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Simple Summary: Understanding the relationships between genes is crucial to identify the genetic
program of organisms. This research could potentially have implications for this understanding. This
study aims to build a genetic network for the yeast genome by recognizing interacting genes. This
is performed by incorporating different mathematical methodologies and classification techniques
to predict relations between two genes. High accuracy is achieved across several tests to identify
network interactions. Our findings provide new insights and potential interactions between genes in
the yeast genome network. Our results are highly relevant to the field, as they emphasize the power
of classification and its role in improving the current understanding of the yeast genome network.

Abstract: Gene expression profiling is one of the most recognized techniques for inferring gene
regulators and their potential targets in gene regulatory networks (GRN). The purpose of this study is
to build a regulatory network for the budding yeast Saccharomyces cerevisiae genome by incorporating
the use of RNA-seq and microarray data represented by a wide range of experimental conditions.
We introduce a pipeline for data analysis, data preparation, and training models. Several kernel
classification models; including one-class, two-class, and rare event classification methods, are used
to categorize genes. We test the impact of the normalization techniques on the overall performance
of RNA-seq. Our findings provide new insights into the interactions between genes in the yeast
regulatory network. The conclusions of our study have significant importance since they highlight
the effectiveness of classification and its contribution towards enhancing the present comprehension
of the yeast regulatory network. When assessed, our pipeline demonstrates strong performance
across different statistical metrics, such as a 99% recall rate and a 98% AUC score.

Keywords: bioinformatics; RNA-seq; microarray; regulatory networks; kernel classification; gene
expression profiling

1. Introduction

Reconstructing the causal relationships in genetic networks, including regulatory
interactions, is important for understanding biological processes and disease mechanisms.
Computational prediction of regulations from transcriptomics data can be useful for select-
ing and prioritizing candidate genes that can serve as biomarkers or potential drug targets.
The two main technologies widely used for transcriptome-wide gene expression profiling
are microarrays and next-generation RNA sequencing (RNA-seq). Here, we discuss an
approach to reconstructing causal networks based on the analysis of transcription data
from microarray and RNA-seq. While microarrays have been the preferred method due to
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cost-effectiveness and ease of data analysis [1–3], RNA-seq has advantages in sensitivity,
coverage of differentially expressed genes, and identification of isoforms and non-coding
genes [4–7]. An in-depth review summary of the differences between RNA-seq and mi-
croarray approaches is included in the Supplementary Materials.

Prediction analysis is one of the compelling comparative methods used to identify
the pros and cons of using RNA-seq and microarray-based models. Several studies show
the effects of these data models on different organisms and various classification systems.
A prediction analysis study for identifying cancer biomarkers presented a comparison
between RNA-seq and microarray-based classifiers to identify the significance of each
in the field of clinical practice [8]. Other studies assess the prediction accuracy for data
derived from RNA-seq and microarray [9,10]. Their results show an interesting view of
the potential and the advantages of using each profiling technique. They conclude that
conducting a comparison to point out which technique outperforms the other is not the
optimal approach. A favored method is understanding how each profiling technique
should be utilized in different conditions to maximize the results.

In this work, we adopt a methodical approach to evaluate and compare the perfor-
mance of models with various classifiers for regulatory network prediction using either
RNA-seq or microarray-based input data. In our previous work, we detected regulatory
associations for Saccharomyces cerevisiae genes using microarray expression data derived
from various experimental settings [11]. In the present article, we extend our work to ana-
lyze and classify RNA-seq data for the S. cerevisiae genome as well. Each dataset (RNA-seq
and microarray) represents a variety of experimental conditions to capture the nature of
data and extract the prediction features. We will study the difference in prediction accuracy
between microarray data and RNA-seq data. We will shed the light on the performance
of these datasets across kernel classification models; one-class, two-class, and rare-event
classifiers. Finally, we will study the impact of RNA-seq data normalization techniques on
the prediction accuracy of S. cerevisiae gene pairs.

The practical strength of our approach is in improving the target selection process,
making informed decisions on which genes or gene products are the most promising
targets of experimental studies, and prioritizing the use of laboratory resources when only
a limited number of genes can be tested experimentally. The approach can be used in model
organisms (such as S. cerevisiae) to study conserved regulatory relationships, or in human
or human pathogens to identify drug targets or biomarkers. Our findings provide new
insights into the interactions between genes in the yeast regulatory network. We have also
identified new potential targets for transcription factors using both profiling technologies
by inferring the network interactions. Our results emphasize the power of classification
and its role to improve the current understanding of the yeast regulatory network.

The rest of the article is structured as follows. Section 2 presents the analysis pipeline
of our proposed method. It covers RNA-seq data analysis, data preparations, and training,
and introduces the kernel classifiers used in this work. We discuss the experimental results
in Section 3. Finally, we provide conclusions in Section 4.

2. Methods

In this section, we present the methods adopted for the analysis of RNA-seq data. We
have followed a similar approach to our previous study targeting microarray data. For
an in-depth understanding of the microarray analysis method adopted readers may refer
to Alaamri et al. [11]. The pipeline introduced in this section is divided into three main
sections: RNA-seq data analysis (Section 2.1), data preparation for system classifications
(Section 2.2), and training data and models (Section 2.3). An overall presentation of the
customized pipeline followed in this work is illustrated in Figure 1.
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Figure 1. The general pipeline adopted in this work is represented in three major sections. Section 2.1:
RNA-seq data analysis is summarized in the top part of the figure. Sequence Read Archive files are
converted to fastQ files using SRAToolKit, then fed to the RSEM tool for gene quantification. The
middle part illustrates the data preparation for system classifications, Section 2.2. The files containing
the values of count reads for the matrix (genes x samples) are prepared for analysis by calculating
the moments for each pair of genes, standardizing each moment, and then applying the Principal
Component Analysis (PCA). The bottom part shows Section 2.3: training data and models. All pairs
of genes are represented by 36 moments and fed to the kernel classification models for training
and testing.

2.1. RNA-seq Data Analysis

The goal of this section is to create a list of genes each represented by normalized reads
from different experiment conditions. The approach follows a typical RNA-seq workflow
for differential expression (DE) analysis. The process of data collection is automated as a
pipeline using the steps and tools listed below:

• GEO database: The Gene Expression Omnibus (GEO) was used to obtain the S. cere-
visiae RNA-seq expression data [12]. We used three main GEO platforms to download
RNA-seq records (GPL19756, GPL17342, and GPL13821). Each of these platform files
contains different experimentation conditions (series) and various samples for each
series. To obtain these samples and specifically those representing RNA-seq data
delivered by using Illumina sequencing technology, we used the BioProject ID that
links the GEO sample to the correspondent Sequence Read Archive (SRA) accession
IDs [13]. We randomly selected and downloaded around 1500 SRA accession IDs.

• SRA-Toolkit: This is another well-designed service by NCBI. SRA-Toolkit is a collection
of tools to utilize SRA data [14]. We mainly used two operations; namely prefetch and
fastq-dump. Prefetch was used to download sequence files in the compressed SRA format
using the SRA accession IDs obtained from the previous step. These sequence files were
then used by the fastq-dump sub-tool to retrieve the SRA fastQ files. This process required
a significant amount of time and disk space. At this point, all the files were prepared for
mapping and transcript quantification to obtain the reads for each gene.

• RSEM tool: Finally, the fastQ files were fed to the RNA-seq by Expectation Maximization
(RSEM) package tool [15]. RSEM is an open-source software tool for gene quantification
using single-end or paired-end RNA-seq data. It also utilizes Bowtie; a powerful and
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efficient alignment software [16]. We used the main functions showcased in the typical
RSEM workflow: rsem-prepare-reference and rsem-calculate-expression.
The reference was prepared by obtaining the yeast FASTA-formatted file from En-
sembl genome browser release 82 [17]. Then, RSEM takes as input the fastQ files
downloaded previously using SRA-Toolkit. The tool maps each fastQ file and outputs
the calculated expression as gene read counts. The read counts are normalized by
default with Transcripts Per Kilobase Million (TPM) and Fragments Per Kilobase
Million (FPKM) normalization metrics. In Section 3, we showcase the effect of the
normalization method on the prediction accuracy for the gene–gene association. For
each normalization metric, we merged all the read counts according to their gene cor-
respondence to create a matrix table of genes (rows) and sample counts (columns). The
output files of this step are referred to as File(N), where N denotes the normalization
method (TPM or FPKM).

It is worth noting that gene names are equalized to avoid any confusion between
processes and to ensure data coherence. The gene names for all genes in File(N) and
in the databases mentioned in Section 2.3 are standardized according to the UniProt
Knowledgebase (UniProtKB) [18]. UniProtKB presents each gene name in a primary name,
synonyms, and ordered locus name. We followed the order locus name for its uniqueness
by converting all the gene names. This step upgraded the efficiency of all previous and
later processes. Next, the data was prepared for classification.

2.2. Data Preparation for Classification
2.2.1. Microarray

As previously stated, the microarray data were acquired from our previous work [11].
The data went through several steps that are mentioned in detail in Section 2.2.2. The
processed data ready for training consisted of around 43 million pairs of genes each
represented by 36 moments. In this paper, we rerun the training process for microarray data
to keep up with the updated gene regulatory databases used for training and classification.

2.2.2. RNA-seq

The output of Section 2.1: File(N), consists of 6041 genes, each defined by a vector of
1500 normalized read counts. We used this data to construct the gene regulatory network
(GRN) and define each pair of genes by a vector of features. The moments (E[xnym])
represent the features and are calculated using the joint probability distribution of all pairs
of genes. It is worth noting that higher moments can provide more information to capture
causal relationships because they measure higher order dependencies between random
variables. In contrast to correlation-based measures that only capture linear relationships
between variables, higher moments can capture nonlinear relationships and higher order
interactions. These higher order interactions may be indicative of causal relationships that
are not captured by simpler measures.

The outcome of this step is the data matrix that consists of 18,243,820 pairs of genes,
each pair represented by a vector of 49 moments. All the moments are then standardized
for all pairs of genes. We applied the Principal Component Analysis (PCA) to first convert
the moments to principal components and then identify the significant moments [19]. This
reduced the dimensionality of moments (principal components) to 36. We aimed to use
the moment size that produced the best training accuracy which was revealed as 36 in
the previous study [11]. We illustrate the structure of our training data in terms of the top
principal components in Figure 2. Next, we analyzed the pairs’ vectors using different
classification models (i.e., Rare Event Weighted Kernel Logistic Regression (REWKLR), and
one-class and two-class Support Vector Machine (SVM).
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Figure 2. A 2D histogram is showing the structure of true positive using FPKM training data.

2.3. Training Data and Models

The training data consisted of two classes; related and unrelated pairs to aim at
constructing the undirected gene regulatory network. The GRN data for S. cerevisiae
are found in various databases such as YeasTract [20], YTRP [21], Harbison data [22],
YeastPathways [23], and KEGG pathways [24]. The list of abbreviations for these databases
is enlisted at the end of the article. In this work, we use YeasTract (YT) for training.
YT is a continually updated repository curated by using mainly the information from
Saccharomyces Genome Database (SGD) and Gene Ontology (GO) consortium. It consists
of 213,807 regulatory associations between transcription and target genes. We later use
YTRP, YeastPathways (YP), and KEGG for data testing and prediction. All of the mentioned
databases offer easy access to downloadable material. As mentioned previously, all the
gene names in the databases were converted to their ordered locus name as found in
UniProtKB. The related class in the training data consists of vectors of moments for the pair
of genes found in the YT repository. This class will also be referred to as the positive class,
and each pair vector is denoted as “1”.

Determining the unrelated pairs presents a challenge to the prediction association
since it is questionable to assume that any pair absent from all GRN database sources
is unrelated. To tackle this, we set up the following assumption. The lowest correlated
pairs of genes are to be considered in the negative class for training. Moment E[x1y1]
corresponds to the correlation between the two genes in the pair. We used the absolute
values for moment {1,1} for all gene pairs to draw the histogram as demonstrated in the
example shown in Figure 3. We then drew out the lowest 10,000 pairs to categorize them
under unrelated pairs (negative class). Each of these pairs’ vectors is indicated with “0”. In
Figure 1, the table of vectors for each pair of gene Px,y is shown as an example of how the
training data looks upon classification.

Figure 3. An example histogram plot for FPKM correlation data.



Biology 2023, 12, 518 6 of 14

2.4. Kernel Classification Methods

This section introduces the different classifiers used to identify the best fit for our
data. In our previous work [11], we used the REWKLR classifier to train and predict
the microarray data [25]. We aimed to employ the same mechanism for the RNA-seq
data. Additionally, we train and predict both data types with SVM and one-class SVM. A
summary description of each classifier is itemized below:

• REWKLR is identified as a rare-event classifier where the unrelated pairs outnumber
the related ones. This captures the natural dynamics of genetic data and considers
the sparsity of the data. In particular, the data in this article exhibit the genetic data
nature where the percentages of zeros (unrelated pairs) exceed that of ones (related
pairs). REWKLR embeds the kernel in a typical Logistic Regression model to reflect
the nonlinearity of data separation. The performance of REWKLR was shown to
compete with other classifiers such as SVM [25–27]. The parameters optimized for
REWKLR are the regularization variable (λ) and the dual variable (σ).

• SVM is one of the widely used supervised learning models. It efficiently uses the
kernel trick to separate two or more classes with nonlinear classification. It is also
one of the highly effective models to handle a sparse number of features in a high-
dimensional representation. However, it might not always be the optimal solution
for capturing rare events [28]. Other methods such as REWKLR [26] and hexagonal
cellular networks [29] consider the rarity of events in classification. We used the
Gaussian radial basis function (RBF), a commonly used kernel with SVM, to train
and predict our data. The hyperparameters optimized for training are the penalty
parameter of the error term (C), and the Gamma parameter (γ).

• One-class SVM is shown to be the version of SVM that detects rare events more
sufficiently [30,31]. To validate that, we tested our data with this model since the
negative class might not be deterministic as stated previously in Section 2.3. Hence,
we trained the positive class data features. We used the RBF kernel in one-class SVM
as well. The parameters optimized in this model, however, are the Gamma parameter
(γ) and the Nu parameter (ν) which acts both as a lower bound and an upper bound
for the number of features.

At this point, there were three datasets ready for training. The first is microarray data,
the second is RNA-seq data normalized by TPM, and the third is normalized by FPKM.
Each training dataset consists of a matrix of 20,000 pairs and 36 features, with equal sizes of
ones and zeros (positive and negative classes). As for the one-class SVM classifier, we used
only the 10,000 ones that are part of the training dataset. Several tests were attempted to find
the best data fit and accuracy by tuning the kernel parameters in all classifiers. Details of
training accuracy and parameters for each training dataset are discussed later in Section 3.1.
It is important to note that we do not follow the training parameters for microarray data
used in previous work. Since the GRN databases are constantly updating, the microarray
data is trained again with REWKLR to have a fair comparison among datasets.

3. Results and Discussion

In this section, we address the data preparation and system specifications for the
workflow setup shown in Figure 1. We further compare the performance of three kernel
classifiers in terms of prediction accuracy. We report the training accuracy measures and
the findings in Sections 3.1 and 3.2, respectively.

3.1. Data Preparation and System Specification

The pipeline unit was developed by utilizing an on-premise High-Performance Com-
puter cluster that provides parallel job execution. It was essential particularly for the
RNA-seq analysis since it required large computational power and memory. Converting
each of the 1500 SRA files to fastQ and then calculating the count read from each fastQ
file were parallelized. Jobs that were also run in parallel for a faster and more effective
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approach were calculating the moments and running the PCA analysis. The three datasets
TPM, FPKM, and microarray were then fed to the classifiers. REWKLR is built on MatLab
guided by [26]. SVM and one-class SVM classifiers were implemented using the open-
source Python library Scikit-learn [32]. All programming platforms were installed on a
system with the following specifications: Intel(R) Core i7 processor @ 3.4 GHz and 16 GB
RAM, running Windows 10. All classifiers required parameter optimization by testing over
a range of values and selecting the best-fitting ones. A bootstrapping sampling technique
was used to iteratively select subsets of the available data for training and testing in order
to find the optimal parameters that achieve the highest average accuracy for two classes in
the case of binary classification, or the highest accuracy for the positive class in the case of
one-class classification. Training each classification model with three datasets resulted in
the parameters and accuracy measures reported in Table 1.

Table 1. The optimal training parameters and class accuracy for all classification models in the order
(REWKLR, SVM, and one-class SVM).

REWKLR tpm fpkm micro

Class Accuracy 0 94 94 97

Class Accuracy 1 83 95 75

λ 2.4 0.2 0.01

σ 0.2 0.1 1.5

SVM tpm fpkm micro

Class Accuracy 0 99 99 93.5

Class Accuracy 1 86 85 99

γ 4 3.8 3.1

C 18 20 3.0

One-class SVM tpm fpkm micro

Class Accuracy 1 96.6 97.5 94.8

γ 1.8 1.5 0.1

ν 0.03 0.03 0.2

Overall, RNA-seq data achieves higher training accuracy over microarray. The training
accuracy fluctuates across classification models for both normalization methods TPM and
FPKM. We illustrate the Receiver Operating Characteristic (ROC) curve in Figure 4 to assess
the quality of the training for REWKLR and SVM. One-class SVM is skipped since it does
not produce a false positive rate. The curve was calculated using 500 measurements for
each threshold and by resampling the training data to produce the error bar. A better view
of the error bars for each dataset is included in the Supplementary Materials. Overall, all
datasets showed good performance across classifiers.

3.2. Prediction Results

The performance of each model was validated with the following databases: YeasTract
(YT) [20], YTRP [21], YeastPathways (YP) [23], and KEGG pathways [24]. We downloaded
a total of 390,378 gene–gene interactions from KEGG, 338,312 gene–gene interactions
from YeastPathways, and 41,817 regulatory interactions from YTRP, from which randomly
selected datasets were utilized for testing. In total, we had twelve different testing datasets
for all benchmarks. There were three YT datasets for TPM, FPKM, and microarray data
and for YTRP, YP, and KEGG. To avoid training bias, the datasets were randomly picked by
excluding the YT pairs used for training. We did not mix the datasets into one dataset but
rather test them separately. In particular, each testing dataset consisted of 10–20 thousand
vectors of pairs. We evaluated the accuracy of the three classification models in terms of
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class accuracy as shown previously in Table 1, and in terms of True Positive Rate (TPR), and
False Positive Rate (FPR) as was shown in Figure 4. We further computed the recall, and
precision to evaluate the accuracy of identifying related genes. The Precision–Recall (PR)
curve is shown in Figure 5 to emphasize the performance balance across several thresholds
for the testing data. The curve was calculated using 500 measurements for each threshold
and by resampling the testing data to produce the error bar. A better view of the error bars
for each dataset is included in the Supplementary Materials.
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Figure 4. ROC curve for training data showing in general the recall is increased at a low fallout.
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Figure 5. Two-class Precision–Recall curves for SVM and REWKLR. RNA-seq data have better
performance in both classifiers in comparison to microarray.

To illustrate the complexity of the relationships predicted, we added density plots to
compare the distributions of correlation values between linked and unlinked pairs. Figure 6
displays both plots overlapped, indicating that relying solely on correlation is insufficient
to differentiate between connected and unconnected genes.
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Figure 6. Density plots for correlations for positive and unlabeled interactions

Next, we chose the recall accuracy measure to display the performance of all classifiers.
The bar plot in Figure 7 demonstrates the performance of each classifier using different testing
datasets over several measurements. The Supplementary Materials include a different version
of the figure by focusing on the range 70–100% to provide a better view of the error bars. The
main observation is that all classifiers performed well in terms of recall across all datasets. This
emphasizes the power of classification in identifying yeast GRN using RNA-seq-based and
microarray-based datasets. In particular, we see that REWKLR and one-class SVM scored the
highest recall on average across datasets. In addition, REWKLR and one-class SVM performed
similarly in most datasets, which indicates the classifiers’ success in capturing rare events more
sufficiently by recognizing the sparsity of the data. Another particular observation is towards
one-class SVM, which shows to be a viable and more suitable option compared to two-class SVM
to classify the data in this work. This is particularly valuable because of the nondeterministic
nature of the negative interactions in GRN.

Across all classifiers, it is apparent that on average the use of RNA-seq data yielded
higher recall values of more than 80% with all datasets and more than 90% with the majority
of datasets. On the hypothesis that the RNA-seq normalization technique might affect the
prediction accuracy, we noticed that TPM normalization shows a slightly overall improved
performance than FPKM normalization. However, it cannot be stated that normalization
techniques have any effect on accuracy.

Another appealing comparison measure is to compare the regulatory transcription
networks constructed by Yeastract, RNA-seq using FPKM normalization, and microarray.
We identified new potential targets for transcription factors using both profiling technolo-
gies, and we visualized the network modules using Cytoscape [33]. Figure 8a shows the
network example for the transcription factor (TF) gene “YNL068C”. Another example
network for the TF gene “YEL009C” is shown in Figure 8b. These networks represent
part of a bigger transcription network showing the transcription factor genes and their
target genes. Some of the network connections with the target genes are predicted by both
RNA-seq and microarray and validated by Yeastract. We also show the shared predictions
of microarray and RNA-seq that were not validated by Yeastract. Lastly, we represent the
extra genes produced uniquely using RNA-seq and microarray data classification.
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Figure 7. The performance results reported for the combination of all datasets, benchmarks, and
classification models in terms of average recall. This resulted in curating twelve different testing
datasets used for prediction. Each dataset (RNA-seq TPM normalized, RNA-seq FPKM normalized,
and microarray) was validated using four different benchmarks (YTRP, YT, YP, and KEGG). The
curated datasets were classified and evaluated using classifiers (REWKLR, SVM, and one-class SVM).

To evaluate our approach, we compared it to results reported previously (using related,
but different datasets) for two other GRN inference methods (GRADIS [34] and GNE [35]).
These methods have demonstrated superior performance over other well-known methods
and also incorporate analysis of the yeast genome. Our evaluation metric was the area
under the ROC curve, which was used as the primary performance metric in both GRN
methods. The datasets used in both methods were sourced from the DREAM5 challenge,
which includes 5091 genes [36]. In contrast, our approach utilized a more extensive dataset
comprising 6041 genes, which includes all the genes listed in the DREAM5 challenge. The
results presented in Table 2 demonstrate that our method outperforms the competing
methods, indicating its superiority in predicting gene interactions.

Table 2. Comparative analysis based on the Area Under the ROC Curve (AUC).

Methods AUC

GNE [35] 0.825
GRADIS [34] 0.965
Our Method 0.981



Biology 2023, 12, 518 11 of 14

(a)

(b)

Figure 8. Two different transcription sub-networks show the TF gene and its target genes.
(a) TF: YNL068C; (b) TF: YEL009C. The shared connections that are predicted by RNA-seq and
microarray, and validated by Yeastract are represented in the graph by the solid lines. The parallel
lines denote new potential target genes that are the shared predictions of RNA-seq and microarray
but were not found in Yeastract. Unique RNA-seq and microarray predictions are represented by
dashed and dotted lines, respectively.

4. Conclusions

In this article, we introduced a comparative approach to study and analyze the con-
struction of a gene regulatory network (GRN) for S. cerevisiae based on profiling technolo-
gies: RNA-seq and microarray. The data for both technologies were acquired using samples
with numerous experimental conditions. Each pair of genes was defined by a vector of
36 moments that represented the joint probability distribution of expression levels. Using
various open-source GRN databases, gene categorization was predicted while employing
different kernel classification models: one-class SVM, two-class SVM, and rare event classi-
fier REWKLR. We reported the performance of both technologies across classifiers in terms
of prediction accuracy, recall, precision, and other statistical measures. In general, RNA-seq
outperformed microarray in several testing scenarios. We further addressed the effect of
RNA-seq normalization techniques, such as TPM and FPKM on the overall performance.
This work was an extension of our previous study [11] where we expanded it by combining
and reporting the results using different datasets, benchmarks, and classification models.
This method works well in capturing the gene interaction features from the gene expression
data. We addressed the issue of determining negative gene interactions by using one-class
SVM. We recommend the use of one-class classification in inferring GRN interactions to
avoid the uncertainty of negative interactions.

Future work will expand the study of normalization techniques, including exploring
RPKM. The study will also be extended to inferring the whole regulatory transcription
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network for multiple transcription factors and comparing the results to other studies. To
improve accuracy, the integration of various data types, such as gene expression, epigenetic
marks, chromatin accessibility, and transcription factor binding sites will be incorporated
into the analysis. Furthermore, machine learning algorithms could enhance the accuracy
of gene–disease association predictions by applying various feature selection techniques
and integrating multiple data types. Causal inference methods may also be explored
to identify causal relationships between genes and diseases, and network-based drug
discovery approaches may be developed to use predicted disease-associated genes as
potential drug targets. Furthermore, the potential use for studying microbiomes, possibly in
a metagenomic/metatranscriptomic analysis is an interesting concept that can be developed
in the future. These future directions could provide valuable insights into the molecular
basis of disease and enable the development of more effective and personalized treatments.
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