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For much of its 300+ year history, “modern” paleontology has been a descriptive
science, firmly housed within geological sciences. The application of rigorous phylo-
genetic methods [1–3] to extinct organisms was a driver of a movement that began in
the 1980s to bring paleontology, and particularly deep time paleontology (i.e., >1 Ma),
more firmly into the biological sciences. Paleohistology—the investigation of the mi-
crostructure of fossil bones initiated by Enlow [4,5] and expanded upon by De Ricqlés
and colleagues—(e.g., [5–7]) also influenced how dinosaurs and other fossils would be
studied, as biological organisms rather than as geological oddities. The microscopic ex-
amination of ancient bone—even dinosaur bone—has revealed the presence of osteons,
osteocyte lacunae, and vascular canals in these ancient specimens. Rather than being
obliterated by fossilization processes, the retention of these features in bone recovered
from Mesozoic and earlier sediments has allowed us to discern biological information from
these once-living organisms, such as comparative growth rates and estimates of ontoge-
netic stages [7–9]. Phylogenetic and histological analyses forever changed the direction of
paleontological studies.

However, the application of most molecular biological tools to elucidate evolutionary
processes and timing was, until recently, reserved for extant species. The genomic revolu-
tion fostered by the advent of a polymerase chain reaction (PCR) and next gen technologies
was limited in application to only living or very recently extinct organisms, and was not
rigorously and regularly applied to deep time fossils, Jurassic Park notwithstanding.

Although DNA technologies were more readily accepted and proved useful for ar-
chaeological materials (see, e.g., [10–13]), the assumption that original, informative organic
components were lost at some point during the transition from the biosphere to the geo-
sphere [14,15], and the proposal of a predictable, and short, half-life for DNA and other
biomolecules effectively slowed the application of these methods to all but the most recent
fossil materials. What else older fossils may be telling us, and what else was possible to
know, were questions that were not widely asked.

This is beginning to change, as illustrated in this Special Issue, because it is widely
recognized that 1. some endogenous structures and the molecules comprising them are
retained in ancient specimens; 2. morphological studies alone have failed to adequately
account for convergence or parallel evolution; and 3. fossils are absolutely necessary to
incorporate into any studies seeking to determine the patterns, processes, and timing of
evolution deep in the Earth’s history.

Just as technology in the life sciences has expanded at a record pace, the application
of new technologies to paleontological specimens, though slower in coming, is resulting
in an explosion in the type of data recoverable from fossils, as well as the type and age of
fossils to which these can be applied. For example, the upper limit of DNA preservation,
just 20 years ago, was proposed to be 100,000 years [10], but this limit has been repeatedly
pushed back in time, most recently to >2 Ma with the recovery of environmental DNA from
Greenland [16]. Protein sequence data, on the other hand, has been reported from 3 Ma
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eggshells [17] to multi-million-year-old dinosaurs [18,19], and immunological evidence for
such preservation, suggested as far back as the 1950s [20,21], is becoming more prevalent.

This Special Issue sheds light on the quantum leap in understanding the Earth’s rich
biological history over the last 4 billion years, brought about by the application of new
technologies to old fossils. It highlights new questions we can ask of the fossil record,
and the expansion of fossils we can interrogate to yield robust high-resolution data. The
authors within this Issue discuss the rapid development of new (or, new to paleontology)
methods, once limited to extant organisms, that are now becoming broadly applied to
fossils, including those from deep time.

This Issue contains several broad review articles. Tihelka et al. [22] discuss the pos-
sibility that animals, in the form of arthropods, invaded the land several million years
before what was previously assumed, yielding a terrestrial “Cambrian explosion” of these
widespread and taxonomically diverse invertebrates. This hypothesis is supported by
combining molecular clock data with fossil evidence. The discrepancies between molecular
clock and fossil data are addressed, and a method combining molecular and morphological
data to estimate lineage divergence in a total evidence framework is proposed.

The value of fossils for phylogenetic studies has always been recognized, but the
value of fossils for molecular studies has recently, and increasingly, been elucidated by
authors contributing here [23] and elsewhere. Torres et al. [24] review the long history of
paleoimmunological approaches to paleontology, and apply these methods to fossils from
the 1.3 Ma Venta Micena site, whereas Tahoun et al. [25] provide an overview of organic
molecules recovered from non-avian dinosaurs and contemporary organisms, including
pigments and various proteins. They highlight the effort within the paleontological com-
munity to understand the mechanisms of such preservation, contributing to the emerging
disciplines of molecular paleontology, and molecular taphonomy/diagenesis.

López-Antoñanzas and colleagues [26] further emphasize the need for incorporating
fossil data to better understand evolutionary rates and relationships in their review of
new, integrative phylogenetic methods. They stress the need for a unified approach to
improve accuracy in modeling evolutionary processes and diversity distributions in deep
time, and highlight new methods that combine morphological data from living and extinct
groups with available molecular data to achieve more accurate evolutionary syntheses.
Some of these include combining geometric morphometric and phylogenetic methods,
incorporating stratigraphic data into parsimony analyses, and various statistical methods
to calibrate a “morphological clock” that uses morphological data from both extant and
extinct species.

Tamborini [27] reviews the changing role of paleobiology between the 20th and 21st
centuries, pointing to the necessity of fossils in elucidating “deep time patterns and pro-
cesses”. He contrasts the historical differences between paleontology, a geology-based
discipline, and the more biological approaches of paleobiology. He focuses his discus-
sion first on the role of paleocolor as a testable hypothesis, stimulated by integrating
more data with more technology; second, the search for endogenous organics in fossil
materials that has driven the application of new (to paleontology) technologies, such as
high-resolution, high-mass accuracy tandem mass spectrometry to address and characterize
organic molecules in fossils; third, the integration of morphology and evolutionary theory
in investigations of locomotion and mastication via the new role of robotics in 21st century;
fourth, the relationship between evolution as expressed in fossils and the development of
living organisms (‘evo-devo’), resulting in a broader integration between paleontology and
biology; and finally, the examination of both biotic and abiotic factors in shaping organisms
through evolution. He ends his review by encouraging a new synthesis of knowledge
brought about by new data, new fossils, new technologies, and the deeper integration of
these disciplines.

Zhou [28] reviews a century of development in paleontology in China, identifying
the influences of foreign collectors shaping the first part of this century-wide overview,
and notes their influence of both geology and paleontology in China for decades. He notes
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not only the increasing participation of Chinese paleontologists to the discipline, but also
the role of Chinese fossils, from early hominins (e.g., Peking Man, Homo erectus) to early
feathered dinosaurs, in shaping a much broader picture of Earth’s history. Native-born
Chinese paleontologists greatly expanded the breadth of paleontology in the 20th century
and continue this trend today, both within and outside of China. The role of international
collaborations, increased funding from government sources, and, of course, the incredibly
rich paleontological flora and fauna in Chinese deposits has greatly expanded paleontology
of all kinds, and will, no doubt, continue this trend into the foreseeable future.

Monson and colleagues [23] highlight various modern approaches to traditional
paleontological questions, pointing out the expansion of data derived from CT imaging
(including synchrotron imaging) to achieve 3D reconstruction of fossil data, and non-
destructive means to study fossil histology as well. These authors describe how combining
quantitative genetics and developmental biology approaches allows us to incorporate
genotype:phenotype mapping to address morphological variation and its significance in
informing phylogenetic history and the role of selection, and provide a case study using
these tools.

The presence of endogenous molecules, including protein, DNA, various pigments,
and biomarkers, is becoming an increasingly important aspect of paleontological studies,
and new technology continues to push back the time limit for the preservation of these
important molecules. New methods are being used to test hypotheses rooted in analyses of
DNA. Churchill et al. [29] seeks to test the idea of interbreeding between Neandertal and
modern humans in Europe and Asia, proposed in earlier DNA studies [30,31] by comparing
facial size and shape parameters that may reflect the expression of Neandertal genes, using
morphometric techniques.

A wide array of these new technologies are applied to address biomolecular remnants
in bones as young as 350 years [32] and as old as the Carboniferous [33]. Phylogenetically
and physiologically informative tissues were probed by synchrotron [34] to support the
previous identification of reproductive tissues in dinosaurs [35,36]. Technologies continue
to broaden not only the type of questions to be asked, but the type of fossils we can analyze,
from coprolites [33], teeth [37], and invertebrates [22,38,39] to dinosaurs [25,34,40–44],
mammals [45], and our own lineage [29,32,46].

Finally, taphonomic reconstructions remain an important part of paleobiology, and this
Special Issue includes multi-dimensional studies on taphonomy using rare earth element
studies (REE) to trace the movement of pore waters through bone during fossilization
to elucidate the mechanisms contributing to molecular preservation in various dinosaur
bone and other fossils [40–43]. However, the recovery of proteins also requires a better
understanding of taphonomic modifications, as noted in [37] and previously discussed
in [47].

Actualistic taphonomy experiments inform on the modifications introduced during
diagenesis, but also informs on possible preservation conditions, recognizing that Mesozoic
conditions were very different than today, and may have facilitated preservation through
an elevated microbial response to high atmospheric CO2 [48]. Additionally, although
exceptionally preserved tissues have long been the target of molecular studies on fossils,
there is clearly more to the story, as illustrated by Colleary et al. [44], as not all exceptional
fossils preserve endogenous biomolecules.

This Special Issue briefly reviews these cutting-edge technologies and their applica-
tions to fossil data in various case studies, indicating a new ‘fossil renaissance’ for under-
standing life on this planet, yielding robust data that may be applied to understanding
where we are going by better understanding from where we have come.

Conflicts of Interest: The author declares no conflict of interest.
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