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Simple Summary: Didymella arachidicola, the causal agent of peanut web blotch, leads to severe
defoliation at the late growth stage of peanuts, and eventually to significant yield losses of up to 30%.
The biology, ecology, and taxonomy of this phytopathogenic fungi have been well-studied; however,
no study has focused on its genomic variation and pathogenic phenotype. Herein, we reported the
first chromosome-scale genome assembly of D. arachidicola, which provides a reliable baseline for
further comparative studies of plant pathogenic fungi. Combined with genome re-sequencing, we
revealed the genomic variation within the D. arachidicola population, as well as comprehensively
analyzed the pathogenicity-related genes to preliminarily explain their roles in forming different
lesion phenotypes of peanut web blotch. This work set a genomic foundation and an adaptive
landscape of D. arachidicola for understanding its genomic diversity and adaptive evolution, in
parallel to the correlation of genotype and phenotype underlying the evolutionary force.

Abstract: Didymella arachidicola is one of the most important fungal pathogens, causing foliar disease
and leading to severe yield losses of peanuts (Arachis hypogaea L.) in China. Two main lesion
phenotypes of peanut web blotch have been identified as reticulation type (R type) and blotch type (B
type). As no satisfactory reference genome is available, the genomic variations and pathogenicity
factors of D. arachidicola remain to be revealed. In the present study, we collected 41 D. arachidicola
isolates from 26 geographic locations across China (33 for R type and 8 for B type). The chromosome-
scale genome of the most virulent isolate (YY187) was assembled as a reference using PacBio and
Hi-C technologies. In addition, we re-sequenced 40 isolates from different sampling sites. Genome-
wide alignments showed high similarity among the genomic sequences from the 40 isolates, with
an average mapping rate of 97.38%. An average of 3242 SNPs and 315 InDels were identified in
the genomic variation analysis, which revealed an intraspecific polymorphism in D. arachidicola.
The comparative analysis of the most and least virulent isolates generated an integrated gene set
containing 512 differential genes. Moreover, 225 genes individually or simultaneously harbored hits in
CAZy-base, PHI-base, DFVF, etc. Compared with the R type reference, the differential gene sets from
all B type isolates identified 13 shared genes potentially related to lesion phenotype. Our results reveal
the intraspecific genomic variation of D. arachidicola isolates and pathogenicity factors potentially
related to different lesion phenotypes. This work sets a genomic foundation for understanding the
mechanisms behind genomic diversity driving different pathogenic phenotypes of D. arachidicola.

Keywords: Didymella arachidicola; intraspecific; lesion phenotype; genomic variation; pathogenicity
factors; comparative analysis
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1. Introduction

Peanut web blotch (PWB) is one of the peanut plant’s most yield-limiting foliar diseases
caused by Didymella arachidicola [1]. It was first observed in Texas, United States, in 1972 [2],
then was gradually reported in Liaoning, Shandong, Shaanxi, and Henan provinces of
China in the 1980s–1990s [3]. PWB occurs in the middle–late growth periods of peanuts,
causes severe defoliation, and results in significant yield losses [3,4]. Due to the economic
importance of peanuts, most studies have focused on the biology, ecology, and control
methods of PWB, as well as the taxonomy of its pathogens [5–8]. Based on modern
phylogeny, which combines genomics and morphology, the causal fungus of PWB has been
recently reclassified as D. arachidicola [9,10], previously described as Phoma arachidicola and
Peyronella arachidicola [6,11]. However, the mechanisms underlying its pathogenesis and
virulence remain to be elucidated.

Phytopathogenic fungi have adopted diverse lifestyles, including obligate biotrophic,
hemibiotrophic, and necrotrophic [12,13]. Biotrophic fungi have a narrow host range and
derive nutrients from living host cells, while necrotrophic fungi have a broad host range
and derive nutrients from dead host cells that are killed by secreted hydrolytic enzymes and
toxins. Notably, hemibiotrophic fungi have a narrow host range and can establish an initial
biotrophic phase, then switch to a necrotrophic phase [12,14,15]. The shift of fungi lifestyles
has been revealed to include switching between the same fungal species with different
lifestyles isolated from different host plants [16] or different host cultivars [17,18] and be-
tween different fungal species of the same genus isolated from different host plants [19,20].
We have previously found two different leaf lesion phenotypes of PWB in China: reticula-
tion type (R type) and blotch type (B type) (Unpublished work). Isolates of R type invade
the epidermal cells and extend over the adaxial leaf surface. Isolates of B type lead to
chlorosis or cell death (necrosis), and eventually perform corresponding spot symptoms at
both adaxial and abaxial leaf surfaces. Different lifestyles of fungi are highly connected to
their secretome (secreted effectors, carbohydrate-active enzymes, transporters, etc.), which
are secreted from penetration to tissue destruction [19–21]. Comparing variations in the
secretome will facilitate our understanding of how fungi interact with their hosts.

Next-generation sequencing technologies have been widely used to study plant
pathogens and greatly facilitated understanding of fungal evolution and virulence fac-
tors [22–27]. The lifestyle of fungal species in Dothideomycetes evolves in four major
transitions from non-phytopathogenic to phytopathogenic, along with the pathogenicity-
related genes carried in different genera varying considerably [28]. Fungi virulence has
been revealed to be associated with the number of certain secreted proteins, including
CAZy proteins [29]. A large-scale comparative genomic analysis has been confirmed to be
a powerful tool for investigating the genetic variation of phytopathogenic fungi [30,31].
Based on a comparison of 26 Phytophthora sojae isolates, a genomic landscape including
single-nucleotide polymorphism (SNP), insertion or deletion (InDel), copy number varia-
tion (CNV), and core RxLR effectors that are assumed to be essential for fungi infection have
been identified [32]. The genomic differences and uncovered gene family expansions in
the pathogenicity-related genes have been reported from a comparative genomic analysis
of three Phytophthora capsici isolates [33]. Although the increasing number of genomic
analyses provides insight into elucidating the genetic mechanisms underlying different
aggressiveness levels of fungal pathogens, most have focused on the evolutionary traits
and genetic variation at the intraspecific levels of plant fungal pathogens [30,33–35].
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To date, only two draft genome sequences of D. arachidicola have been reported that
referred to genome sizes of 34.11 and 47.30 Mb [36,37]. Notably, in one of the draft genome
reports (our previous study), the causal fungus of PWB was misused as Peyronellaea arachidi-
cola [37], which was reclassified as D. arachidicola in 2020 [10]. Multiple genomic compar-
isons at the intraspecific level are believed to reveal the genomic adaptation of D. arachidicola
and provide a molecular foundation to understand the pathogenic mechanism of D. arachidi-
cola. Therefore, this study completed the high-quality, chromosome-scale genome assembly
of a local D. arachidicola isolate and re-sequenced 40 isolates from 26 geographical locations
across China. The present work provides a valuable foundation for understanding the
genomic basis of pathogenicity and the adaptive evolution of D. arachidicola. Furthermore,
our results set a basis for further studies on functional genes related to lesion phenotype.

2. Materials and Methods
2.1. Fungal Isolates and Pathogenicity Assays

All the isolates of D. arachidicola were isolated from symptomatic leaves collected
from 26 different geographic locations across main peanut production areas in China
(Supplementary Figure S1). D. arachidicola isolates were single spore-derived, and their
hyphae (2–3 days old) were soaked in cryogenic vials with sterile 20% glycerin solution
for −80 ◦C storage. For the pathogenicity test, all isolates were transferred to an Oat agar
plate medium for induction of conidia production (22 ◦C in the dark for seven days, then
22 ◦C under a photoperiod of 12 h black light and 12 h dark). Eight-leaf stage seedlings of
peanut cultivar Yuhua 22 were chosen for inoculation. The leaflet of peanut seedlings was
inoculated by spraying either spore suspension as treatment or sterile water as a control.
Three replicates were set for each treatment. The inoculation seedlings were incubated at
25 ◦C with a relative humidity of 90% and a photoperiod of 10 h light and 14 h dark. The
diseased leaflet was recorded and photographed at 14 days post-inoculation (dpi), blade
and lesion areas were measured using ImageJ v1.8.0, and the pathogenicity was evaluated
based on a nine-level grading method [38]. The differences in disease index were compared
in R software v4.2.2. Bartlett’s test was used to check the homogeneity of variances; the
Wilcoxon test was used for unpaired two-sample comparison with p values adjusted by the
Benjamini method to control the false discovery rate (Figure 1A), and the Mann–Whitney
U test was used for comparison of two independent groups (Figure 1B). The standard
error of the mean was calculated in Microsoft Office Excel with the formula ‘=STDEV.S
(sample)/SQRT (COUNT (sample))’.

2.2. Genomic DNA, RNA Extraction, and Whole-Genome Sequencing

All the isolates were grown on Potato Dextrose Agar (PDA) medium for three days
at 25 ◦C with a photoperiod of 8 h light and 16 h dark. Mycelium was harvested, freeze-
dried in liquid nitrogen for 3 h, and stored at −80 ◦C. Genomic DNA and total RNA of D.
arachidicola isolates were extracted from mycelia using the DNeasy plant mini kit (QIAGEN,
Venlo, The Netherlands) and TRI reagent (Sigma Aldrich, St. Louis, MO, USA). The quality
of genomic DNA and total RNA was checked using 1% agarose gel electrophoresis and
quantified by NanoDrop spectrophotometer 2000c (Thermo Fisher Scitific Inc., Waltham,
MA, USA). RNA integrity was accessed using the RNA Nano 6000 Assay Kit of the Agilent
Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). De novo genome
sequencing was performed on isolate YY187. It was undertaken by producing Single
Molecule Real-Time (SMRT) cell libraries and sequenced on the PacBio Sequel platform
(PacBio, Menlo Park, CA, USA).
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Figure 1. Pathogenicity assays and lesion phenotype of 41 D. arachidicola isolates. (A) The disease
index of peanut seedlings infected by 41 D. arachidicola isolates at 14 dpi; CON denotes non-infected
peanut seedlings. Letters on the bars denote significant differences in disease index at 0.05 level;
error bars denote the standard error of the mean. (B) The average disease index of peanut seedlings
infected by isolates of different lesion phenotypes at 14 dpi. “**” denotes significant differences at
0.05 level; error bars denote the standard error of the mean. (C) Adaxial and abaxial leaf surfaces of
different lesion phenotypes showed at the top and bottom, respectively.

2.3. Genome Assembly and Hi-C Analysis

Raw PacBio polymerase reads were processed by SMRT analysis package v2.3.0 to
filter out low-quality reads (readScore < 0.8), remove adapters, and extract subreads with a
length greater than 1000 bp. The high-quality subreads were corrected and assembled using
Canu v1.5 with the parameter ‘correctedErrorRate’ set to 0.045 [39]. Genome completeness
and assembly quality were assessed using BUSCO v5.4.4 [40,41].

The procedures of Genomic DNA extraction, quality, and quantity assessment of
isolate YY187 were as described above. Hi-C sequencing library was constructed, the
concentration and insert size were detected using Qubit v2.0 and Agilent 2100, and then
subjected to paired-end 150 bp sequencing by Illumina HiSeq platform (Illumina, San Diego,
CA, USA). Illumina clean reads were mapped to the assembled genome of D. arachidicola
using BWA with default parameters [42]. Valid and invalid interaction pairs of unique
mapped read pairs were filtered and assessed using HiC-Pro v2.10 [43]. Scaffolds/contigs
were clustered into chromosome groups, and then those scaffolds/contigs within each
chromosome group were ordered and oriented using LACHESIS [44] with the parameters ‘-
CLUSTER_MAX_LINK_DENSITY 2 -CLUSTER_MIN_RE_SITES 5 -ORDER_MIN_N_RES_
IN_TRUNK 5 -ORDER_MIN_N_RES_IN_SHREDS 5 -CLUSTER_NONINFORMATIVE_
RATIO 2’.
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2.4. Genome Annotation

The repeat library was constructed using LTR_FINDER v1.05 [45], MITE-HUNTER [46],
RepeatScout v1.0.5 [47], and PILER-DF v2.4 [48], classified using PASTEClassifier [49], and
then merged with the Repbase database [50]. Accordingly, all the possible repeat elements
(REs) were detected by RepeatMasker v4.0.6 [51].

Protein-coding genes were predicted by combining three strategies: ab initio predic-
tion, homology-based, and RNA-Seq based. The ab initio prediction was carried out by
using Genscan v1.0 [52], Augustus v2.4 [53], GlimmerHMM v3.0.4 [54], GeneID v1.4 [55],
and SNAP v2006-07-28 [56]. The homology-based prediction was performed by GeMoMa
v1.3.1 [57]. RNA-Seq data were mapped to reference transcripts using Hisat2 v2.0.4 and
Stringtie v1.2.3 [58]. Transcriptome assembly was conducted based on Unigene sequences
that were predicted using PASA v2.0.2 [59] + TransDecoder v2.0 pipeline. The gene sets
were integrated into a non-redundant gene set using EVM v1.1.1 [60]. Transfer RNAs
(tRNAs) were predicted by tRNAscan-SE [61], and the predictions of ribosome RNAs
(rRNAs) and other non-coding RNAs (ncRNAs) were performed using Infernal v1.1 [62]
based on Rfam database [63].

The prediction gene set was used for gene annotation based on functional databases
of KOG [64], KEGG [65], Swiss-Prot (2015_01), TrEMBL [66], and Nr [67] using BLAST
v2.2.29 [68]. The hits from the Nr database blast were further annotated with the Blast2GO
v2.5 [69], Hmmer v3.0 [70], GO [71], and Pfam (27.0) [72] database, respectively. In addi-
tion, Hmmer v3.0 [70] was used to annotate carbohydrate enzymes, membrane transport
proteins, and cytochrome P450 proteins based on the carbohydrate-active enzymes (CAZy)
database, transporter classification database (TCDB), and cytochrome P450 engineering
database (CYPED), respectively [73–75]. The prediction gene set was also used for anno-
tation in the pathogen–host interactions (PHI) database [76] and the database of fungal
virulence factors (DFVF) [77] using BLAST v2.2.29 [68].

To identify protein subcellular localization, the protein sequences of all the predicted
genes were analyzed, and proteins containing signal peptides were detected by SignalP
v4.0 [78] with the parameter ‘-f long -g png’. After transmembrane proteins were filtered by
TMHMM with default parameters [79], the remains were candidate-secreted proteins. Effec-
torP [80] was used to further analyze the secreted proteins for predicting effector proteins.

2.5. Genome Re-Sequencing and Variations Calling

Genomic DNA extraction of 40 isolates of D. arachidicola and quantity/quality deter-
mination were performed as described above. Paired-end libraries with an insert size of
350 bp for Illumina sequencing were constructed, and PE150 sequencing was performed
on an Illumina HiSeq X-Ten platform. The obtained raw reads were filtered to remove
adapters, low-quality reads on which more than 50% of the bases had a quality score less
than 20 (Phred-like score), and paired-end reads with >10% ‘N’ bases. The clean reads of
re-sequenced isolates were aligned to the reference genome (de novo assembly of isolate
YY187) by BWA-MEM v0.7.12 [81]. Duplicate reads were removed from alignments using
samtools v1.7 [82].

Single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) within
the 40 isolates were called using the HaplotypeCaller module in GATK [83] and were filtered
with the following parameters: QD < 2.0 || MQ < 40.0 || FS > 60.0 || QUAL < 30.0 ||
MQrankSum < −12.5 || ReadPosRankSum < −8.0 -clusterSize 2 -clusterWindowSize 5.
SNP and InDel annotations were performed using default parameters based on the reference
genome by snpEff v4.1 [84]. Synonymous and non-synonymous SNPs and InDels in exons
were further filtered. In addition, genes with non-synonymous SNPs and InDels in exons
were targeted and used for searching genes with potential functional differences, which
were further annotated against databases of Nr [67], SwissProt (2015_01), GO [71], COG [64],
and KEGG [65] using BLAST v2.2.29 [68].
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2.6. Population Phylogeny Analysis

The SNPs identified by GATK were further filtered: only SNPs with a minor allele
frequency greater than 5% and less than 20% missing data were considered high-quality
SNPs. A phylogenetic tree was reconstructed based on the alignment of high-quality SNPs,
using the maximum likelihood method with the GTR + G + I model in MEGA X [85] with
1000 bootstrap replicates. The population structure within 40 isolates was inferred based
on the high-quality SNPs using ADMIXTURE v1.22 [86], with the putative number of
sub-populations (K value) ranging from 1 to 10. The optimal number of sub-populations
was assessed using five-fold cross-validation.

2.7. Identification of Potential Pathogenicity Factors

Those genes with non-synonymous SNPs and InDels occurring in exons were consid-
ered specific differential gene sets for each isolate. As the reference genome we used above
was the genome of the most virulent isolate, the differential gene sets of the least virulent
isolates of two lesion phenotypes were selected to identify pathogenicity-related genes.
The differential gene set was individually compared with the functional annotations of
the reference genome, including CAZy-base, TCDB, PHI-base, CYPED, DFVF annotations,
and prediction of secreted proteins and effector proteins by VCFtools v.0.1.15 [87]. All the
differential gene sets of B type isolates were merged and compared to further validate
shared differential genes to validate pathogenicity factors potentially related to different
lesion phenotypes.

3. Results
3.1. Pathogenicity Varied among D. arachidicola Isolates

The results showed differences in the pathogenicity of infected peanut seedlings at
14 dpi. The isolates YY187 and SC291 had the highest and lowest pathogenicities, with a
disease index of 28.33 and 7.56, respectively (Figure 1A). The control treatment (seedlings
inoculated with sterile water) showed no symptoms during the experimental period. The
leaf lesion phenotypes showed at 14 dpi among all the isolates were recorded, which
showed that 33 isolates were reticulation type (R type) and 8 were blotch type (B type).
The isolates YY187 and SD278 were the most virulent from R and B types, respectively
(Figure 1A). In addition, the average disease index of R type isolates was significantly
higher than that of B type isolates (Figure 1B).

3.2. Genome Assembly and Annotation

Isolate YY187 was sequenced and assembled as a reference genome of D. arachidicola.
A total of 7.86 Gb filtered subreads with an average length of 8.09 kb were generated
from the PacBio Sequel platform. The assembled genome size was 47.35 Mb, comprising
26 scaffolds, with an N50 length of 2.17 Mb and a G + C content of 56.37% (Table 1). A total
of 16,629 genes were predicted in this study (Supplementary Table S1).

Table 1. Summary of genome assembly and annotation in isolate YY187.

Feature Value

Scaffold number 26
Total scaffold length (Mb) 47.35

Scaffold N50 (Mb) 2.17
Scaffold N90 (Mb) 1.39

Maximum scaffold length (Mb) 6.56
GC content (%) 56.37

Chromosomal located sequence length (Mb) 36.03
Number of chromosomes 18
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Table 1. Cont.

Feature Value

Percentage of repeats (%) 9.89
Number of predicted genes 16,629
Average gene length (Kb) 1.99

Average CDS number 2.47
Number of non-coding RNAs tRNA (286), rRNA (81), other ncRNA (95)

The Hi-C approach was further used to determine the state of genome folding of
isolate YY187. Approximately two million paired-end reads (6.01 Gb) were obtained with
a G + C content of 51.95% and a Q30 of 94.35%. The ratios of mapped reads and unique
mapped read pairs were 96.14% and 73.06%, respectively. Among the unique mapped
read pairs, valid interaction pairs (8.83 Mb) with a percentage of 60.32% were generated.
Hi-C assembly located 36.03 Mb genomic sequences (accounting for 76.09% of the total
sequence length) on chromosomes. Moreover, the chromosomal ordered and oriented
sequences accounted for 100% of the total sequence length and number, respectively. The
Hi-C assembled results were further cut into 20 Kb bins, the interaction intensity of any
two of which was used to construct a heat map. Finally, the preliminary PacBio assembly
was assembled using the Hi-C technique into a chromosome-level assembly containing
18 chromosomes (Figure 2, Supplementary Figure S2).
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Figure 2. The genomic circos map of D. arachidicola isolate YY187. Circles from inside to outside are
(a) chromosome information of the D. arachidicola genome (scale marks in Mb). (b) Gene density on
different chromosomes, color-coded from blue to yellow, represents values from low to high. (c) GC
content, color-coded from yellow to green, represents values from low to high. Visualization was
performed using advanced circos in TBtools v1.098769.
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The predicted genes were annotated based on multiple functional databases (KOG,
KEGG, Swiss-Prot, TrEMBL, Nr, GO, and Pfam), with which 15,767 genes (approximately
94.82% of the total) showed at least one hit to the above databases (Supplementary Table S2).
In total, 9682 protein-coding genes were annotated from the GO database. The ‘cell part’,
‘cell’, ‘membrane’, and ‘organelle’ were the most prevalent GO terms associated with
cellular components; meanwhile, the ‘catalytic activity’ and ‘metabolic process’ were the
largest categories of genes associated with molecular function and biological processes,
respectively (Supplementary Figure S3). In addition, 7676 protein-coding genes were anno-
tated by the KOG database. The functional category ‘general function prediction only’ was
the most, followed by ‘posttranslational modification, protein turnover, chaperones’ and
‘amino acid transport and metabolism’ (Supplementary Figure S4). The annotation based
on the KEGG database found 4739 protein-coding genes, demonstrating that ‘biosynthesis
of amino acids’ and ‘carbon metabolism’ were the two categories most associated with
metabolism (Supplementary Figure S5). The density of annotated genes distributed on
each chromosome is shown (Figure 2) using gene location visualization in TBtools software
for visualization [88].

Additional annotations were based on CAZy-base, TCDB, CYPED, PHI-base, and
DFVF. A total of 902 genes were annotated to be CAZymes, including 35.32% glycoside
hydrolases (GHs), 19.90% carbohydrate esterases (CEs), 18.00% glycosyl transferases (GTs),
14.02% auxiliary activities (AAs), 9.25% carbohydrate-binding modules (CBMs), and 3.48%
polysaccharide lyases (PLs) (Supplementary Figures S6A and S7A). A total of 405 and
558 genes were annotated as membrane transport proteins and cytochrome P450 proteins
in the reference genome, respectively (Supplementary Figure S6A). A total of 5028 po-
tential pathogenic genes were assigned to different categories in PHI-base (containing
information on experimentally proven genes in bacteria, fungi, and oomycetes), most
of which were related to reduced virulence (40.93%) and unaffected virulence (30.65%)
(Supplementary Figures S6A and S7B). As a supplement and validation, 2996 genes were
annotated to be known fungal virulence factors in the DFVF database, among which
240 genes were exclusive in the DFVF database as mapping to the annotation genes in
PHI-base (Supplementary Figure S6).

In total, 1906 proteins with signal peptides and 3990 transmembrane proteins were
predicted in the genome of D. arachidicola isolate YY187. By removing those proteins with a
transmembrane structure from proteins with a signal peptide, the remaining 1292 proteins
were identified as potentially secreted proteins. Furthermore, 335 secreted proteins (ac-
counting for 25.93% of the total predicted secreted proteins) belonged to CAZymes, among
which PHI-base annotated 169 secreted proteins with information of “reduced virulence”,
“loss of pathogenicity”, “effector (plant avirulence determinant)”, etc. In total, 144 proteins
of the potential CAZymes were supplementarily annotated by DFVF of known fungal
virulence factors, with 131 proteins the same to PHI-base annotation. Moreover, 174 effec-
tor proteins associated with pathogen–plant host interactions were further predicted by
EffectorP by analyzing potentially secreted proteins (Supplementary Figure S6B).

3.3. Genomic Variation and Phylogeny of D. arachidicola

Genome re-sequencing of 40 isolates (except for the isolate for reference genome) was
performed to investigate the genomic variations of D. arachidicola at the intraspecific level.
The clean reads of 40 isolates were mapped to the reference genome of isolate YY187, with
GC content and mapping rate ranging from 50.95% to 53.03% and 90.13% to 99.66%, respec-
tively (Supplementary Table S3). A total of 158,962 SNPs and 12,771 InDels were identified
(Supplementary Table S4). For all the isolates, the ratio of transition over transversion
(Ti/Tv) of SNPs ranged from 2.91 to 3.47, and the insertion and deletion numbers of InDels
ranged from 86 to 267 and 101 to 229, respectively (Supplementary Table S3). Genomic
variations were further categorized due to their occurring regions (intergenic regions, up-
stream or downstream regions, and exons or introns), which showed that all 40 isolates had
similar variations (Supplementary Table S3). In addition, most variations (59.62% of SNPs
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and 59.00% of InDels) were located in gene upstream and downstream regions, and 19.21%
of SNPs and 14.03% of InDels were located in exon regions (Figure 3A). Non-synonymous
SNPs were filtered in exons with numbers from 224 to 507, and InDels detected in exons
ranged from 22 to 62 (Supplementary Table S5). An intraspecific comparison of variations
among all the isolates is further shown in Supplementary Figure S8. For the variation
types in CDS regions of each isolate, the proportion of synonymous and non-synonymous
SNPs was the most; meanwhile, frameshift mutation was the primary type that referred
to InDels (Figure 3B). Genes with non-synonymous SNPs and InDels occurring in exons
were identified, with the gene numbers ranging from 167 to 420 and 19 to 51, respectively
(Supplementary Table S5).
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Figure 3. Genome-wide distribution and types of variations (identified by comparison with the
reference genome of isolate YY187) within all D. arachidicola isolates. (A) Genome-wide percentage
distribution of SNPs and InDels within different genomic regions, respectively. Each bar indicates the
average percentage of variations in a certain genomic region among all the isolates, with the error
bars showing the standard error of the mean; (B) the proportion of different variation types in the
CDS region of D. arachidicola isolates.

A phylogeny analysis was performed to investigate the phylogenetic relationship
of the D. arachidicola population. The SNP calling was based on the reference assem-
bly of isolate YY187, resulting in 8154 SNPs being further filtered as high-quality SNPs
(Supplementary Table S4), which were used to construct a maximum likelihood phyloge-
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netic tree (Figure 4). The phylogenetic tree included 40 isolates from 26 geographical regions
of China, and the results indicated four sub-populations (S1, S2, S3, and S4), while no corre-
lations were found among the clustering of isolates and geography for the D. arachidicola
population. Eight isolates of B type belonged to clusters S1, S3, and S4 separately, indicating
no correlation between the phenotype of different lesions and geographical regions. In
addition, the putative number of sub-populations was assumed from 1 to 10 and assessed
using five-fold cross validation. At K = 4, D. arachidicola isolates were divided into four
groups that showed the same grouping results as our phylogenetic analysis.
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Figure 4. Phylogenetic analysis of D. arachidicola population with high-quality SNPs. The SNPs of
40 isolates were called by GATK based on the fact that the genome of isolate YY187 was selected as
the reference, which caused the absence of isolate YY187 on the phylogenetic tree. The maximum
likelihood (ML) tree was constructed using MEGA X with 1000 bootstrap replicates. The tree was
visualized by modification in FigTree v1.4.4. Bootstrap values are shown above the branches. The
sub-populations of D. arachidicola were classified and displayed by different colors. The isolates of B
type are designated in blue font color.

3.4. Identification of Pathogenicity Factors

According to the results of pathogenicity assays, the most virulent isolate was YY187,
the least virulent R type isolate was SC289, and the B type was SC291. Based on the genome
re-sequencing, 3,552,798 clean reads of SC289 and 3,510,557 clean reads of isolate SC291
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were mapped to the reference genome (isolate YY187) with a mapping rate of 98.36% and
98.70%, respectively (Supplementary Table S3). By variation calling and annotations, 315
and 420 differential genes with non-synonymous SNPs, and 43 and 41 differential genes
with InDels, were further annotated (Supplementary Table S5). Differential genes were
blasted in general functional databases that generated two differential gene sets contain-
ing 266 and 331 functional annotated genes for isolates SC289 and SC291, respectively
(Supplementary Table S6). The two differential gene sets were further integrated into
one gene set containing 512 differential genes (85 genes were shared by two differential
gene sets), which we called an integrated gene set (Supplementary Table S6) and used for
subsequent analysis.

Compared with the reference genome annotations in CAZy-base, TCDB, CYPED, PHI-
base, and DFVF, the pathogenicity-related genes were further identified from 512 genes
from an integrated gene set, which were 35 CAZyme genes, one membrane transport
protein gene, 29 cytochrome P450 monooxygenase genes, 193 pathogen–host interaction
protein genes, and 126 known fungal virulence factors (Supplementary Table S6). It has been
well-understood that plant pathogens secrete effector proteins to facilitate the infection of
their hosts [89–91]. By comparing the integrated gene set to the predicted secreted proteins
of the reference genome, 30 genes were identified as secreted proteins, among which three
were further identified as effector proteins (Supplementary Table S6).

3.5. Pathogenicity Factors Potentially Related to Different Lesion Phenotypes

Compared with the reference isolate YY187 (R type), eight B type isolates, SD278,
HuB260, SX282, SX283, LN297, SC290, SC291, and SC293, were analyzed to identify the
potential pathogenicity factors related to different lesion phenotypes. In total, 13 differential
genes were shared by all B type isolates (Table 2). Those genes were mainly located in
chromosomes 3 and 11, with only one in Chr1 (Figure 5). Eight genes had hits in PHI-base
with either “reduced virulence”, “unaffected pathogenicity”, or “loss of pathogenicity”
annotations, five of which also had hits in DFVF annotations (Table 2). Only one gene in
Chr1 was also annotated in CYPED. One out of three genes in Chr3 was annotated to be
CAZyme. On Chr11, two secreted proteins were found, and one of them (EVM0007819.1)
was further predicted to be an effector protein (244 amino acids).

Table 2. Summary of pathogenicity factors potentially related to different lesion phenotypes.

Gene ID Brief Description GO ID Pfam Annotation

EVM0000257.1 a –
GO:0000981; GO:0003677;
GO:0005634; GO:0006351;
GO:0006355; GO:0008270

Fungal Zn(2)-Cys(6) binuclear cluster
domain

EVM0000544.1 a Hypothetical protein GO:0003700; GO:0008270 AAA domain

EVM0002645.1 a, b Carminomycin
4-O-methyltransferase GO:0008171 O-methyltransferase domain

EVM0002993.1 – GO:0003676 Zinc-finger double domain

EVM0004472.1 a, b
3-oxoacyl-[acyl-carrier-

protein]
reductase

GO:0004316; GO:0006633;
GO:0051287; GO:0102131;

GO:0102132
Enoyl-(Acyl carrier protein) reductase

EVM0007100.1 a, b, c Alpha-glucosidase GO:0004553; GO:0005975;
GO:0030246 Glycosyl hydrolases family 31

EVM0007819.1 a, b, f NPP1 family protein - Necrosis inducing protein (NPP1)

EVM0009176.1 Isopenicillin N synthase
family oxygenase

GO:0016491; GO:0046872;
GO:0055114

non-haem dioxygenase in morphine
synthesis N-terminal

EVM0009252.1 e Agmatinase GO:0016813; GO:0046872 Arginase family
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Table 2. Cont.

Gene ID Brief Description GO ID Pfam Annotation

EVM0011493.1 Hypothetical protein - Heterokaryon incompatibility protein
Het-C

EVM0012163.1 Hypothetical protein GO:0004843; GO:0006511;
GO:0016579; GO:0036459 Ubiquitin carboxyl-terminal hydrolase

EVM0013695.1 a AAA family ATPase GO:0005524 ATPase family associated with various
cellular activities (AAA)

EVM0015380.1 a, b, d Hypothetical protein GO:0004672; GO:0005524;
GO:0006468 Protein kinase domain

a, b, c, d denote the proteins with PHI-base, DFVF, CAZy-base, and CYPED hits, respectively. e denotes the secreted
protein. f denotes the effector protein.
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4. Discussion

Inoculation of D. arachidicola isolates on peanut seedlings showed that pathogenicity
varied among 41 isolates from different regions of China (Figure 1A). Given the two
different lesion phenotypes, isolates of reticulation type (R type) and blotch type (B type)
showed significant differences in pathogenicity (Figure 1B). Notably, the lesion phenotype
exhibited no correlation with geographic locations. Different lesion phenotypes can be
found in different regions, such as isolate SD277 and SD279 (R type) and SD278 (B type),
originating from Shandong province, China. Previous studies have reported that the
adaptability and pathogenicity of fungal pathogens can be affected by plant cultivars and
environmental factors such as temperature, light conditions, and humidity [34]. Pathogenic
fungal species with a narrow range of plant species were so-called ‘host specificity’ [92] and
have been extensively used to study pathogen–host interactions [93–95]. It has been proved
that fungal pathogens utilize diverse life strategies to interact with host plants, while plants
use immune systems to respond to pathogenic infection [12,96]. In order to colonize host
plants, fungal pathogens either directly invade epidermal cells, or extend hyphae over,
between, or through plant cells, which happens to be the different lesion phenotypes in our
study (Figure 1C). In consideration of the limited expansion and higher invasion ability of
B type isolates, a better strategy for interfering with PAMP (pathogen-associated molecular
patterns)-triggered immunity (PTI) and further effector-triggered susceptibility (ETS) might
happen. However, the causation of different lesion phenotypes of D. arachidicola, especially
at the genetic level, needs to be further illustrated.
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The results of genome re-sequencing showed a high mapping rate of the clean
reads mapped to the reference, around 97~99%, except some lower, around 92~94%
(Supplementary Table S3). The present bioinformatic methods usually discarded those
unmapped reads from the analysis process, while some studies revealed that meaning-
ful biological information (e.g., missing genes) could also be found by further exploring
unmapped reads [97,98]. However, this phenomenon was rarely reported in the research
on fungal pathogens. Considering the high homology shown in D. arachidicola isolates
at the intraspecific level, the lower mapping rate may be more related to the sequencing
quality than sequence differences. Nevertheless, a comparison of PacBio whole-genome
assemblies of representative isolates with the reference could better explain the unmapped
reads issue and needs further investigation. The results of the variation calling indicated a
homogeneous polymorphism at the intraspecific level of D. arachidicola. The 40 isolates of
D. arachidicola showed similar numbers of SNPs and InDels; moreover, the proportion of
variations identified, respectively, in the intron, exon, and other genomic regions showed
no significant differences among isolates. Regarding the distribution in genomic regions,
genomic variations were mainly located in the upstream and downstream regions (59.31%)
and exon regions (16.62%) of genes, which showed a similar distribution pattern with
variations of three pathotypes of a rust fungi Puccinia striiformis [99], but differed from the
previous study of Phytophthora sojae in that a high proportion of SNPs and InDels were
located in intergenic regions [32]. The upstream and downstream regions have been mainly
studied at the cis-regulatory elements, such as promoters and enhancers, which have been
elucidated to regulate gene expression and functions [100,101]. Thus, most of the variations
identified in our study were distributed in the non-coding regions that might contribute to
phenotypic diversity within species by affecting the functions of cis-regulatory elements.
In the coding regions, especially exon regions, the variations are directly related to the
transcription and translation of proteins. The phylogenetic relationship based on SNPs did
not correlate with their geographical origins and virulence, suggesting a more diverse evo-
lution at the intraspecific level of the D. arachidicola population. As the latitudes of origins,
peanut cultivars, and environmental factors can affect the adaptability of D. arachidicola
isolates, an extensive range of sample collection and further investigations combined with
the related environmental factors will contribute to a better understanding of the evolution
of D. arachidicola.

By comparing the differential gene sets of all B type isolates, 13 shared differential
genes were identified as pathogenicity factors potentially related to different lesion pheno-
types of D. arachidicola (Table 2). Among these genes, EVM0007100.1 had hits in PHI-base
and DFVF simultaneously with the name of GAS1, which has been reported to be es-
sential for efficient colonization on the host surface [102] by affecting the formation of
appressoria and penetration into the epidermal cell layer [103]. As homologous to GAS1,
EVM0007100.1 is annotated as CAZyme with GH31 (glycoside hydrolase) activity. Previous
studies confirmed that various CAZymes had been found to be important virulence factors,
among which glycoside hydrolases (GHs) are the most abundant class studied so far [104].
The known GHs families in phytopathogenic fungi and oomycetes that were reported to
have potential roles in penetration of the cell wall, expansion of the fungus in the host,
stealth pathogenicity, et cetera, were concentrated in GH5-7, GH10-13, GH18, GH45, and
GH74 families [105]. Here, we showed the potential that members from the GH31 family
could also be regarded as CAZymes with potential functions on pathogen penetration and
invasion in phytopathogenic fungi.

Earlier studies have reported that plant pathogens utilize secreted proteins termed
‘effectors’, a broad class of cytotoxic, virulence-promoting, or resistance-eliciting molecules
released from pathogen cells to facilitate infection by suppressing plant defense reactions
and manipulating plant cell physiology [12,91]. The gene EVM0007819.1 identified in this
work was predicted to be an effector protein and was functionally annotated as necrosis-
and ethylene-inducing protein 1 (Nep1), which belongs to Nep1-like proteins (NLPs).
NLPs are widespread among microbes such as bacteria, fungi, and oomycetes and act as
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toxin-like virulence factors that induce tissue necrosis [106,107]. Studies have proved that
plant pathogens generally expressed multiple NLPs with necrotrophic or hemibiotrophic
lifestyles during infection or in the transition from biotrophic to necrotrophic [108,109].
EVM0015380.1 was functionally annotated as a Kpp6 gene, which has been identified
for encoding a mitogen-activated protein (MAP) kinase [110]. As fungal MAP kinases
have shown essential roles in controlling essential virulence factors, the Kpp6 gene has
been further speculated to be crucial for the penetration of plant epidermis [110,111]. In
addition, the genes EVM0000257.1, EVM0000544.1, EVM0002645.1, and EVM0013695.1
were annotated against PHI-base to be putative transcription factors (TFs) [112], which
are essential regulators of gene expression, possess critical roles in the signal transduction
pathways, and further phenotypic evolution [113,114].

5. Conclusions

This work assembled the chromosome-scale genome of a local isolate of D. arachidicola
as the first reference and re-sequenced the genomes of 40 D. arachidicola isolates from
26 geographical locations across China. Our analysis revealed that the pathogenicity varied
among all the isolates, and the isolates of B type presented less virulence than the R type in
consideration of the different lesion phenotypes, although there were no correlations among
pathogenicity, lesion phenotype, and geographical origins. Furthermore, we investigated
the genomic variations of D. arachidicola and determined an intraspecific polymorphism.
The 13 differential genes potentially related to lesion phenotype were identified to further
understand the correlation of genotype and phenotype underlying the pathogenic mech-
anism. Our study set a genomic foundation for the adaptive evolution of D. arachidicola
and provided a molecular background for further functional study on the genes potentially
related to different lesion phenotypes.
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map of chromosomal interaction based on Hi-C assembly. “LG” means Lachesis group; Figure S3:
Category statistics for GO annotation of D. arachidicola genes; Figure S4: Category statistics for
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