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Simple Summary: Cacti account for nearly 1440 species, most of them native to the American
continent. These succulent plants are the most ubiquitous elements of the arid ecosystems. Mexico
harbors the highest number of cacti species in the world (45%). Unfortunately, many of them
are threatened by human activities. Although having this biodiversity relevance, presently the
evolutionary processes of cacti have been poorly studied. Because the biological and conservation
unit is the species, evolutionary studies provide relevant information. In this study, we analyzed how
and when past events shaped the evolutionary relationships of 103 species. Our results showed that
from 4.5 million years ago the arid regions of Mexico were the locations for abundant cacti speciation.
From these lands, cacti have colonized most of the Mexican territories, the southern regions of the
United States, as well as the Caribbean. The evolution of these plants was probably promoted by
past temperatures that were comparable to the present ones. We identified different speciation and
dispersal events in these fascinating plants. This study identified the Mexican Plateau as the place
where the early stages of the evolutionary history of cacti occurred.

Abstract: Mexico harbors ~45% of world’s cacti species richness. Their biogeography and phyloge-
nomics were integrated to elucidate the evolutionary history of the genera Coryphantha, Escobaria,
Mammillaria, Mammilloydia, Neolloydia, Ortegocactus, and Pelecyphora (Mammilloid Clade). We an-
alyzed 52 orthologous loci from 142 complete genomes of chloroplast (103 taxa) to generate a
cladogram and a chronogram; in the latter, the ancestral distribution was reconstructed with the
Dispersal-Extinction-Cladogenesis model. The ancestor of these genera arose ~7 Mya on the Mexican
Plateau, from which nine evolutionary lineages evolved. This region was the site of 52% of all the
biogeographical processes. The lineages 2, 3 and 6 were responsible for the colonization of the arid
southern territories. In the last 4 Mya, the Baja California Peninsula has been a region of prolific
evolution, particularly for lineages 8 and 9. Dispersal was the most frequent process and vicariance
had relevance in the isolation of cacti distributed in the south of Mexico. The 70 taxa sampled
as Mammillaria were distributed in six distinct lineages; one of these presumably corresponded to
this genus, which likely had its center of origin in the southern part of the Mexican Plateau. We
recommend detailed studies to further determine the taxonomic circumscription of the seven genera.
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1. Introduction

The integration of the analytical frameworks of phylogenetics and biogeography al-
lows analysis of the influence of biogeography on the evolutionary history of extant taxa,
as well as to identify all those biogeographical events that promoted speciation [1]. The
studies that incorporate these frameworks have inferred past biogeographical scenarios that
have shaped the current geographical ranges of the species (e.g., [2,3]) and even large flora
assemblies (e.g., [4–6]). Furthermore, they have enabled evaluation of the relative role of
vicariance and dispersal in shaping the current geographical distribution of species [1,7,8].
Gradually, with the advances of high throughput sequencing technologies, more of these
studies are using denser molecular sampling, which has made it possible to obtain con-
fident phylogenetic trees that may serve to resolve close phylogenetic relationships [9].
Poor molecular sampling usually produces non-monophyletic trees, or discordance with
phylogenies based on morphology [10]. In addition, the biogeographical data may sup-
port the establishment of taxonomic limits between species [10], and actually they have
been identified as providing better auxiliary information than morphology to elucidate
phylogenetic relationships [11].

In addition, it is recognized that global paleoclimatic changes have shaped the large
current distribution patterns of the biota and caused extinctions at different geographical
scales [12]. Furthermore, they influenced the expansion and contraction of the geographical
distribution of the current extant species (e.g., [13,14]). Consequently, paleoclimate changes
have been recognized as one of the most influential factors in shaping the world biodiversity
patterns at large scales, but also for understanding the current local flora assemblies
(e.g., [15]). On the other hand, the topography and the intricate local orography have
also influenced the ecological, biogeographical, and evolutionary processes of the local
biota [16]. All these events and processes that occurred in the past might have modified gene
flow patterns, which gradually may cause population genetic divergence and eventually
promoted speciation processes [17].

In the contemporary arid lands of the American continent, many complex assemblages
of native local floras are found in which cacti taxa are the most ubiquitous elements. The
nearly 1440 taxa grouped in Cactaceae [18] are recognized as a monophyletic group [19].
Today the evolutionary history of Cactaceae, particularly its origin and mode of speciation,
are still considered enigmatic [20]. Due to the lack of fossil records of Cactaceae repre-
sentatives, there is no direct evidence to date its origin. However, estimations based on
molecular clock hypothesis have dated the origin of Cactaceae to nearly 28.8 million years
ago (Mya) [21], or 32.11 Mya [22], and 35 Mya [23]. Accordingly, these estimations place
the origin of Cactaceae in the Cenozoic Era, in the Paleogene period from the Late Eocene
(~35 Mya) to the Middle Oligocene (~28 Mya). In addition, Arakaki et al. [23] concluded
that unequal and inconstant speciation rates for 123 cacti sampled were explained by
the environmental changes that occurred in the Miocene, based on the phylogenetic tree
obtained with two loci, one from the nuclear genome (PHYC) and the other one from the
chloroplast (trnK/matK). Accordingly, these authors suggested that there have been at
least six main peaks of speciation in the evolutionary history of Cactaceae. These authors
dated the earliest two speciation peaks to 25 Mya and 15 Mya, whereas the other four
occurred in the last 8 million years. Furthermore, they showed that those last four peaks
were contemporaneous to the decreases in atmospheric CO2 that promoted global aridifi-
cation, giving new ecological opportunities to cacti [23]. On the other hand, specialized
paleoclimatic studies (e.g., [24,25]) have dated the decreases of atmospheric CO2 from the
Middle Miocene (14 Mya) to the Middle Pleistocene (0.8 Mya). These relatively low levels
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of CO2 eventually caused a cooler and drier global climate, a phenomenon recognized as
an aridification process [26].

In Cactaceae, the genus Mammillaria Haw is notable for its diversity [27], conservation
concerns [28] and unresolved phylogenetic and taxonomic issues [18]. The taxonomy of
Mammillaria has been controversial from its original description. In 1753, Charles Linnaeus
described the type specimen as Cactus mammillaris L. and later it was renamed as Mam-
millaria in 1812 [29]. During its history, the genus Mammillaria has received 14 different
names [27], reflecting the difficulty in achieving a clear taxonomic circumscription based al-
most entirely in external morphological traits. Throughout the last two centuries, numerous
attempts have been made to organize the wide infrageneric morphological variation among
taxa classified as Mammillaria (e.g., [30–32]. The most recent infrageneric classification
was proposed by Hunt [18], who recognized eight subgenera and 15 series. The subgenus
Mammillaria contains the highest number of species (117), followed by Chilita Orcutt (18)
and Krainzia Backeb. (12); whereas Cochemiea Brandegee, Dolichothele (K.Schum.) Britton &
Rose, Mammillopsis Morren, Oehmea Buxb., and Phellosperma Britton & Rose together add
16 species. For the purposes of the present study, we follow this last infrageneric classifica-
tion system; nevertheless, phylogenetic support for these infrageneric classifications has
not been tested.

Today, the global geographical distribution of Mammillaria ranges from the southern
arid lands of the United States to the north of South America. Mexico has the highest docu-
mented diversity of Mammillaria. Nearly 20% of the species of Mammillaria are distributed
in the Mexican arid lands of the southern part of the Chihuahuan Desert [33]. Only two of
the 163 species currently recognized [18], M. mammillaris (L.) H. Karst and M. nivosa Link ex
Pfeiff. are not documented in this country [33]. The genus Mammillaria is a rare taxon across
Central America, as only four species are recorded in Guatemala (M. albilanata Backeb., M.
columbiana Salm-Dyck, M. ericantha Link & Otto ex Pfeiff. and M. voburnensis Scheer), and
two of them are also distributed across Nicaragua and Honduras (M. columbiana and M.
voburnensis). Two more, M. columbiana and M. mammillaris, are documented in some small
localities in the north of Venezuela and Colombia. In addition, four species (M. columbiana,
M. mammillaris, M. nivosa, and M. prolifera (Mill.) Haw.) are recorded in the Caribbean
islands [33].

The early phylogenetic studies carried out with Mammillaria reignited the unsolved
discussion regarding its unclear taxonomic circumscription and its limits with taxa of
another six genera (Coryphantha (Engelm.) Lem., Escobaria Britton & Rose, Mammilloydia
Buxb., Neolloydia Britton & Rose, Ortegocactus Alexander, and Pelecyphora Ehrenb.). These
six genera and Mammillaria compose the Mammilloid Clade [34]. Butterworth and Wal-
lace [35] analyzed the phylogenetic relationships of 123 species of Mammilloid Clade (113 of
them grouped in Mammillaria) based on two plastid loci (rpl16 intron and the intergenic
spacer psbA-trnH). Their phylogenetic tree showed abundant polytomies and low support
bootstrap values. In addition, the sampled taxa of these six genera were grouped together
with those of Mammillaria. Hence the authors concluded that this genus has a polyphyletic
origin. Later, Crozier [36] used 10 plastid loci to analyze 157 cacti taxa; only 29 of them were
Mammillaria taxa and 10 belonged to the six genera. The results of this study did not resolve
the phylogenetic relationships of the sampled taxa; it also concluded non-monophyly for
Mammillaria. In addition, Crozier [36] concluded that the monophyly of Mammillaria could
only be obtained if: (1) the Mammillaria genus was expanded to include all the species
currently grouped in the six genera; or (2) the genus Mammillaria includes only those species
of the subgenus Mammillaria sensu Hunt [37]. Breslin et al. [38] recently sampled 93,808 bp
of the large single copy (LSC) of the chloroplast genome from 78 cacti taxa, 52 of which were
Mammillaria and 17 from five genera (Coryphantha, Escobaria, Neolloydia, Ortegocactus, and
Pelecyphora). These authors concluded monophyly for Mammillaria by excluding all those
species that were grouped in a distinct clade, which was composed of taxa in Mammillaria,
Neolloydia, and Ortegocactus. In addition, it was proposed that all the species of this clade to
be placed inside the genus Cochemiea.
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In this study, we integrated phylogenomics and historical biogeography to elucidate
the controversial evolutionary history of the group of seven genera of cacti (Coryphan-
tha, Escobaria, Mammillaria, Mammilloydia, Neolloydia, Ortegocactus, and Pelecyphora) sensu
Hunt [18]. We hypothesized that these taxa have a monophyletic origin, whose unique
ancestor arose recently and rapidly evolved in response to past decreases in global temper-
ature. The objectives were to evaluate the phylogenetic relationships of the studied species,
to estimate their divergence times, and to identify the probable ancestral geographical
distribution of the taxa studied in these seven genera; to discuss the possible effects of past
global temperature and orographic events in the colonization and expansion of these cacti
across the arid lands of Mexico; and finally we use our results to identify the taxonomic
limits of the genera studied with emphasis on the taxa sampled in the genus Mammillaria.

2. Materials and Methods
2.1. Taxon Sampling

A total of 142 complete chloroplast genomes (cpDNA) of 103 taxa were analyzed
(Table S1), of which 141 cpDNA belong to the tribe Cacteae (Cactoideae). The non Cac-
toideae taxon Blossfeldia liliputana Werderm. was included because it was identified as the
sister species for the rest of the subfamily Cactoideae [36]. We compiled these cpDNA from
the following sources: seven complete cpDNA of Mammillaria previously published [39],
as well as the raw data of 86 genomes that were downloaded from NCBI site, which
were linked to BioProject PRJNA671701 [38]. In addition, the whole complete chloroplast
genomes of 49 taxa were de novo sequenced in this study. The tissue samples for 47
of these taxa were provided by the collection of the Botanical Garden of the Universi-
dad Nacional Autónoma de México, whilst the tissues of M. napina J.A.Purpus and M.
huitzilopochtli D.R.Hunt were obtained from completed research projects (SS). Among these
142 genomes, 132 represented seven of the genera (i.e., Mammilloid Clade): Coryphantha,
Escobaria, Mammillaria, Mammilloydia, Neolloydia, Ortegocactus, and Pelecyphora (Table 1).

Table 1. Taxon diversity sampled for the seven genera. Taxonomic names and the total number
of recognized taxa for the levels of genus and subgenus following Hunt [18]. Total number of the
taxa and number of genomes analyzed (in silico plus those de novo sequenced); and the number of
genomes de novo sequenced. NA indicates that the subgenus level is not recognized.

Genus Subgenus Number of
Recognized Taxa

Total Number of
Analyzed Taxa

Number of
Genomes
Analyzed

Number of
Genomes de novo

Sequenced

1. Coryphantha 42 10 11 3

1.1 Coryphantha 26 8 9 2

1.2 Neocoryphantha 15 2 2 1

2. Escobaria NA 19 8 9 2

3. Mammillaria

163 70 105 37

3.1. Chilita * 18 16 33 3

3.2. Cochemiea * 3 3 10 2

3.3 Dolichothele 6 2 2 2

3.4. Krainzia 12 5 5 2

3.5. Mammillaria 117 37 46 26

3.6. Mammillopsis 1 1 1 0

3.7. Oehmea 1 1 1 1

3.8. Phellosperma 5 5 7 1
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Table 1. Cont.

Genus Subgenus Number of
Recognized Taxa

Total Number of
Analyzed Taxa

Number of
Genomes
Analyzed

Number of
Genomes de novo

Sequenced

4. Mammilloydia NA 1 1 1 1

5. Neolloydia * NA 2 2 3 2

6. Ortegocactus * NA 1 1 2 1

7. Pelecyphora NA 2 1 1 1

* Taxa included in Cochemiea according to Breslin et al. [38].

In addition, the taxonomic sampling covered the whole geographical range of five
of these genera (Coryphantha, Mammilloydia, Neolloydia, Ortegocactus, and Pelecyphora). In
contrast, the geographical range of Mammillaria was not sampled in South America; and for
Escobaria was not sampled the Caribbean. Of them, 105 specimens (70 taxa) corresponded
to Mammillaria, which are currently distributed in continental and peninsular Mexican
territories, as well as the southern parts of the USA and the Caribbean. We documented
the geographical distribution in the Global Biodiversity Information Facility (GBIF)
((https://www.gbif.org/ (accessed on 20 March 2022)) (Figure 1). In order to reduce
record density, we used the spThin package [40] to discard all those records with <1 km
in separation distance. The geographical data of those remained records were hand-
curated following to Hernández and Gómez-Hinostrosa [33]. In addition, we sampled as
external groups 10 specimens of eight genera: Acharagma (N.P. Taylor) Glass, Ariocarpus
Scheidw., Blossfeldia Werderm., Cumarinia (Knuth) Buxb., Lophophora J.M. Coult., Stenocactus
(K. Schum.) A. Berger, Strombocactus Britton & Rose, and Turbinicarpus Backeb.
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2.2. DNA Extraction, cpDNA Enrichment, and High-Throughput Sequencing

For each of the 49 species de novo sequenced, 30–100 mg of frozen tissue was obtained
to isolate 1 ug of gDNA with A260/280 ratio ≥ 1.7. The tissue samples were individually
processed with the DNeasy plant mini kit (Qiagen, Hilden, Germany), following the
manufacturer’s instructions. To obtain an enriched proportion of chloroplast genome,
these gDNAs were processed with the NEBNext Microbiome DNA Enrichment Kit (New
England BioLabs, Ipswich, MA, USA) according to the kit’s instructions. These enriched
DNAs were used to prepare pair-end (PE) genomic libraries with the Nextera XT kit, with
mean insert size of 400 bp, and were sequenced in MiSeq 2 × 300 cycles.

2.3. De Novo Assembly of Chloroplast Genomes

We assembled de novo the raw data of the 86 genomes attached to Breslin et al. [38]
(Table S1); as well as the raw data of the 49 taxa de novo sequenced. These 135 genomes
were filtered, trimmed and adapters were removed with TrimGalore version 0.4.3 [41]. The
recovered reads with PHRED quality score ≥ 15 and length ≥ 80 bp were assembled with
Get Organelle version v1.7.1 [42], using as a seed the cpDNA of M. supertexta (GenBank
accession: MN508963.1) previously published [39].

2.4. Phylogenetic Relationships and Divergence Times

The 142 genomes (Table 1) were analyzed with BLAST version 2.5.0 [43] to identify
common loci based on sequence similarity. All these common loci were aligned with
MAFFT version v7.310 [44]. Because the genomes analyzed showed different structural ar-
rangements, some sequences were not recovered, giving alignments with a high proportion
of missing data; and other alignments showed low molecular variation. Thus, these two
types of alignments were discarded before further phylogenetic analysis. Accordingly, only
those alignments with sequences present for ≥70% of the studied taxa, ≥15% of proportion
of informative sites (PIS) and a length of ≥200 bp were obtained. Accordingly, a total of
52 orthologous loci (Table S2) were identified and concatenated in a matrix of 48,869 bp
used for the phylogenomic analysis and estimation of times of divergence. The matrix
partitions and substitution models were estimated with ModelFinder [45], implemented in
IQ-TREE2 version 2.1.4-beta [46]. The phylogenetic tree was generated with IQ-TREE2 us-
ing B. liliputana as the outgroup and running 10,000 ultra-fast bootstrap (UFBoot) replicates.
Then, we estimated the evolutionary times of divergences using two secondary calibrations
from previous estimations for the Cactaceae family [22]. In our first calibration, we used the
crown age of 12.67–24.46 Mya estimated for the whole Cactoideae subfamily, and for the
second calibration, we used the crown age of 4.86–10.63 Mya for the clade composed of the
seven focus genera (Coryphantha, Escobaria, Neolloydia, Mammillaria, Mammilloydia, Ortego-
cactus, and Pelecyphora). We estimated the divergence times with BEAST version v2.6.6 [47],
whose specific input file was constructed with BEAUti. In this input file was specified the
GTR + I + Γ substitution model, which was estimated with Modeltest [48] according to
AICc, a lognormal relaxed molecular clock, calibration points as uniform distributions, a
Yule process tree prior, and 200,000,000 generations with a sampling frequency of each
2000 generations. In addition, convergence of parameter estimation was corroborated with
Tracer version v1.7.2 [49], and the trees were summarized in a maximum clade credibility
tree with TreeAnnotator version v2.6.3 [50]; 10% of the trees were discarded based on this
final analysis.

2.5. Biogeographical Analysis

For the biogeographical analysis we documented the current geographical distribution
for each of the 141 specimens (102 taxa) native to the arid lands of North America. As B.
liliputana is endemic to South America it was discarded from the biogeographical analysis.
The geographical data were compiled from GBIF ((https://www.gbif.org/ (accessed on
20 March 2022)). These data were verified by checking the geographical distribution of
taxa reported from different sources [33,51,52]. The geographical distribution range of the

https://www.gbif.org/
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141 specimens was classified into the respective Mexican Floristic Provinces proposed by
Rzedowski [53]. We estimated the ancestral geographical ranges based on the dated tree
using the R package BioGeoBEARS version 1.1.1 [54] implemented in RASP4 v4.0 [55]. We
evaluated four distinct models of the geographical range evolution for the 141 specimens:
both the model of Dispersal-Extinction-Cladogenesis (DEC); and the likelihood version of
Dispersal-Vicariance Analysis (DIVALIKE) were tested under two conditions, with and
without the assumption of Founder-Event Speciation (+J) parameter. Finally, we plotted
the changes estimations in the global surface air temperature (∆T) in relation to the current
values, previously published in the supplementary material (S4) of Herbert et al. [26].

3. Results
3.1. Evolutionary History of Cacti: Recent Divergence and Intricate Biogeography

The topologies of the phylogenetic tree (ML tree) (Figure 2) and the chronogram (BI
tree) (Figure 3) were highly concordant; the only difference was found in the relationships
of the small clade composed of Ariocarpus, Strombocactus, and Turbinicarpus. In the ML
tree, the clade Turbinicarpus-Strombocactus was sister to Ariocarpus, whereas in the BI tree,
the Turbinicarpus-Ariocarpus clade was sister to Strombocactus. In the biogeographical
analysis, the DEC model (without +J parameter) was selected according to the value of
AICcWt (File S2), however, this value was slightly higher than that obtained for the DEC+J
model. In addition, these two models provided very similar estimations of the ancestral
geographical distribution (Figures S1 and S2). The biogeographical analysis estimated a
total of 135 dispersal events and 13 vicariant events (Figure 4).

The phylogenetic results (Figure 2) clearly identified for the 102 taxa (141 specimens)
of the Cacteae tribe a common ancestor, which arose in the Mexican Plateau in the Late
Miocene ~12.08 Mya (95% HPD: 7.73–16.82) (Figure 3). According to the temperatures
taken from the bibliography [26], between 15 and 9 Mya there was a drastic decrease in
global temperature of ∆T~8 ◦C. In this period, our results showed two key phylogenetic
splits in Cacteae: the first one that separated Stenocactus from the remaining 101 taxa;
followed by the second one that separated Ariocarpus, Strombocactus and Turbinicarpus from
the remaining 96 taxa (Figure 4). Later, during a short period of nearly 2.7 million years
(from 9 to 6.3 Mya), the temperature stayed stable (∆T~0.1), and during this period two
splits occurred. The first one is represented by the separation of Acharagma and Lophophora;
the second one consists of the separation of the ancestor of Cumarinia. In this period
(9 to 6.3 Mya), we identified the beginning of the complex evolutionary history of the
93 taxa belonging to the Mammilloid Clade (Figure 4). Moreover, these taxa continued
their diversification processes during the next period of two million years (between 6.3
and 4.3 Mya), when the temperature again declined (∆T~4.4 ◦C). These diversification
processes continued and intensified during the last 4.3 Mya. In this last 4.3 million years,
the temperature has not been steady; from 4.3 to 1 Mya (Late Pliocene to Pleistocene) a
slight increase in temperature (∆T~1 ◦C) was documented. However, in the last 1 million
years, the temperature has decreased (∆T~0.5 ◦C) (Figure 4).
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Figure 2. Phylogenetic tree estimated with IQ-TREE2 for the 103 taxa (142 specimens) using B.
liliputana as the outgroup. Numbers below the nodes indicate UFBoot values < 100. Colored circles
and squares indicate subgenera for Mammillaria and Coryphantha, respectively.
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Figure 3. Chronogram estimated for the 103 taxa (142 specimens). The maximum clade credibility
tree shows the divergence times estimated in BEAST. Blue bars represent 95% HPD intervals for the
node ages. Shadow colors show the nine evolutionary lineages identified.
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Figure 4. Ancestral geographical distribution of the North American taxa estimated on the chrono-
gram. The estimation of the most likely ancestral distribution is represented in a colored circle for
each node of the tree. The letters in the map and in the tree corresponded to Baja California (B), Balsas
Basin (F), California (C), Gulf of Mexico Coast (D), Mexican Plateau (A), Meridional Serranias (J),
Northeast Coastal Plain (H), Northwest Coastal Plain (I), Pacific Coast (E), Sierra Madre Occidental
(K), Sierra Madre Oriental (L), Tehuacan Valley (M), and Yucatan Peninsula (G). The nodes of the main
evolutionary events were numbered (see the text). The estimated events of dispersal and vicariance
are indicated by arrows and triangles, respectively. The letters besides the tips indicate the current
geographical distribution of the taxa. At the bottom of the figure were drawn the changes estimations
in the global surface air temperature (∆T).
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The chronogram showed that the ancestor of the Mammilloid Clade originated nearly
7.37 Mya (95% HPD: 4.86–10.02 Mya). This early ancestor (node 277, Figure 4) arose at the
end of the Miocene when the value ∆T of the temperature was low (∆T~0.1 ◦C). This ances-
tor had as its probable ancestral geographical area the Mexican Plateau (Figure 4). Eventu-
ally, from this ancestor nine independent evolutionary lineages were derived (Figure 3);
which profusely diversified in the last 4.3 Mya, when little increase-decrease of tempera-
ture occurred (Figure 4). This early common ancestor diverged into two new ancestors,
one of which (node 276, Figure 4) was dated nearly 7 Mya (95% HPD: 4.67–9.64 Mya)
(Figure 3). This ancestor had as its ancestral biogeographical scenario the Mexican Plateau
(Figure 4), and from it evolved those taxa currently grouped in the six genera (Coryphantha,
Escobaria, Mammillaria, Neolloydia, Ortegocactus, and Pelecyphora). The other ancestor (node
201, Figure 4) arose 6.34 Mya (95% HPD: 4.17–8.86 Mya) (Figure 3), probably also in the
Mexican Plateau. From this lat ancestor evolved those taxa that were grouped in two
genera: Mammillaria and Mammilloydia.

A conspicuous result obtained was that those 70 taxa (105 specimens) sampled as
Mammillaria were distributed in two main independent clades (nodes 201 and 275, Figure 4).
The immediate ancestors of these two clades originated in the past Mexican Plateau.
However, those taxa derived from them clearly differ in their evolutionary history (Figure 4).
Accordingly, the taxa sampled as genus Mammillaria, in fact, were distributed in six
different and independent evolutionary lineages, each one with its own evolutionary
history (Figures 3 and 4).

3.2. Evolutionary History of the Nine Lineages
3.2.1. Evolutionary Lineage 1

The short evolutionary lineage 1 was composed only of Mammilloydia candida (Scheidw.)
Buxb. and Mammillaria albiflora Backeb, whose immediate ancestor was dated to nearly
3.34 Mya (95% HPD: 1.19–5.92 Mya). This ancestor (node 147, Figure 4) probably arose
on the Mexican Plateau, during the Middle Pliocene, when the temperature underwent a
slight increase (∆T~1 ◦C) (Figure 4). At the present time, M. candida and M. albiflora are
distributed in a small region on the southern region of the Mexican Plateau, and M. candida
extends its geographical range to the northwest of this biogeographical area (Figure 4).
Additionally, lineage 1 was identified as the phylogenetic sister to lineage 2 (Figure 2).

3.2.2. Evolutionary Lineage 2

The most probable ancestral geographical area for the immediate ancestor of lineage 2
was the Mexican Plateau (node 200, Figure 4). Lineage 2 arose nearly 5.87 Mya (95% HPD:
3.82–8.2), at the end of the Late Miocene, when the temperature decreased (∆T~4.4 ◦C).
However, most of the divergent processes in this lineage occurred in the last 4.3 million
years, when a slight increase in the temperature (∆T~1 ◦C) was followed by a slight
decrease (∆T~0.5 ◦C). This lineage grouped 45 of the sampled taxa, of which 37 taxa
(82%) correspond to the subgenus Mammillaria, whereas the other eight taxa belong to five
different subgenera (Figure 2). Three of these taxa (M. napina, M. pectinifera F.A.C. Weber,
and M. solisioides Backeb.) corresponded to the subgenus Krainzia; two (M. baumii Boed and
M. longimamma DC.) to the subgenus Dolichothele; one (M. senilis Lodd. ex Salm-Dyck) to
Mammilliopsis; one (M. beneckei Ehrenb.) to the subgenus Oehmea; and finally, one species
(M. zephyranthoides Scheidw.) to Phellosperma. Currently, 21 of these 45 taxa are endemic
only to one of the 13 biogeographical areas (right-side letters beside the taxa in Figure 4);
with the Mexican Plateau the area that has the highest number of endemics (eight taxa).
In addition, most of the divergent events occurred in three biogeographical areas, which
was the unique ancestral area or in conjunction with other ones: the Mexican Plateau (A)
involved 66 % of the divergence events, the Balsas Basin (F) 35%, and the Tehuacan Valley
(M) 13%.

Furthermore, biogeographical results suggested that such divergence processes were
closely associated to the taxa dispersal towards new areas inside and outside of the Mexican
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Plateau (Figure 4). Accordingly, in the lineage 2 the long-distance dispersal has been a
common phenomenon during the last ~4 million years (Figure 4). During these long-
distance dispersal events, it seems that the ancestors moved out of the Mexican Plateau and
eventually displaced along different routes, either via continental arid lands or crossing
the sea (Gulf of Mexico and Gulf of California). During the Pliocene, we identified two
independent events of colonization (nodes 151 and 196; Figure 4) to the arid southern
Mexican territories (F, J and M; Figure 4), where the colonizers eventually speciated in
situ (nodes 151 and 173; Figure 4). The first long-dispersal event occurred 4.13 Mya, and
the second one was dated 3.45 Mya. These two events occurred during a slight increase
of temperature (∆T~1 ◦C) (Figure 4). These two colonization events took place from the
Mexican Plateau (A) to the Balsas Basin (F), and from there to the adjacent areas of Tehuacan
Valley (M) and Meridional Serranias (J) (Figure 4). In addition, we identified that during the
Pleistocene, another two independent colonization events occurred towards the northern
Mexican territories. The results indicate (Figure 4) that from the Mexican Plateau there was
another dispersal route that took place along the foothills of Sierra Madre Occidental (A,
K), crossing it, and reaching the Pacific slope of this Sierra. In addition, we identified a
recent dispersal event dated nearly 1.11 Mya (node 189, Figure 4), in which an ancestor
undertook a vicariant event, which separated two lineages, one of which diversified in
the Baja California Peninsula (B) and the other in the northwest of continental Mexico
(A, E) (Figure 4). On the other hand, on the eastern side of Mexico, another independent
long-distance dispersal event was identified (node 178, Figure 4), crossing the Gulf of
Mexico and reaching the Yucatán Peninsula nearly 0.16 Mya.

3.2.3. Evolutionary Lineage 3

We estimated the origin of the ancestor of this lineage (node 221, Figure 4) was in
the Mexican Plateau (A) at 5.69 Mya (95% HPD: 3.72–7.89 Mya) (Figure 3). This lineage
grouped 19 of the sampled taxa belonging to the genera Coryphantha (10), Escobaria (8),
and Pelecyphora (1). Currently, 17 of these 19 taxa are distributed in the northern region
of the Mexican Plateau (Figure 4), and only two taxa of Coryphantha are distributed in
the southern arid lands (F, J and M, Figure 4), suggesting that a long-distance dispersal
event allowed Coryphantha to reach the southern arid lands of Mexico (Figure 4). Therefore,
in this lineage most of the past divergent processes were identified as on the Mexican
Plateau, and eventually moving to northern and southern Mexico (Figure 4). The majority
of these processes were dated to the Late Pliocene, when there was a slight temperature
increase (∆T~1 ◦C) (Figure 4). Clearly, the phylogenetic relationships of this clade were
fully resolved. These results recovered Coryphantha as monophyletic, whereas Escobaria is
paraphyletic with respect to Coryphantha and P. strobiliformis (Figure 2).

These findings showed that the lineage 3 was the phylogenetic sister of a clade com-
prising six lineages (lineages 4–9) (Figure 3) that evolved from a common ancestor (node
275, Figure 4). This ancestor was dated to nearly 5.60 Mya (95% HPD: 3.62–7.84; Figure 3)
and arose in the ancestral arid lands of the Mexican Plateau (Figure 4).

3.2.4. Evolutionary Lineage 4

The lineage 4 was derived from an ancestor (node 225, Figure 4) dated nearly 4.02 Mya
(95% HPD: 2.27–6.01 Mya), which had its ancestral geographical area on the Mexican
Plateau (A) and the foothills of the Sierra Madre Occidental (K). We identified an early
split that separated subgenus Krainzia (M. theresae Cutak, Figure 2) from Phellosperma
(M. barbata Engelm. and M. wrightii Engelm.). In this last subgenus, a recent divergence
(0.58 Mya, Figure 3) was identified; presently the taxa of this lineage are distributed in
the northwestern territories of the Mexican Plateau, the Sierra Madre Occidental and the
Northwest Coastal Plain (A, K and I, Figure 4).
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3.2.5. Evolutionary Lineage 5

Our results revealed a common ancestor (node 274, Figure 4) that originated lineage 5
and the other four independent lineages identified as lineages 6–9 (Figure 3). This ancestor
was dated to 5.24 Mya (95% HPD: 3.38–7.38 Mya) and probably arose in the ancestral lands
of the Mexican Plateau (Figure 4). Although the phylogenetic split of the ancestor (node
274, Figure 4) was dated to nearly 5 Mya, the origin of lineage 5 is very recent, as it was
dated to 0.63 Mya (95% HPD: 0.23–1.13 Mya) (Figure 3), when a slight temperature decrease
(∆T~0.5 ◦C) occurred (Figure 4). The ancestral geographical area of this lineage was also
the Mexican Plateau (A, Figure 4). In addition, this lineage currently groups the two taxa
recognized in the genus Neolloydia, which are distributed in the Mexican Plateau (Figure 4).
However, N. matehualensis Backeb. is endemic to the center of the Mexican Plateau, and N.
conoidea (DC) Britton & Rose ranges from the southern to the northern range of the Mexican
Plateau and reaches the southern arid lands of the USA.

3.2.6. Evolutionary Lineage 6

Lineage 6 was composed of the unique species recognized in the genus Ortegocactus.
This lineage was derived from an old ancestor (node 273, Figure 4) dated nearly 4.56 Mya
(95% HPD: 2.9–6.45 Mya) in the Early Pliocene, when the cooling period ended (Figure 4).
This ancestor had as its probable ancestral geographical areas the Mexican Plateau and
Meridional Serranias (A and J, Figure 4), and presently this lineage is endemic to the Merid-
ional Serranias (J, Figure 4). Lastly, the results showed that the two sampled specimens of
O. macdougallii Alexander recently diverged about 51,000 years ago (Figure 3).

3.2.7. Evolutionary Lineage 7

The ancestor of lineage 7 (node 229, Figure 4) was dated to 1.46 Mya (95% HPD:
0.6–2.48 Mya), during a time when the temperature increased slightly (∆T~0.5 ◦C), and for
this were estimated four probable ancestral areas (A, B, C and I, Figure 4). This lineage
consists of only two northern native taxa; M. guelzowiana Werderm., which is endemic to the
northwestern part of the continental Mexican territories; and M. tetrancistra Engelm. that
is distributed in Baja California (B) and California (C), northwestern continental Mexican
territories (I), and reaches the southern USA.

3.2.8. Evolutionary Lineage 8

Lineages 8 and 9 had a common ancestor (node 271, Figure 4) that arose in Baja
California 3.1 Mya (95% HPD: 1.9–4.43 Mya) (B, Figure 4). In particular, the immediate
ancestor of lineage 8 (node 238, Figure 4) was dated to 1.14 Mya (0.52–1.91 Mya) during
the Pleistocene, concurrently with a small increase of temperature (∆T~1 ◦C) (Figure 4).
Lineage 8 grouped three taxa (M. halei Brandegee, M. pondii Greene, and M. poselgeri Hildm.)
belonging to the Cochemiea subgenus.

3.2.9. Evolutionary Lineage 9

Lineage 9 grouped 16 taxa, all pertaining to the subgenus Chilita (Figure 2). Its
immediate ancestor was dated to 2.77 Mya (95% HPD: 1.67–3.97 Mya) and its most probable
ancestral area was Baja California (B, Figure 4). This lineage developed in the Late Pliocene
when there was a slight increase in temperature (∆T~1 ◦C). It diversified abundantly in Baja
California. In this lineage, we identified two independent dispersal events from peninsular
territories to the continental Northwest Coastal Plain (I, Figure 4). One of them occurred
1.82 Mya (node 268, Figure 4) and the other was dated to 0.01 Mya (node 239, Figure 4).

4. Discussion
4.1. Origin and Diversification of the Mammilloid Clade

The findings of this study revealed that the evolutionary history of the Mammilloid
Clade (Coryphantha, Escobaria, Mammillaria, Mammilloydia, Neolloydia, Ortegocactus, and
Pelecyphora) started ~7.5 Mya in the Miocene. During this epoch, there was a cooling
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trend, although the global temperature was still approximately 4–15 ◦C warmer than it
is today [26]. The early and scarce divergence events that occurred in the Miocene were
geographically restricted to the Mexican Plateau. However, during the last 4.5 million
years, the cacti profusely diversified and expanded their distribution range to new areas
when the global temperature was more similar to the present. Particularly, the main past
colonization to new geographical areas (e.g., California, Northwest coastal plain, Pacific
coast, Tehuacán Valley, and Yucatan peninsula) were dated to the last ~2.5 million years, in
the Pleistocene. During this epoch various oscillations in temperature occurred [56] and
have been associated with an aridity increase (e.g., [57,58]). Consequently, these cacti are
modern taxa, with most of their evolutionary history occurring during the Plio-Pleistocene.
In fact, the climatic oscillations in the Pleistocene were recognized as diversification driv-
ing forces for other land plants (e.g., [59–62]). Particularly for cacti, glacial [63,64] and
interglacial [65,66] periods have been proposed as drivers of population processes, causing
geographic contraction, isolation, and population divergence. Therefore, probably these
climatic oscillations also promoted the diversification of the cacti studied here.

The Mexican Plateau has been considered geologically and climatically stable since
~15 Mya (Middle Miocene) [67]. Hence, we consider that such stability promoted the
prolific speciation and colonization of cacti. However, there is a gradient of aridity along the
Mexican Plateau, with the northern portion being drier than the central–southern one [68].
As cacti do not prosper in hyper-arid conditions [69], the relative “higher-humidity” at
the southern end of the Mexican Plateau likely foster the ecological conditions for their
abundance and speciation, which eventually led to geographic expansion. Accordingly,
we postulated that the center of origin for the lineages 1 and 2 was the southern region
of the Mexican Plateau, which previously was named as the Queretano-Hidalguense arid
zone [70]. We based this hypothesis on the early phylogenetic split identified in these two
lineages, and on their current geographical distribution. Consistent with this assumption,
nearly 20% of the richness of the genus Mammillaria (sensu Hunt [18]) inhabit the arid lands
of the Queretano-Hidalguense arid zone (Hidalgo, Guanajuato, and Querétaro) [33].

Based on similar reasoning, we inferred that the possible center of origin of lineage 3
might be the north of the Mexican Plateau. However, we recognized that more extensive
taxonomic sampling is necessary to elucidate this issue. On the other hand, our results
revealed that the taxa grouped in lineages 4, 7, 8 and 9 had an ecological and biogeo-
graphical affinity to northwestern Mexico. Considering that the Baja California area was
the probable ancestral geographical area of lineages 8 and 9, these results suggest that
this area was probably the center of origin and diversification for these lineages. Lastly,
we do not discard the possibility that the small and enigmatic lineages 5 and 6 represent
relicts of some phylogenetic lines that are mostly extinct. Population approaches may
serve to elucidate their closest phylogenetic frontiers and recent hybridization (e.g., [17,71]).
Therefore, we recommend application of this perspective to lineages 5 and 6, as well as for
the sister lineages 1 and 2.

Our results also revealed that dispersal, not vicariance, was the most important past
biogeographical process in these cacti. The abundant dispersal events may be related to the
capacity of cacti to colonize and tolerate hostile environments (e.g., [72]), or successful seed
dispersal strategies [73]. However, the data indicate that also vicariance had a relevant role
in the taxa that currently are distributed in southern Mexico. Because the central portion of
the Trans-Mexican Volcanic Belt (TMVB) was formed during the last three million years
(plate 1 [74]), we address the TMVB as a biogeographical barrier for cacti. In fact, most of
the events of colonization to southern Mexican territories were identified prior to 3 million
years ago, thus the TMVB interrupted the connectivity between the arid lands of the
Mexican Plateau and those of the Balsas Basin, Tehuacán Valley, and southern Meridional
Serranias. In addition, the floristic affinities between the arid lands of the north and south
of Mexico have been documented [53], suggesting that prior to the TMVB, the Mexican arid
lands were connected from north to the south. Finally, our results showed that the arrival
of cacti to the Baja California peninsula was due to dispersal and not by vicariance, as
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the colonization occurred later than the opening of the Gulf of California, which occurred
nearly 12–6 Mya [75].

4.2. Taxonomic Contributions of the Phylogenetic Results

The findings of this study have explained the phylogenetic relationships of the 103 taxa,
particularly the 70 taxa sampled from the genus Mammillaria sensu Hunt [18] were poly-
phyletic, as was identified previously (e.g., [35,36]). However, based on our results, the
monophyly of this genus can be identified within a subset of the 70 taxa sampled as Mammil-
laria. We consider that the putative genus Mammillaria is represented by lineage 2, in which
85% of the taxa were from subgenus Mammillaria. Accordingly, monophyletic Mammillaria
is not restricted exclusively to the Mammillaria subgenus, as Crozier [36] proposed, but also
includes taxa of another five subgenera: Dolichothele, Krainzia, Mammillopsis, Oehmea, and
Phellosperma. Recently, Breslin et al. [38] proposed a monophyletic circumscription of the
genus Mammillaria, based on massive sequencing of the chloroplast genome and 52 taxa
assumed to be from members of the genus. Because these 52 taxa exhibited polyphyletic
relationships, these authors decided to exclude a substantial number of them in order to
reach a monophyletic group.

In addition, Breslin et al. [38] proposed that the 36 taxa of the genus Mammillaria
that were placed out of the monophyletic group, should be placed in the genus Cochemiea
together with N. conoidea and O. macdougallii, although the species of these genera exhibit
strong morphological variation (Table S1) [21]. Our results showed that lineages 4 to 9
were grouped in a distinct clade, independent of the clade that grouped lineages 1 and
2. These six lineages composed a monophyletic group (lineages 4–9). Although, these six
lineages were grouped similarly to the clade named as Cochemiea by Breslin et al. [38] we
do not agree to put together the taxa of these six lineages as our results showed strong
disparities in the biogeographical history and ecologic affinities. Additionally, their strong
morphological variations do not accomplish the unambiguous practical delimitation (i.e.,
taxonomic predictability) and stability that are required at the genus level [76]. We consider
that based on a purely phylogenetic perspective, the proposal of Breslin et al. [38] to include
in Cochemiea other taxa recognized as Mammillaria, Neolloydia and Ortegocactus is feasible.
However, our results identified six lineages in the clade Cochemiea sensu Breslin et al. [38],
and for us these may represent more than one genus: Cochemiea (lineages 7, 8 and 9),
Neolloydia (5), Ortegocactus (6), and Phellosperma (4). These two contrasting stances exhibit
the degree of subjectivity to establish the supraspecific taxonomic delimitation as has been
discussed [76]. We consider that future phylogenetic studies are still necessary, and they
must include specimens of the type M. mammillaris, and have a higher taxonomic sampling,
especially of those taxa that are currently distributed in the west side of Mexican territories
along the Pacific Coast. Consequently, we considered that the taxonomic circumscription of
Mammillaria still remains unresolved. Lastly, our phylogenetic results partially supported
the infrageneric classification of Mammillaria proposed by Hunt [18]. Accordingly, the taxa
of the subgenera Cochemiea and Chilita were monophyletic. Although all the taxa of the
subgenus Mammillaria were grouped, the monotypic and small subgenera (Dolichothele,
Mammillopsis and Oehmea) as well as some taxa of Phellosperma and Krainzia were inserted
among the species of the Mammillaria subgenus. In addition, because we included the
raw data attached to Breslin et al. [38], we observed that in our phylogenetic tree, some
of their specimens belonging to the same species were placed in discordant positions (M.
grahamii subsp. sheldonii (Britton & Rose) D.R. Hunt (35158, 35161), M. goodridgii (35106,
35115, 35167), M. albicans Dawson (35107, 35103), M. armillata K.Brandegee (35093, 35144,
35089), M. dioica K.Brandegee (35170, 35131, 35119), and M. heyderi Muehlenpf. (16460));
this indicates the probable wrong taxonomic identification of their specimens, thus we
overlooked these for the taxonomic discussion.

Recently, the study of Sánchez et al. [77] obtained a phylogenetic tree based on five
chloroplast loci and eight morphologic characters. It showed that Coryphantha was a
monophyletic genus, when excluding C. macromeris (Engelm.) Lem. Moreover, this last
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taxon and the taxa of Escobaria and Pelecyphora were grouped in the same clade, sister to
Coryphantha, and were reclassified as a single genus (Pelecyphora). Our study also showed
that Coryphantha is a monophyletic taxon, whereas Escobaria is paraphyletic with respect to
Coryphantha and Pelecyphora. These discordances may be the result of distinct taxonomic and
molecular sampling between the two studies. Nonetheless, it may be necessary to analyze
morphological, ecological, and anatomical characters in order to solve these taxonomic
issues.

5. Conclusions

We identified that the biogeographical processes, past climate conditions from the
Miocene, and the recent emergence of the central portion of the TMVB strongly shaped
the evolutionary history of the Mammilloid Clade (Coryphantha, Escobaria, Mammillaria,
Mammilloydia, Neolloydia, Ortegocactus, and Pelecyphora). The past Mexican arid lands were
key to providing ecological suitability for prolific cacti diversification. In these regions, they
became abundant and ubiquitous elements of the arid flora. The large Mexican Plateau
has been the primary evolutionary scenario for cacti, and this area is key to understand
the diversity of cacti in Mexico, southern USA, Caribbean, and South America. Lastly,
the Mexican territories harbor most of the world’s richness of cacti, and it is urgent to
protect these arid lands, particularly the region included in the northern part of Guanajuato,
Hidalgo, and Querétaro, and southern of San Luis Potosí. Our findings indicate that the
genus Mammillaria sensu Hunt [18] is taxonomically composed of distinct evolutionary
lineages, whose phylogenetic relationships require more detailed studies to reach a precise
taxonomic circumscription. In this light, we consider that it is premature to undertake
nomenclatural changes in Mammillaria, Mammilloydia, Neolloydia, and Ortegocactus [38,78],
and such changes will bring more confusion. Therefore, we recommend maintaining the
conventional taxonomic classifications (e.g., [18]) until more robust studies are undertaken.
In summary, we conclude that the taxonomic circumscription of the genus Mammillaria
still needs more work, based on phylogenetic analyses encompassed with robust and
detailed ecological studies of the current geographical distribution, past niche modeling,
reproductive barriers, and a clear set of diagnostic morphological characters.
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for phylogenomic analysis; File S2: Output of the evaluation of six biogeographical models with
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estimated under the DEC model. Figure S2: Results of ancestral geographical distribution estimated
under the DEC+J model.
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