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Simple Summary: Morphological divergence between Siamese and other crocodiles has been identi-
fied by size, number of scales, and patterns of cervical squamation with post-occipital scutes (P.O.).
However, a large variation of P.O. has been observed in captive Siamese crocodiles in Thailand,
leading to questions about possible crocodile hybrids. The genetic diversity and population structure
of Siamese crocodiles were studied using mitochondrial DNA D-loop and microsatellite genotyping.
The STRUCTURE plot revealed numerous distinct gene pools, indicating that the crocodiles in each
farm descended from distinct lineages. Researchers also discovered evidence of introgression in
several individual crocodiles, implying that Siamese and saltwater crocodiles may have hybridized.
A schematic protocol for screening hybrids was proposed based on patterns observed in phenotypic
and molecular data.

Abstract: Populations of Siamese crocodiles (Crocodylus siamensis) have severely declined because of
hunting and habitat fragmentation, necessitating a reintroduction plan involving commercial captive-
bred populations. However, hybridization between Siamese and saltwater crocodiles (C. porosus) has
occurred in captivity. Siamese crocodiles commonly have post-occipital scutes (P.O.) with 4–6 scales,
but 2–6 P.O. scales were found in captives on Thai farms. Here, the genetic diversity and population
structure of Siamese crocodiles with large P.O. variations and saltwater crocodiles were analyzed
using mitochondrial DNA D-loop and microsatellite genotyping. Possible crocodile hybrids or
phenotypic variations were ascertained by comparison with our previous library from the Siam
Crocodile Bioresource Project. Siamese crocodiles with <4 P.O. scales in a row exhibit normal species-
level phenotypic variation. This evidence encourages the revised description of Siamese crocodiles.
Moreover, the STRUCTURE plot revealed large distinct gene pools, suggesting crocodiles in each farm
were derived from distinct lineages. However, combining both genetic approaches provides evidence
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of introgression for several individual crocodiles, suggesting possible hybridization between Siamese
and saltwater crocodiles. We proposed a schematic protocol with patterns observed in phenotypic
and molecular data to screen hybrids. Identifying non-hybrid and hybrid individuals is important
for long-term in situ/ex situ conservation.

Keywords: Siamese crocodile; saltwater crocodile; introgression; hybridization; post-occipital scutes

1. Introduction

Siamese crocodile (Crocodylus siamensis, Schneider, 1801) [1] is a freshwater species
found in a wide range of lowland freshwater habitats including slow-moving rivers,
streams, lakes, seasonal oxbow lakes, marshes, and swamps in mainland Southeast Asia,
including Cambodia, Lao PDR and Thailand and on some islands of Indonesia and
Malaysia [2–6]. This medium-sized crocodylian has a total length of less than 3.5 m [7].
However, its historical population distribution has decreased by 20% globally, with only
11% of its habitat range in nationally protected areas [8]. The Siamese crocodile was
listed as a critically endangered species on the International Union for Conservation of
Nature (IUCN) Red List and in Appendix I of the Convention on International Trade
in Endangered Species of Wild Fauna and Flora (CITES) in 1996 to aid conservation ef-
forts. In Thailand, Siamese crocodiles are widely distributed in lowland regions; however,
most populations have been extirpated because of hunting, habitat loss, and collection
to stock commercial crocodile farms over the last 40 years [8,9]. The severe decline of
Siamese crocodile populations has led to there being fewer than 20 wild individuals in
Khao Ang Rue Nai Wildlife Sanctuary (13◦13′2.13′′ N, 101◦42′37′′ E), Kaeng Krachan
National Park (12◦54′1.9′′ N, 99◦38′13.98′′ E), Namnao National Park (16◦57′57.65′′ N,
101◦30′28.08′′ E), Yod Dom Wildlife Sanctuary (14◦26′6.06′′ N, 105◦6′ 1.2′′ E), and Bueng
Boraphet (15◦41′2.67′′ N, 100◦14′59.07′′ E) [6,10]. To restore Siamese crocodile wild popula-
tions, it is essential to reintroduce captive-bred individuals and implement in situ/ex situ
management practices. [11]. By contrast, 1.3 million Siamese crocodiles were present on
1400 farms in 2020, and crocodile farming now accounts for approximately 1% of Thailand’s
agricultural income [12]. However, the occurrence of hybridization between Siamese and
saltwater crocodiles (C. porosus, Schneider, 1801) [13] is bidirectional between males and
females of parental species in captivity. Interspecific hybridization frequently occurs in
Southeast Asia due to the keeping of both species together in captivity, rather than from the
wild [11,14]. Both F1 hybrid and backcross crocodiles are fertile and reportedly grow faster
than either parental species [13]. The genetic integrity of the species is at risk, which could
harm conservation management. Alien outbreeding depression hybrids must be identified
from the parental species before the reintroduction program or to improve genetic diversity
in the wild. Using an effective genetic diagnosis approach, a genetically diverse captive
population of pure Siamese crocodiles was identified while hybrids were differentiated
from the parental species. Siamese crocodile sources serve as critical genetic resources for
reintroduction efforts [11,15].

The morphological divergence between Siamese and other crocodiles (Crocodylus spp.)
has been identified by size, the number of scales, and patterns of cervical squamation
with post-occipital scutes (P.O.) [16]. The P.O.s of Siamese crocodiles show one row with
4–6 scales and several small scales, but no P.O. is seen in saltwater crocodiles. However, a
large variation of P.O., ranging from two to six scales, has been observed in captive Siamese
crocodiles in Thailand. This leads us to question whether possible crocodile hybrids remain
in captivity, or whether these are actual phenotypic variations of Siamese crocodiles. A
genetic approach to identifying Siamese and saltwater crocodiles was developed together
with morphological observations in our previous study [11,15] but the P.O. pattern of
each crocodile was not photo-recorded as evidence in our library report. In this study,
to test these hypotheses, the genetic diversity and structure of Siamese and saltwater
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crocodile populations were assessed by screening the gene pool using 22 microsatellite
markers and mitochondrial (mtDNA) D-loop sequences coupled with each crocodile photo
record. MtDNA and nuclear DNA microsatellites are molecular genetic markers that
can identify population diversity, origins of individuals, and hybrids along with their
parents, especially in crocodiles [11,15]. Results were compared with those of the large gene
pool library under “the Siam Crocodile Bioresource Project” from our previous study [11].
These findings provide pivotal information for prospective reintroduction programs and in
situ/ex situ management.

2. Materials and Methods
2.1. Specimen Collection and DNA Extraction

A total of 136 Siamese and 29 saltwater crocodile specimens were collected from
4 captive locations under the auspices of the Thai Crocodile Farm Association (TCFA) and
in accordance with CITES regulations for the leather and food industries. Table S1 provides
detailed information on the sampled individuals. Scale samples were collected from the tail
of captive crocodiles registered at four crocodile farms in Chonburi (CB) (13◦09′06.57′′ N,
101◦28′36.01′′ E), Nakhon Ratchasima (NR) (14◦57′21.19′′ N, 101◦28′36.01′′ E), Chainat (CN)
(15◦15′10.44′′ N, 100◦02′38.27′′ E) and Nakhon Pathom (NP) (13◦43′20.25′′ N, 100◦15′20.83′′ E)
between January and August 2022. A piece of scale clipped from the tail of each specimen
was collected as a DNA source. Permission was granted by the farm owners and the
TCFA and also from unnamed crocodile farms. Individuals were classified as Siamese
or saltwater crocodiles based on external morphological observation [17,18] and pho-
tographed. The dataset comprised photo images of 165 individual crocodiles, each captured
in 30–50 different postures to minimize testing redundancy and bias. The DNA extraction
and quality assessment were performed using the same methods as in previous studies [19]
(Supplementary Data S1). All experimental procedures and animal care were carried out
in compliance with the Regulations on Animal Experiments at Kasetsart University and
approved by the Animal Experiment Committee under Approval No. ACKU64-SCI-011.

2.2. Microsatellite Genotyping and Microsatellite Data Analysis

Twenty-two microsatellite primer sets, developed originally from saltwater crocodiles
(Table S2) [20,21], were used for the genotyping of all crocodile individuals. The genotypic
data resulting from this study were deposited in the Dryad Digital Repository Dataset
(https://datadryad.org/stash/share/s4zREYQ1AUUXTsaIpk0r1HSdkYljvu8yvJOVR143K7Y,
accessed on 18 February 2023). We used the same methods as previous studies for PCR
amplification to analyze genetic diversity and population structure of the crocodile popula-
tions [11,22–27] (Supplementary Data S1).

2.3. Mitochondrial DNA D-Loop Sequencing and Data Analysis

The mtDNA D-loop sequences of DNA fragments were amplified using the primers
mtCytbf2 (5′-TGCCATGTTCGCATCCATCC-3) and mt12srRNAr2 (5′-CCAGAGGCTA
GGCGTCGTGG-3) [11]. We used the same methods as previous studies for PCR amplification
and analyze genetic diversity of the crocodile populations [11,22] (Supplementary Data S1).

3. Results
Genetic Variability of Captive Crocodile Population Based on Microsatellite Data

All captive individuals were genotyped, and 459 alleles were found across all loci,
with the mean number of alleles per locus being 20.864 ± 2.351 (Table 1). All allelic
frequencies in the captive population significantly deviated from what would be expected
under the Hardy–Weinberg equilibrium, indicating the presence of linkage disequilibrium
(Tables S3–S7). Null alleles were frequently observed for 13 loci (CpP3001, CpP501, CpP214,
CpP2206, CpP3313, CpP2504, CpP203, CpP1308, CpP4004, CpP3008, CpP2904, CpP3004,
CpP1409), and all markers listed were treated similarly. Siamese crocodiles from CB and
NR populations exhibited negative F values, but Siamese crocodiles from CN and NP
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populations exhibited positive F values, similar to saltwater crocodiles from NR. The
PIC of all captive populations ranged from 0.057 to 0.932 and I ranged from 0.153 to
3.031 (Table S8). The Ho values ranged from 0.059 to 1.000 (mean ± standard error (SE):
0.629 ± 0.033) and the He values ranged from 0.058 to 0.936 (mean ± SE: 0.718 ± 0.037)
(Tables 1 and S8). Welch’s t-test showed that Ho was not significantly different from He
in Table 2. By comparing pairwise Ho values between populations, there were statistical
differences between six pairs, while pairwise He values were different between five pairs
(Table 3). The AR value of the population was 20.787± 2.332. The standard genetic diversity
indices are summarized in Table 1 and Supplementary Table S8.

Table 1. Genetic diversity of 136 Siamese (Crocodylus siamensis, Schneider, 1801) [1] and 29 saltwater
crocodiles (C. porosus, Schneider, 1801) [13] based on 22 microsatellite loci. Table S1 provides detailed
information on the sampled individuals.

Population N Na AR Nea I Ho He PIC F

CB 1 Mean 30 7.409 7.409 3.847 1.329 0.653 0.612 0.570 −0.092
S.E. 0 0.993 0.993 0.713 0.140 0.044 0.044 0.214 0.045

NR 2 Mean 30 8.727 8.727 3.847 1.382 0.602 0.609 0.572 −0.031
S.E. 0 1.405 1.405 0.728 0.149 0.043 0.043 0.213 0.066

CN 3 Mean 34 9.500 9.500 4.603 1.396 0.545 0.582 0.553 0.033
S.E. 0 1.364 1.364 1.000 0.180 0.057 0.058 0.268 0.055

NP 4 Mean 42 11.182 11.182 4.880 1.658 0.642 0.693 0.658 0.057
S.E. 0 1.307 1.307 0.730 0.147 0.044 0.040 0.204 0.068

CP 5 Mean 29 9.818 9.798 4.951 1.716 0.696 0.733 0.705 0.039
S.E. 0 1.169 1.150 0.530 0.125 0.041 0.036 0.173 0.046

All Population Mean 165 20.864 20.787 6.745 1.921 0.629 0.718 0.695 0.110
S.E. 0 2.351 2.332 1.604 0.164 0.033 0.037 0.180 0.038

Sample size (N); number of alleles (Na); allelic richness (AR); number of effective alleles (Nea); Shannon’s
information index (I); observed heterozygosity (Ho); expected heterozygosity (He); polymorphic information
content (PIC); fixation index (F). 1 CB = Chonburi (Crocodylus siamensis). 2 NR = Nakhon Ratchasima (Crocodylus
siamensis). 3 CN = Chainat (Crocodylus siamensis). 4 NP = Nakhon Pathom (Crocodylus siamensis). 5 CP = Nakhon
Ratchasima (Crocodylus porosus).

Table 2. Welch’s t-test of observed heterozygosity (Ho) and expected heterozygosity (He) of Siamese
(Crocodylus siamensis, Schneider, 1801) [1] and saltwater crocodiles (Crocodylus porosus, Schneider,
1801) [13] based on 22 microsatellite loci.

Population Ho He df t-Test p-Value

CB 1 0.641 ± 0.044 0.612 ± 0.044 0.041 0.466 0.643
NR 2 0.602 ± 0.043 0.609 ± 0.043 −0.037 −0.115 0.909
CN 3 0.545 ± 0.057 0.582 ± 0.058 0.007 −0.455 0.651
NP 4 0.642 ± 0.044 0.693 ± 0.040 −0.051 −0.858 0.394
CP 5 0.696 ± 0.041 0.733 ± 0.036 −0.037 −0.678 0.501

1 CB = Chonburi (Crocodylus siamensis). 2 NR = Nakhon Ratchasima (Crocodylus siamensis). 3 CN = Chainat
(Crocodylus siamensis). 4 NP = Nakhon Pathom (Crocodylus siamensis). 5 CP = Nakhon Ratchasima (Crocodylus porosus).

We determined the degree of relatedness between individuals in the captive crocodile
population by employing a pairwise test. The mean pairwise r values were calculated for a total
of 13,530 combinations of crocodiles, which included all 165 sampled individuals, including
Siamese and saltwater crocodiles, were−0.018± 0.033 (CB population =−0.018± 0.042, NR
population =−0.019± 0.029, CN population =−0.017± 0.030, NP population =−0.019± 0.032
for Siamese crocodiles and NR population of saltwater crocodiles = −0.020 ± 0.032). No
pairs showed r < −0.25. There were 13,525 pairs with −0.25 < r < 0.25 and 5 pairs with
0.25 > r (Tables 2 and S9–S13). Distribution of r values for the crocodiles exhibited a
left skew, indicating lower pairwise r values than what would be expected under a null
hypothesis of unrelated individuals by chance. The distributions of pairwise r differed
significantly between the CB and NP populations, and the mean pairwise r values were
also significantly different across all populations. (Figure 1, Table S14). The mean FIS
was −0.074 ± 0.076 (Table 3), with individual values of FIS ranging from −0.191 to 0.085
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(Tables S15–S19). However, distributions of FIS from all populations differed significantly
from each other (Figure 1, Table S14). The Ne of Siamese crocodiles for individuals that
contributed genetically to the CB population was 41.3 (95% CI: 32.2.8–46.5), 202.2 (95%
CI: 87.7–113.3) for the NR population, 115.5 (95% CI: 69.5–88.1) for the CN population,
45.2 (95% CI: 37.1–136.1) for the NP population, and 103.7 (95% CI: 66.7–74.8) for saltwater
crocodiles in the NR population (Table 4).

Table 3. Comparison of genetic diversity parameters between Siamese (Crocodylus siamensis, Schnei-
der, 1801) [1] and saltwater crocodiles (Crocodylus porosus, Schneider, 1801) [13] based on 22 microsatel-
lite loci. Table S1 provides detailed information on the sampled individuals.

Population 1 Population 2 df SE t-Test p-Value

Heterozygosity (Ho)

CB 1 NR 2 0.051 0.011 4.540 <0.05
CB CN 3 0.108 0.013 8.536 <0.05
CB NP 4 0.011 0.099 0.111 0.912
CB CP 5 −0.051 0.010 −4.914 <0.05
NR CN 0.057 0.013 4.546 <0.05
NR NP −0.040 0.099 −0.403 0.689
NR CP −0.102 0.010 −9.962 <0.05
CN NP −0.097 0.100 −0.974 0.335
CN CP −0.159 0.012 −13.498 <0.05
NP CP −0.062 0.099 −0.624 0.536

Heterozygosity (He)

CB NR 0.003 0.011 0.267 0.790
CB CN 0.030 0.013 2.346 <0.05
CB NP −0.081 0.107 −0.755 0.454
CB CP −0.135 0.010 −12.862 <0.05
NR CN 0.027 0.013 2.131 <0.05
NR NP −0.084 0.107 −0.783 0.438
NR CP −0.138 0.010 −13.324 <0.05
CN NP −0.111 0.107 −1.034 0.307
CN CP −0.165 0.012 −13.723 <0.05
NP CP −0.054 0.107 −0.504 0.617

1 CB = Chonburi (Crocodylus siamensis). 2 NR = Nakhon Ratchasima (Crocodylus siamensis). 3 CN = Chainat
(Crocodylus siamensis). 4 NP = Nakhon Pathom (Crocodylus siamensis). 5 CP = Nakhon Ratchasima (Crocodylus porosus).

Table 4. Inbreeding coefficients, relatedness, effective population size, and ratio of effective popula-
tion size and census population (Ne/N) of 136 Siamese (Crocodylus siamensis, Schneider, 1801) [1] and
29 saltwater crocodiles (C. porosus, Schneider, 1801) [13].

Population N FIS Relatedness (r) Estimated Ne 95% CIs for Ne Ne/N

CB 1 30 −0.113 ± 0.201 −0.018 ± 0.042 41.300 32.200–46.500 1.377
NR 2 30 −0.086 ± 0.039 −0.019 ± 0.029 202.200 87.700–113.300 6.740
CN 3 34 −0.063 ± 0.039 −0.017 ± 0.030 115.500 69.500–88.100 3.397
NP 4 42 −0.045 ± 0.046 −0.019 ± 0.032 45.200 37.100–136.100 1.076
CP 5 29 −0.065 ± 0.055 −0.020 ± 0.032 103.700 66.700–74.800 3.576

Estimates were calculated using GenAlEx version 6.5 [28]. NeEstimator version 2.1 [29], and COANCESTRY
version 1.0.1.9 [30]. Detailed information for all elephant individuals is presented in Table S1. Sample size (N);
inbreeding coefficient (FIS); effective population size (Ne). 1 CB = Chonburi (Crocodylus siamensis). 2 NR = Nakhon
Ratchasima (Crocodylus siamensis). 3 CN = Chainat (Crocodylus siamensis). 4 NP = Nakhon Pathom (Crocodylus
siamensis). 5 CP = Nakhon Ratchasima (Crocodylus porosus).
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Figure 1. Observed distribution of (a) pairwise relatedness (r) and (b) inbreeding coefficients (FIS)
for 136 Siamese (Crocodylus siamensis, Schneider, 1801) [1] and 29 saltwater crocodiles (C. porosus,
Schneider, 1801) [13] individuals, plotted against the expected distributions.

Significant differences (p < 0.05) were observed in the estimates of FST between captive
populations after 110 permutations. The AMOVA showed that genetic variation was
84% among individuals crocodiles within a population and 11% between populations
(Table S21). Nei’s genetic distances and RST showed that the CN population was closer
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than the NP to the others (Tables S20 and S22). The distinction between the five crocodile
groups and the three suspected individuals (CSI05, CSI06, and CPO09) from our previous
study was supported by the first, second, and third principal components, which accounted
for 10.48, 8.87, and 4.24% of the total variation, respectively, as revealed by PCoA [11]
(Figure 2). Different population patterns were generated by the model-based Bayesian
clustering algorithms implemented in STRUCTURE with increasing K values; however, the
highest posterior probability with one peak (K = 3) based on Evanno’s ∆K, while the mean
ln P(K) also revealed one peak (K = 16) (Figures 3 and S1).
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Figure 3. Population structure of 136 Siamese (Crocodylus siamensis, Schneider, 1801) [1] individuals
and 29 saltwater crocodile (C. porosus, Schneider, 1801) [13] individuals. Each vertical bar on the
x-axis represents an individual, while the y-axis represents the proportion of membership (posterior
probability) in each genetic cluster. Crocodiles are superimposed on the plot, with black vertical lines
indicating the boundaries. Detailed information for all crocodile individuals is presented in Table S1
and Lapbenjakul et al. [11].

The amplicon length and alignment length of the mtDNA D-loop sequences were
1500 and 1350 bp, respectively. The numbers of haplotypes were 46 and 28 for Siamese
and saltwater crocodiles, respectively. Overall haplotype and nucleotide diversities were
0.846 ± 0.022 and 0.015 ± 0.003 for Siamese and 0.998 ± 0.055 and 0.069 ± 0.025 for
saltwater crocodiles (Table 5). A complex haplotype network was constructed from the
many detected polymorphic sites and haplotypes (Figure 4). The most common haplotype
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of all Siamese crocodile populations was haplotype CS36. Seven haplotypes (CS01, CS16,
CS20, CS21, CS27, CS30, and CS36) were shared in the CB, NR, CN, and NP populations.
Furthermore, the most common haplotype of all populations of saltwater crocodiles was
haplotype CD04 and CD05. Phylogenetic analysis of a combined data set for the mtDNA
D-loop sequences from both Siamese and saltwater crocodiles, together with those for
21 crocodile species obtained from the public repositories (GenBank/DDBJ/European
Nucleotide Archive (ENA)), indicated that most Siamese and saltwater crocodile sequences
each formed a monophyletic clade. However, NP04, NP06, NP07, NP09, NP13, NP14,
NP16, and NP20, first assigned to Siamese crocodile, were grouped with Cuban crocodile
(C. rhombifer) (GenBank accession number: NC_024513); whereas CP01, CP05, CP06, CP11,
CP12, CP13, CP15, CP20, CP23, CP25, CP27, CP28, CP29, and CP30, categorized with the
saltwater crocodile, were placed as a sister clade to Siamese crocodile (Figure S2). These
results agreed with BLAST results of sequence identity (Table S1). To examine the genetic
differentiation among the five populations, we calculated FST, GST, ΦST, Dxy, Da, and Nm.
The FST values ranged from −0.015 to 0.347, the GST values ranged from −0.008 to 0.071
and the ΦST values ranged from 0.013 to 0.330, The Nm values ranged from 0.947 to infinite,
the Dxy values ranged from 0.002 to 0.065 and the Da values ranged from 0.000 to 0.026
(Table 6).

Table 5. Mitochondrial DNA D-loop sequence diversity of Siamese (Crocodylus siamensis, Schneider,
1801) [1] and saltwater crocodiles (Crocodylus porosus, Schneider, 1801) [13].

Population N Number of
Haplotypes (H)

Theta (per Site)
from S

Average Number of
Nucleotide

Differences (k)

Overall
Haplotype

Nucleotide
Diversities (π)

CB 1 30 20 0.016 6.786 0.959 ± 0.022 0.013 ± 0.006
NR 2 30 18 0.007 3.471 0.940 ± 0.027 0.015 ± 0.008
CN 3 34 20 0.010 4.783 0.934 ± 0.027 0.022 ± 0.011
NP 4 42 24 0.036 40.539 0.922 ± 0.032 0.072 ± 0.035
CP 5 29 28 0.052 56.924 0.998 ± 0.010 0.069 ± 0.025

All populations 165 54 0.043 18.024 0.725 ± 0.039 0.040 ± 0.020
1 CB = Chonburi (Crocodylus siamensis). 2 NR = Nakhon Ratchasima (Crocodylus siamensis). 3 CN = Chainat
(Crocodylus siamensis). 4 NP = Nakhon Pathom (Crocodylus siamensis). 5 CP = Nakhon Ratchasima (Crocodylus porosus).

Table 6. Genetic differentiation between the three populations of Siamese (Crocodylus siamensis,
Schneider, 1801) [1] and saltwater crocodiles (Crocodylus porosus, Schneider, 1801) [13] for the mito-
chondrial DNA D-loop sequence. Genetic differentiation coefficient (GST), Wright’s F-statistic for the
subpopulations within the total population (FST), ΦST, gene flow (Nm) from the sequence data and
the haplotype data, the average number of nucleotide substitutions per site between populations
(Dxy), and the net nucleotide substitutions per site between populations (Da).

Population 1 Population 2 GST ΦST FST Dxy Da Nm

CB 1 NR 2 −0.008 0.013 0.045 * 0.002 0.000 10.620
CB CN 3 0.000 0.017 0.027 ns 0.002 0.000 18.224
CB NP 4 0.005 0.083 0.127 ** 0.021 0.003 3.432
CB CP 5 0.071 0.320 0.347 ** 0.055 0.025 0.941
NR CN 0.006 0.025 −0.015 ns 0.003 0.000 Infinite
NR NP 0.009 0.081 0.094 ** 0.021 0.003 4.840
NR CP 0.066 0.318 0.345 ** 0.055 0.025 0.949
CN NP 0.000 0.087 0.090 * 0.021 0.003 5.064
CN CP 0.067 0.330 0.345 ** 0.055 0.026 0.950
NP CP 0.050 0.198 0.261 * 0.065 0.020 1.418

ns = not significant, * p < 0.05, ** p < 0.01. 1 CB = Chonburi (Crocodylus siamensis). 2 NR = Nakhon Ratchasima
(Crocodylus siamensis). 3 CN = Chainat (Crocodylus siamensis). 4 NP = Nakhon Pathom (Crocodylus siamensis).
5 CP = Nakhon Ratchasima (Crocodylus porosus).
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4. Discussion

Siamese crocodile is well-represented in captivity, with possibly over 1.5 million in-
dividuals in farms in Thailand, Cambodia, and Vietnam [31–34], and smaller numbers
in farms in China and zoos in Europe and North America. In Thailand, 1400 crocodile
farms with 1,319,395 Siamese and 162,449 saltwater crocodiles were operating in 2020,
while 47,367 skins were sold in international trade in 2020 [35–37]. However, the captive
population in Thailand includes an unknown number of individuals hybridized with
saltwater crocodiles [11,33,38–40], similar to captive crocodiles in Cambodia, Lao PDR, and
Vietnam [33,41–43]. Observations of hybrids between Siamese and saltwater crocodiles
have been reported as a consequence of anthropogenic impacts [11,39,44,45]. Most anthro-
pogenic crocodile hybrids pose a serious problem for conservation management because
hybrids a possess highly similar morphology to their parental species, which might lead to
introgression if they are included in a reintroduction program [11].
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Most crocodile farms are members of the TCFA, which aims to keep purely captive-
bred individuals of both species to comply with the recommendations of CITES Appendix
I captive breeding operation [11,15,46]. Most Thai crocodile farms have thus pledged not to
produce hybrid offspring in the interest of conservation. However, we found discrepancies
in two genetic markers, microsatellite genotyping and mtDNA D-loop in several crocodile
individuals (both Siamese and saltwater crocodiles), suggesting the possibility of hybrids in
the population examined. Crocodiles that were clearly identified as being pure specimens
of a species were designated as either “identified Siamese crocodile” or “identified saltwater
crocodile”. However, if the results of the two genetic markers were not consistent, the
crocodiles were designated “unidentified crocodile”. To ensure compliance between genetic
tools and phenotypic variation for Siamese and saltwater crocodile identification, we
compared the results of genetic diversity and structure with phenotypic observation in
each crocodile. The most frequently observed means of identifying hybrid characteristics
between Siamese and saltwater crocodiles are the presence of P.O. This has led to the
misunderstanding of many crocodile experts and non-governmental organizations (NGOs)
who have visited crocodile farms in Southeast Asia as to whether Siamese crocodiles with
fewer than four post-occipital scales in a row are hybrids [16,47].

4.1. Are Different Numbers of Post-Occipital Scutes Due to Phenotypic Variation within Siamese
Crocodiles or the Consequence of Hybridization with Saltwater Crocodiles?

As shown in the STRUCTURE plot and PCoA, Siamese crocodiles from CB, CN, NR,
and NP, and saltwater crocodiles from NR, were likely clustered into different groups.
We analyzed the clustering order and gene pool pattern from K = 2–25. Identified pure
Siamese crocodiles, which have two P.O. scales shared the same gene pool with Siamese
crocodiles having three or four scales, whereas no P.O. scales were found in identified
saltwater crocodiles (Figures 3, 5 and S3). For K = 3, Siamese crocodiles (both identified
and unclear individuals) from CB, CN, NR, and NP were grouped in the same gene pool,
while saltwater crocodiles were part of a new group, with a small part shared with Siamese
crocodiles. At higher K levels, saltwater crocodiles (both identified and unclear individuals)
became identifiable, whereas Siamese crocodiles from different farms were separated from
each other. Gene pool structuring from both species or each farm showed admixture at
higher K levels; however, P.O. scale number variation also appeared in Siamese crocodiles
with mixtures of specific gene pools of Siamese crocodiles. This suggests that Siamese
crocodiles with fewer than four scales in a row are part of normal phenotypic variations
at the species level. Similarly, the first version of the species identification guideline was
revised after DNA analysis and proved various characteristics under the same species such
as in fighting fishes [48,49].

This misunderstanding of widespread hybridization in Thailand has probably re-
sulted from personal communication among experts from IUCN/SSC/Crocodile Specialist
Group and other NGOs who visited farms and followed the CITES Identification Guide
based on morphological characteristics in Charette [16], leading to an erroneous judgment
of crocodile hybridization events in Thai crocodile farms [46,47]. Revision of Siamese
crocodile identification should be reconsidered for scientific taxonomic study, which is
relevant to conservation management and economic value. However, the limited number
of microsatellite markers located at regular intervals cannot cover species-specific genomic
regions [50]. The 22 microsatellite marker loci in this study may have caused bias due
to limited population history, the timing of selection, phasing error, and false LD resolu-
tion [51,52]. Therefore, larger sample sizes with higher numbers of microsatellite loci are
required to extensively investigate the evidence. Genome-wide SNP are also needed to
identify signature selection between species or specific phenotypic issues such as P.O.
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Figure 5. Representation of structure plot and post-occipital scutes (P.O.) for hybrids between Siamese
and saltwater crocodiles (Crocodylus siamensis × Crocodylus porosus) and pure Siamese and saltwater
crocodiles. Detailed information for all hybrids between Siamese and saltwater crocodile individuals
is presented in Figures 3 and S3.

4.2. Large Gene Pool Variation Reflects Different Historical Origins in the Wild Population

Using data generated from microsatellite loci derived from Siamese and saltwater
crocodiles by Lapbenjakul et al. [11] and this study, we addressed the genetic structure and
gene pool pattern between the two crocodile species. As shown by PCoA, Siamese and
saltwater crocodiles were clustered into different groups. However, sharing of gene pools
by Siamese crocodiles between the crocodile farms was observed at different K levels of
the STRUCTURE plot. Although Siamese crocodile individuals from this study grouped
in the same gene pool at K = 3, and Siamese and saltwater crocodile individuals from our
previous study [11] were shown to be part of a new group with saltwater crocodiles, large
differences in gene pools were observed among the four populations from K = 5–25. In the
NP population, two subpopulations of different gene pools were found, consistent with the
positive fixation index value. It can be inferred from this that Siamese crocodiles in each
farm had different ancestral original lineages.

Historically, Siamese crocodiles were widespread in Central Thailand. The current
captive Siamese crocodile populations might reflect differences in the original sources
brought into farms in Thailand. This result agreed with the genetic diversity parameters
showing high values of heterozygosity, AR, and Ne in Siamese crocodiles from the four
captive sites in this study. The pairwise FST value was statistically significant among the
four populations, implying genetic structure differentiation between the farms. The differ-
entiation in genetic makeup reflects the accumulation of variations in allelic frequencies,
providing crucial insights into the evolutionary history, genetic drift, and selection of dis-
tinct populations [53,54]. However, we have no evidence to identify gene pool associations
and geographic origin as known ecotypes, as no capture records exist for Siamese crocodile
individuals. Interestingly, many Siamese crocodiles from the four captivities showed a
genetic admixture of different gene pools of Siamese crocodile from K = 5–25. This was
also observed in the saltwater crocodile population, which might have resulted from the



Biology 2023, 12, 535 12 of 19

historical genetic exchange of parental stocks between farms. Regarding mtDNA D-loop
sequences, positive Nm, low FST, and sharing haplotypes of crocodiles between farms also
confirmed the presence of crocodile genetic exchange in the market farms. The exchange of
Siamese crocodile parental stocks has been conducted to impede inbreeding within each
captive site, which may provide a negative inbreeding level. These findings collectively
suggest that large captive populations of Siamese crocodiles held on farms represent a good
potential source for reintroduction programs. Crocodile farms under TCFA are willing to
donate Siamese crocodiles for this purpose [55].

4.3. Siamese Crocodile Identification Protocol Based on Morphology and DNA Fingerprinting

Captive crocodiles must be genetically identified at the species level before release [9,56,57].
However, hybridization between Siamese and saltwater crocodiles is widespread among
some captive populations in Southeast Asia [33,34,39,58]. Differentiating hybrids from
parental species based on phenotype alone is very challenging; thus, genetic screening
is necessary to confirm species identity [11,15,40,58]. To ensure the success of reintroduc-
tion programs, we must first address the complex hybrid issue. Cluster analysis using
STRUCTURE can now determine the degree of hybridization and gene pool pattern by
aggregating individuals into a single cluster relative to additional highly differentiated pop-
ulations/species [11,59,60]. Our previous study indicated that three individuals (CPO09,
CSI05, and CSI06) may have been the result of interspecific hybridization between Siamese
and saltwater crocodiles [11]. In this study, after we added more Siamese and saltwater
crocodiles to the library analysis, the three crocodile individuals were still identified as
hybrids. However, high levels of genetic admixture were observed in many crocodile
individuals, and this might result in misleading conclusions about the genetic admixture
of gene pools under the STRUCTURE plot with the probability of identifying the state
of hybrids alone. According to genetic diversity parameters and the STRUCTURE plot,
great genetic diversity and large gene pools of both species likely remain in the population,
while both species are very closely related lineages [15]. The two species may share some
alleles of microsatellite repeats at the same genomic locus, which is often observed in many
closely related species in vertebrates [61,62]. We, therefore, proposed criteria to screen
hybrid crocodiles between Siamese and saltwater crocodiles as follows: (i) Consideration
of genetic admixture at different K levels to examine the trend of clustering, separation
of allelic signals and the majority of allelic pattern, although the best K level might be
predicted from different algorithms; (ii) sharing a gene pool between the two species might
be possible, but should not have more than a posterior probability of 0.05 at the K level,
which shows the trend of separation between the two species; (iii) clustering by PCoA
should be considered together with the STRUCTURE plot to test the group of crocodile
specimens; (iv) determination of maternal lineage by mtDNA D-loop sequences may be
added to confirm; and (v) external morphological observation with updated phenotypic
variations in the P.O. should be scored together with genetic screening.

These five steps would provide evidence that can prove the hybridization status
of each Siamese crocodile individual under reasonable time before they are used in the
reintroduction program (Figure 6). Crocodiles that pass the five tests of characteristics
would be key sources for release to the wild. However, if the crocodile fails on some
aspects with unclear determination, the individual should undergo more experimental
tests such as karyotyping. Siamese and saltwater crocodiles have different chromosome
numbers, whereas the F1 hybrid or backcross shows diverge chromosome constitution
from the parental species [63,64]. However, karyotyping is time-consuming, expensive,
and may not be practical to prove species purity for large numbers of individuals, whereas
multiple types and generations of hybrid (both F2, F3 or backcross) might escape detection
of chromosome number. More research utilizing genome-wide scans with single nucleotide
polymorphisms (SNPs) is necessary to enhance our comprehension of selection signatures
in diverse populations and species. However, genome-wide SNP analysis might not
be reliable for multiple processes with small crocodile numbers in each reintroduction
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program. From this state, we found suspected hybrids with CB11 (P.O. 4), CB22 (P.O. 3),
CB27 (P.O. 4), CP01 (P.O. 0), CP05 (P.O. 4), CP06 (P.O. 4), CP11 (P.O. 4), CP12 (P.O. 4), CP13
(P.O. 4), CP15 (P.O. 2), CP20 (P.O. 0), CP23 (P.O. 4), CP25 (P.O. 2), CP27 (P.O. 4), CP28 (P.O.
4), CP29 (P.O. 0), CP30 (P.O. 0), CSI05 (unidentified P.O.), CSI06 (unidentified P.O.), and
CPO09 (unidentified P.O.) (Figure 5), which should be tested by karyotyping before release.
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Figure 6. Schematic representation of criteria to screen hybrid crocodiles between Siamese and
saltwater crocodiles to prove the hybridization level status in each Siamese crocodile individual
before they can be used in the reintroduction program.

The Thai government and TCFA have never promoted hybridization in crocodile
farms under Appendix I captive breeding operation [46]; however, the incidence of con-
tamination by hybrids was observed to be 5–10% here and in our previous study [11].
Hybrid contamination may result from a long history of crocodile trade from 30 years ago,
which had no concrete plan of protection by the Thai Government. Hybridization between
Siamese and Cuban crocodiles (C. rhombifer) as a result of human-mediated movement
has also been observed in Southeast Asia [11,39,44,45]. Current results suggest that NP04,
NP06, NP07, NP09, NP13, NP14, NP16, and NP20 are hybrid crocodiles derived from the
Cuban crocodile lineage. We also found signs of a unique gene pool from unidentified
crocodiles (suspected hybrid with Cuban crocodiles). However, we could not identify ge-
netic admixture and introgression of Cuban crocodiles using microsatellite genotyping with
our library, as there were no pure Cuban crocodiles in our experimental genetic stock [11]
or in this study. Mitochondrial DNA analysis could allow us to infer the maternal lineage
of Cuban crocodiles by comparing the DNA sequences with nucleotide data repositories
such as GenBank, but this might not be enough for the cut-off determination of crocodile
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species. Thus, collaboration with crocodile research groups, governments, and NGOs such
as the Crocodile Specialist Group (CSG) will be necessary for documenting and monitoring
the introgression of several crocodile species in Southeast Asia.

Identifying purebred individuals from captive populations is a significant challenge
for restocking and reintroduction efforts. The CSG has proposed various recommendations
to support the conservation of Siamese crocodiles, including legislative and regulatory mea-
sures, compliance with CITES obligations, appropriate management of captive populations,
conducting surveys and conservation initiatives, controlling illegal trade, promoting re-
gional conservation initiatives, and exploring restocking options. These recommendations
are aimed at supporting the current efforts of Thai national agencies to conserve the species,
including the Department of Fisheries under the Ministry of Agriculture and Cooperatives
and the Department of National Parks, Wildlife and Plant Conservation (DNP) under the
Ministry of Natural Resources and Environment. To restore, protect, and create habitats for
the Siamese crocodile, initiatives for public–private partnerships and sustainable financing
will be launched. Prioritizing the management of key threats and conducting large-scale as-
sessments of Siamese crocodile conservation status will be crucial for addressing challenges
related to populations, protected areas, and other conservation initiatives.

5. Conclusions

These results indicate that a P.O. variation of 2–4 is within the species-level variation of
Siamese crocodiles. In short, this is a phenotypic variation and not the result of hybridiza-
tion with saltwater crocodiles. This baseline information on the association between genetic
status and phenotypic variation of Siamese crocodiles in captive populations in Thailand
is important for future conservation. Large differences in gene pools were observed in
Siamese crocodiles, suggesting different historical origins of Siamese crocodiles in the wild
population before massive capture and collection. Recently, a call was made to redefine
the role of admixture in species conservation. It emphasized that crocodiles that have
undergone gene flow and introgression during their evolutionary history or have been
impacted by anthropogenic issues require protection measures. Ultimately, hybridization
presents a management problem for Siamese crocodiles and complicates species identi-
fication based on morphology alone [65]. Adequate protocols to identify introgression
and hybridization are urgently needed. Here, the genetic approach we followed proved
that combining information from genetic and phenotypic approaches yielded more robust
results. Accurate data on captive populations is critical for ensuring the long-term survival
of the species through reintroduction programs and in situ/ex situ management, which
helps to maintain sustainable genetic diversity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12040535/s1, Figure S1. Population structure of 136 Siamese
crocodiles (Crocodylus siamensis, Schneider, 1801) [1] and 29 saltwater crocodiles (C. porosus, Schneider,
1801) [13], (a) Plot of Evanno’s ∆K and (b) plot of ln P(K); Figure S2. Phylogenetic relationships
among mitochondrial DNA D-loop region sequences were inferred using Bayesian inference anal-
ysis. Support values at each node denote the Bayesian posterior probability. Table S1 provides
detailed information on the sampled individuals; Figure S3. Representation post-occipital scutes
(P.O.) for hybrids between Siamese and saltwater crocodiles (Crocodylus siamensis× Crocodylus porosus).
(a) CB11 (b) CB22 (c) CB27 (d) CP01 (e) CP05 (f) CP06 (g) CP11 (h) CP12 (i) CP13 (j) CP15
(k) CP20 (l) CP23 (m) CP25 (n) CP27 (o) CP28 (p) CP29 (q) CP30; Table S1. Specimen populations
of Siamese (Crocodylus siamensis, Schneider, 1801) [1] and saltwater crocodiles (C. porosus, Schnei-
der, 1801) [13] All sequences were deposited in the DNA Data Bank of Japan (DDBJ) and BLASTn
(http://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 8 February 2023) of sequence identity; Table S2.
Microsatellite primers and sequences; Table S3. Pairwise differentiation of linkage disequilibrium
of Siamese crocodiles (Crocodylus siamensis, Schneider, 1801) [1] at Chonburi (CB) based on 22 mi-
crosatellite loci. Numbers indicate p-values with 110 permutations; Table S4. Pairwise differentiation
of linkage disequilibrium of Siamese crocodiles (Crocodylus siamensis, Schneider, 1801) [1] at Nakhon
Ratchasima (NR) based on 22 microsatellite loci. Numbers indicate p-values with 110 permutations;
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Table S5. Pairwise differentiation of linkage disequilibrium of Siamese crocodiles (Crocodylus siamensis,
Schneider, 1801) [1] at Chainat (CN) based on 22 microsatellite loci. Numbers indicate p-values with
110 permutations; Table S6. Pairwise differentiation of linkage disequilibrium of Siamese crocodiles
(Crocodylus siamensis, Schneider, 1801) [1] at Nakhon Pathom (NP) based on 22 microsatellite loci.
Numbers indicate p-values with 110 permutations; Table S7. Pairwise differentiation of linkage dise-
quilibrium of saltwater crocodiles (Crocodylus porosus, Schneider, 1801) [13] at Nakhon Ratchasima
(CP) based on 22 microsatellite loci. Numbers indicate p-values with 110 permutations; Table S8.
Genetic diversity of 136 Siamese crocodiles (Crocodylus siamensis, Schneider, 1801) [1] and 29 saltwater
crocodiles (C. porosus, Schneider, 1801) [13] based on 22 microsatellite loci. Table S1 provides detailed
information on the sampled individuals; Table S9. Pairwise genetic relatedness (r) for all 30 Siamese
crocodiles (Crocodylus siamensis, Schneider, 1801) [1] in Chonburi (CB) Table S1 provides detailed
information on the sampled individuals; Table S10. Pairwise genetic relatedness (r) for all 30 Siamese
crocodiles (Crocodylus siamensis, Schneider, 1801) [1] in Nakhon Ratchasima (NR) Table S1 provides
detailed information on the sampled individuals; Table S11. Pairwise genetic relatedness (r) for all
34 Siamese crocodiles (Crocodylus siamensis, Schneider, 1801) [1] in Chainat (CN). Table S1 provides
detailed information on the sampled individuals; Table S12. Pairwise genetic relatedness (r) for all
42 Siamese crocodiles (Crocodylus siamensis, Schneider, 1801) [1] in Nakhon Pathom (NP). Table S1 pro-
vides detailed information on the sampled individuals; Table S13. Pairwise genetic relatedness (r) for
all 29 saltwater crocodiles (Crocodylus porosus, Schneider, 1801) [3] in Nakhon Ratchasima (CP). Table
S1 provides detailed information on the sampled individuals; Table S14. Distributions of r values and
FIS values for Siamese (Crocodylus siamensis, Schneider, 1801) [1] and saltwater crocodiles (Crocodylus
porosus, Schneider, 1801) [1]; Table S15. Pairwise inbreeding coefficients (FIS) for all 30 Siamese
crocodiles (Crocodylus siamensis, Schneider, 1801) [1] in Chonburi (CB). Detailed information on all
Siamese crocodile individuals is presented in Table S1; Table S16. Pairwise inbreeding coefficients
(FIS) for all 30 Siamese crocodiles (Crocodylus siamensis, Schneider, 1801) [1] in Nakhon Ratchasima
(NR). Detailed information on all Siamese crocodile individuals is presented in Table S1; Table S17.
Pairwise inbreeding coefficients (FIS) for all 34 Siamese crocodiles (Crocodylus siamensis, Schneider,
1801) [1] in Chainat (CN). Detailed information on all Siamese crocodile individuals is presented
in Table S1; Table S18. Pairwise inbreeding coefficients (FIS) for all 42 Siamese crocodiles (Crocody-
lus siamensis, Schneider, 1801) [1] in Nakhon Pathom (NP). Detailed information on all Siamese
crocodile individuals is presented in Table S1; Table S19. Pairwise inbreeding coefficients (FIS) for all
29 saltwater crocodiles (Crocodylus porosus, Schneider, 1801) [1] in Nakhon Ratchasima (CP). Detailed
information on all saltwater crocodile individuals is presented in Table S1; Table S20. Pairwise
genetic differentiation (FST), pairwise FST

ENA values with ENA correction for null alleles and RST
values using FSTAT version 2.9.3 [66] and of Siamese (Crocodylus siamensis, Schneider, 1801) [1] and
saltwater crocodiles (Crocodylus porosus, Schneider, 1801) [13] between captive-bred individuals based
on 22 microsatellite loci. The numbers indicate p values, with 110 permutations. Detailed information
on all Siamese and saltwater crocodile individuals is presented in Table S1; Table S21. Analysis of
molecular variance (AMOVA) results for Siamese crocodile (Crocodylus siamensis, Schneider, 1801) [1]
and crocodiles (Crocodylus porosus, Schneider, 1801) [1] based on 22 microsatellite loci using Arlequin
version 3.5.2.2 [67]. Detailed information on all Siamese and saltwater crocodiles is presented in
Table S1; Table S22. Pairwise population Nei’s genetic distance (D) values using GenAlEx version
6.5 [28] of 166 Siamese (Crocodylus siamensis, Schneider, 1801) [1] and saltwater crocodiles (Crocodylus
porosus, Schneider, 1801) [13] based on 22 microsatellite loci. Detailed information on all Siamese and
saltwater crocodiles is presented in Table S1; Supplementary Data S1 Materials and Methods [66–85].
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