMed]
  33. Tiburtini, M.; Astuti, G.; Bartolucci, F.; Casazza, G.; Varaldo, L.; De Luca, D.; Bottigliero, M.V.; Bacchetta, G.; Porceddu, M.; Domina, G.; et al. Integrative taxonomy of Armeria arenaria (Plumbaginaceae), with a special focus on the putative subspecies endemic to the Apennines. Biology 2022, 11, 1060. [Google Scholar] [CrossRef] [PubMed]
  34. Conti, F.; Oberprieler, C.; Dorfner, M.; Schabel, E.; Nicoară, R.; Bartolucci, F. Adonis fucensis (A. sect. Adonanthe, Ranunculaceae), a new species from the Central Apennines (Italy). Biology 2023, 12, 118. [Google Scholar] [CrossRef] [PubMed]
  35. Bateman, R.M.; Rudall, P.J. Morphological continua make poor species: Genus-wide morphometric survey of the European bee orchids (Ophrys, L.). Biology 2023, 12, 136. [Google Scholar] [CrossRef] [PubMed]
  36. Krueger, T.; Robinson, A.; Bourke, G.; Fleischmann, A. Small leaves, big diversity: Citizen science and taxonomic revision triples species number in the carnivorous Drosera microphylla complex (D. section Ergaleium, Droseraceae). Biology 2023, 12, 141. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Peruzzi, L. Advances in Plant Taxonomy and Systematics. Biology 2023, 12, 570. https://doi.org/10.3390/biology12040570

AMA Style

Peruzzi L. Advances in Plant Taxonomy and Systematics. Biology. 2023; 12(4):570. https://doi.org/10.3390/biology12040570

Chicago/Turabian Style

Peruzzi, Lorenzo. 2023. "Advances in Plant Taxonomy and Systematics" Biology 12, no. 4: 570. https://doi.org/10.3390/biology12040570

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop