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Simple Summary: This article proposes a comparative study between two models that can be used
by researchers for the analysis of survival data: Weibull regression and random survival forest. The
models are compared considering the error rate, the performance of the model through the Harrell
C-index, and the identification of the relevant variables for survival prediction. A statistical analysis
of a data set from the Heart Institute of the University of São Paulo, Brazil, has been carried out. The
proposal has many applications in biology and medicine.

Abstract: In this article, we propose a comparative study between two models that can be used by
researchers for the analysis of survival data: (i) the Weibull regression model and (ii) the random
survival forest (RSF) model. The models are compared considering the error rate, the performance of
the model through the Harrell C-index, and the identification of the relevant variables for survival
prediction. A statistical analysis of a data set from the Heart Institute of the University of São Paulo,
Brazil, has been carried out. In the study, the length of stay of patients undergoing cardiac surgery,
within the operating room, was used as the response variable. The obtained results show that the
RSF model has less error rate for the training and testing data sets, at 23.55% and 20.31%, respectively,
than the Weibull model, which has an error rate of 23.82%. Regarding the Harrell C-index, we obtain
the values 0.76, 0.79, and 0.76, for the RSF and Weibull models, respectively. After the selection
procedure, the Weibull model contains variables associated with the type of protocol and type of
patient being statistically significant at 5%. The RSF model chooses age, type of patient, and type
of protocol as relevant variables for prediction. We employ the randomForestSRC package of the R
software to perform our data analysis and computational experiments. The proposal that we present
has many applications in biology and medicine, which are discussed in the conclusions of this work.

Keywords: binary trees; Harrell index; model diagnostics; non-normal regression; random forest;
statistical software; survival statistical analysis; variable importance; Weibull model

1. Introduction

Cardiovascular diseases are associated with arrhythmia, blood vessel problems, heart
failure, myocardial infarction, and stroke, among others. These diseases are among the
leading causes of death in the world [1]. In 2019 [2], more than 17 million people died from
cardiovascular diseases.
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In the care of cardiovascular diseases, their timely and accurate detection, as well as
the determination of the factors that produce them are of the utmost importance for the
survival of patients. Survival data have as response variable the time until the occurrence
of a specific event of interest, called survival time or death time. One characteristic of
survival data is the censorship of the observations [3], which is the partial observation of the
response. Censored data appear with a certain frequency, as it is only sometimes possible
to expect the event of interest to occur for all elements under study. In general, we can
classify censoring into three groups [4]: (i) right censoring, when the event occurs after the
beginning of the study; (ii) left censoring, when it occurs before the beginning of the study;
and (iii) interval censoring, when the exact time of the censoring is not known, but only the
interval in which it occurred. The present study uses a data set with right censoring and
its analysis is performed with an R package named randomForestSRC [5]. There are three
mechanisms of right censoring: (a) type I, in which the study ends after a pre-established
period; (b) type II, in which the study ends after a death has occurred in a pre-established
number of individuals under analysis; and (c) random censoring, which happens when the
individual leaves the study without the event of interest having occurred. Even though the
censored observations are partial, they provide essential information. Therefore, discarding
these data can lead to biased inferences [6]. The statistical techniques used for this type of
data are known as survival analysis, where survival is a term generally employed in the
medical field, while in industrial research it is known as reliability.

Machine learning techniques are reliable and efficient for predicting cardiovascular
diseases as noted in [7–11]. Several machine learning algorithms were proposed during the
last decade for forecasting cardiovascular diseases using different parameters, data sets,
and approaches. Diverse machine learning models, such as decision trees, support vector
machines, artificial neural networks, naive Bayes, and random forests (RF) were employed
to diagnose cardiovascular diseases [12]. An alternative machine learning technique that
has been used to analyze survival data is the random survival forest (RSF) method [13],
which instead of building a single survival tree, creates several of them, each using a random
sample of the data. This technique is known as bagging [14] and estimates the survival
function. The method is entirely non-parametric, so it does not require distributional
assumptions in the relationship of the explanatory variables (covariates) and the response
variable [15]. This procedure leads to a more accurate prediction considering traditional
survival methods. The RSF method is based on the RF technique introduced in [16].

The RF technique can be employed for categorical response variables, referred to as
classification, or for a continuous response, referred to as regression. Likewise, the co-
variates can be categorical or continuous. Subsequently, the RSF method was developed
in [13], which is used to analyze right-censored survival data. Then, the RSF method is
an extension of the RF technique [17,18]. For the RSF method, uniform consistency was
proved in [19] under general rules, bootstrapping [20], and random selection of variables.
Applications and recent advances from the RF technique to genomic data were reviewed
in [21], including prediction and classification, variable selection, genetic pathway analysis,
genetic association and detection of epistasis, as well as unsupervised learning. A new
approach to competing risks using the RF technique was presented in [22].

The RSF method was compared in [23] with the conditional inference forests proposed
in [24] to solve the bias problem for variables with many possible recursive partitioning;
see also [25]. In [26], the authors researched how valuable the space extension technique
in survival analysis is, which was proposed for classification analysis so far. It comprises
building an extended variable space and inserting new variables in the study from the
random combination of two or more original variables.

Risk models to predict dyslipidemia were formulated in [27], which are characterized
by high levels of lipids and fats in the blood. The authors used the RSF method, considering
the complex relationship between the variables. For comparison, they utilized the Cox
regression model. Additionally, the Harrell concordance index (C-index) was employed to
compare the models.
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The RSF method was used in [28] to analyze the time until the recurrence of breast
cancer. The considered model characterizes the survival function between patients with and
without breast cancer recurrences, showing a strong potential to help health professionals in
the prognosis, treatment, and decision-making of such conditions. Five models were fitted
in [29], with four of them using the RSF method. In that study, the Cox model [30] was
used for comparison. They utilized the following criteria: the Harrell C-index [31], and the
Brier score index to compare models. The best-fitting model for prediction contained all
covariates under RSF modeling. In this work, we adopt the Weibull model because is more
flexible than the Cox model, as it allows for varying hazard rates over time and can handle
different types of censoring. In addition, the Weibull model provides a more complete
analysis due to its different types of hazard rates can help to state the survival distribution
more accurately [32,33].

The main objective of this work is to compare the Weibull regression and RSF models
for survival data analysis using three criteria: the error rate, C-index, and identification
of the most relevant variables for survival prediction. For the computational experiments,
we used a data set that studies the length of stay (in hours) of patients undergoing cardiac
surgery inside the surgical ward, as a function of some covariates. We encourage researchers
to utilize our methodology, which facilitates the analysis of survival data because it allows
for choosing the best model, and therefore making the best prediction, according to the
criteria selected by the data analyst. The article is organized as follows. Sections 2–4 present
background on survival analysis, Weibull regression, and RSF models. In Section 5, we
analyze the data, and Section 6 provides some discussion and conclusions.

2. Survival Analysis

In this section, we present background related to the Kaplan–Meier method, which is
used to estimate the survival function. In addition, the Nelson–Aalen method, employed
to estimate the cumulative risk function, is presented.

2.1. Kaplan–Meier Estimator

To estimate the survival function [34], denoted by S(t), in the presence of censored
observations, we use the Kaplan–Meier method [35], also known as the product limit
estimator. Let t1 < · · · < tk be k observed and ordered times, dj be the number of deaths at
tj, and nj be the number of individuals at risk until tj (exclusive), that is, the individuals who
survived and were not censored until the instant immediately before tj, for j ∈ {1, . . . , k}.
The Kaplan–Meier estimator is defined as Ŝ(t) = ∏j:tj≤t(1− dj/nj). This estimator is an
adaptation of the empirical survival function. It considers as time intervals as the number
of distinct deaths exist, where the limits of the intervals are the death times in the sample.

Consider, under the null hypothesis (H0), the equality of survival curves, where
the alternative hypothesis (H1) indicates that a difference between survival curves exists.
To compare different survival curves, the Mantel log-rank test [36] is often used. UnderH0,
the corresponding test statistic has a chi-square distribution with r− 1 degree of freedom
considering large samples, where r is the number of groups to be compared.

2.2. Nelson–Aalen Estimator

The risk function (or hazard/failure rate) is defined as the probability that the death
occurs in the interval of time [t, t + ∆t), where ∆t is an infinitely small time in relation to
t. However, with the cumulative risk function, denoted by H(t), we obtain the risk of an
event occurring at all times up t, that is, the cumulative risk is the sum of all risks at all
times up t.

The Nelson–Aalen estimator [37,38] is used to obtain the cumulative risk function.
However, it can also be utilized for the survival function through a relationship stated as
S(t) = exp(−H(t)) or equivalently H(t) = − log(S(t)). Therefore, the Nelson–Aalen
estimator for the survival function is defined as S̃(t) = exp(−Ĥ(t)), where Ĥ(t) =

∑j:tj≤t(dj/nj) and dj, nj are defined as in the case of the Kaplan–Meier estimator [39].
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3. Weibull Regression Model

In this section, the Weibull regression is formulated. For this regression model,
the Weibull and extreme value distributions are necessary. The method of maximum
likelihood that allows us to estimate the parameters of the model is also presented here.
Then, the analysis of residuals for the Weibull regression is discussed.

3.1. Formulation

Let T1, . . . , Tn be independent random variables that follow a Weibull distribution
with parameters of shape γ ≥ 0 and scale α ≥ 0. Then, the probability density function
(PDF) is given by f (t, α, γ) = αγ(αt)γ−1 exp(−(αt)γ), for t > 0; for more details, see [40].
Assume that each Ti depends on a vector with p covariates.

The standard extreme value distribution for a variable Y with scale parameter σ and lo-
cation µ has a PDF given by f (y, µ, σ) = (1/σ) exp(−(x− µ)/σ) exp(− exp(−(x− µ)/σ))),
for y ∈ R. If we are interested in determining the relationship between Ti and a vector
of covariates, we can make use a regression model. Then, we choose the Weibull regres-
sion [41], whose model is expressed as Yi = log(Ti) = x>i β + σνi, for i ∈ {1, . . . , n}, where
Yi follows an extreme value distribution with scale parameter σ, and location µi = x>i β;
x>i = (1, xi1, . . . , xip) is a vector with values of the covariates; β = (β0, β1, . . . , βp)> is
a vector of unknown regression parameters; and the model error νi = log(εi) follows a
standard extreme value distribution.

3.2. Point Estimation

Consider the pairs (T1, δ1), . . . , (Tn, δn), where Ti is the death or censoring time of
individual i, and δi is a variable indicating death or censorship of this individual, that is,
we assign δi = 1 if the individual i experienced a death, and δi = 0 for a censoring, with
i ∈ {1, . . . , n}.

We use the maximum likelihood method to estimate the parameters of the Weibull
regression model. Let Y1 = log(T1), . . . , Yn = log(Tn) be independent random variables,
such that Yi follows an extreme value distribution with scale parameter σ, location pa-
rameter µi = x>i β, and θ = (β>, σ)> is a parameter vector of dimension (p + 2) × 1
of unknown parameters to be estimated. The corresponding likelihood function con-
sidering right-censored data is expressed by L(θ) ∝ ∏n

i=1 f (yi, θ)δi S(yi, θ)1−δi , where
f (yi, θ) = (1/σ) exp(((yi − µi)/σ) − ((yi − µi)/σ)) is the PDF, δi is the indicator vari-
able of dead or censorship, and S(yi, θ) = exp(− exp((yi − µi)/σ)) is the survival function.
Recall δi = 1 if the individual experienced a death and δi = 0 otherwise. Note that the
contribution of each uncensored observation is its PDF and that each censored observation
contributes by means of the survival function. The maximum likelihood estimators of the
regression coefficients and the scale parameter are solutions of the equations resulting from
taking derivatives of the logarithm of L(θ). As these equations do not have a closed-form
solution, we must obtain the maximum likelihood estimates of the unknown parameters
employing numerical approximation methods.

3.3. Adequacy of the Fitted Model

Once a regression model is fitted to a data set, one needs to evaluate its fit utilizing
validation and diagnostics. We make it through the analysis of the Cox–Snell, martingale,
and deviance residuals.

The Cox–Snell residuals [42] are used to evaluate the global fit of the selected model.
These residuals are defined as êi = Ĥ(ti|x>i ) = − log(Ŝ(ti|x>i )), for i ∈ {1, . . . , n}, where
Ĥ is the cumulative risk function obtained from the fitted model, and Ŝ is the estimated
survival function. If there are few censored observations and exponential or Weibull
models are being used, it is appropriate to adjust the censored residuals and treat them as
uncensored. Therefore, for a given censored ti, the Cox–Snell residual is given by

êi = − log(Ŝ(ti|x>i )) + 1, i ∈ {1, . . . , n}.
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For the Weibull regression model, the Cox–Snell residuals are given by

êi =

{
(ti exp(−µ̂i))

1/σ̂, if δ = 1;
(ti exp(−µ̂i))

1/σ̂ + 1, if δ = 0;

where 1/σ̂ = γ̂ and i ∈ {1, . . . , n}. If the fitted model is suitable for the data, then the Cox–
Snell residuals must follow a standard exponential distribution. In this context, we can use
the graph of the survival curves of the residuals obtained by the Kaplan–Meier estimator
and the standard exponential model. As the curves are closer, the model is better fitted.

The martingale residuals are asymmetric and take a maximum value of 1 and a
minimum at −∞. The martingale residuals are defined as

m̂i = δi − êi, i ∈ {1, . . . , n},

where δi is the death or censoring variable, and êi are the Cox–Snell residuals. Note that the
martingale residuals for censored observations assume negative values. Therefore, for the
Weibull regression model, these residuals take the form stated as

m̂i = δi − (ti exp(−µ̂i))
1/σ̂, i ∈ {1, . . . , n}.

The martingale residuals can be seen as an estimate of the number of deaths observed in
the data but not predicted by the model. They are used to examine the best functional
form (linear or nonlinear) for a given variable in a regression model. Furthermore, they can
identify outliers in the dataset. However, it is generally better to employ deviance residuals.

The deviance residuals are transformations from the martingale residuals to miti-
gate the asymmetry. In general, this facilitates the detection of atypical points (outliers).
The deviance residuals are defined as

d̂i = sign(m̂i)(−2(m̂i + δi log(δi − m̂i)))
1/2, i ∈ {1, . . . , n},

where m̂i is the martingale residual, with the deviance residual having a random behavior
around zero.

4. Random Survival Forest Method

In this section, some aspects related to the RSF method are discussed. The steps of
this method are explained in algorithmic form and a flow diagram is also included. Due
to the use of a binary tree, node splitting and prediction are mentioned. The cumulative
hazard function for the out-of-bag (OOB) set is described. The variable importance (VIMP)
in the prediction and its error are also established here. This section ends showing a flow
diagram that details the computation of the Harrell C-index.

4.1. Algorithm

Similar to the classification and regression trees [43], survival trees are binary and
grow recursively splitting nodes, denoted generically by h. A tree grows starting at the
root node, which is the top of the tree and contains all the data. Using a separation rule to
split the space of variables, the root node is split into two child nodes: to the left and right.
Furthermore, each one of them is also split into new child nodes. The process is repeated
recursively for each subsequent node. The most extreme nodes in a tree are called terminal
nodes. A proposed splitting rule at node h in a given variable x is always of the form x ≤ c
and x > c, where c is a threshold value.

In Algorithm 1, we can see the RSF method [13]; see also Figure 1. Both the algorithm
and the figure show the steps of the RSF method. We include both for the benefit of
different types of readers. For some of them, such as developers, the algorithm may be
more convenient. For other readers, it may be easier to understand the steps if they are
shown in a flowchart.
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Algorithm 1: Random survival forest method.

1 begin
2 Generate B bootstrap samples from the original data set.

3 Create a survival tree for each bootstrap sample in each node of the tree.

4 Select m < p variables, without replacement, randomly.

5 Allow the tree to grow to the maximum size under the constraint that the
terminal node reaches a minimum number d0 > 0 of observations.

6 Calculate the cumulative hazard function for each tree and then obtain the
average of these functions.

7 Use the OOB set and compute the prediction error.
8 end

BEGIN

Generate B bootstrap samples
from the original data

Create a survival tree for each bootstrap
sample in each node of the tree

Select m < p variables,
without replacement, randomly

Allow the tree to grow to the
maximum size under the constraint

that the terminal node reaches a
minimum number d0 > 0 of observations

Calculate the cumulative hazard
function for each tree and then

obtain the average of these functions

Use the OOB set and
compute the prediction error

END

Figure 1. Flow diagram of the random survival forest method.
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4.2. Node Splitting and Prediction

Recall the pair (Ti, δi) is the death or censoring time of individual i, and δi = 1 if this
individual experienced a death, and δi = 0 for a censoring, with i ∈ {1, . . . , n}. Also, recall
t1 < · · · < tk are k observed and ordered death times. The log-rank test for splitting a
generic node h in child nodes L = {xi ≤ c} (left) and R = {xi > c} (right), at the value c
for a variable x, is given by

LR(x, c) =
∑k

h=1(dh,L − nh,Ldh/nh)√
∑k

h=1(nh,L/nh)(1− nh,L/nh)((nh − dh)/(nh − 1))dh

,

where nh,L = #{Ti ≥ th, xi ≤ c} and nh,R = #{Ti ≥ th, xi > c}, with “#” denoting the
cardinality of the specified set; and xi is the observed value of the variable x for the
individual i, with i ∈ {1, . . . , n}. Thus, nh,k is the number of individuals at risk until tj in
generic node h for child node k, with k ∈ {1(L), 2(R)}, and nh = nh,L + nh,R, that is, nh is the
number of individuals in generic node h, where nh,L = #{i: xi ≤ c} and nh,R = #{i: xi > c}.
In addition, dh,k is the number of deaths at tj in generic node h for child node k, where
dh = dh,L + dh,R, with h ∈ {1, . . . , k}.

The value |LR(x, c)| gives a measure of the separation of the nodes. As the value
of |LR(x, c)| increases, the difference between the two child nodes increases, and the
separation is better. In particular, the best split at node h is determined by finding the
covariate x∗ and the split value c∗, so that |LR(x∗, c∗)| ≥ |LR(x, c)| for all x, c. As the
number of nodes increases and different cases are pushed apart, each node in the tree
becomes homogeneous and is populated by cases with similar survival [18,44].

Using the Nelson–Aalen estimator described in Section 2.2 for the cumulative risk
function of child node k, we have Ĥk(t) = ∑h: th,k≤t dh,k/nh,k, where dh,k, nh,k were defined
previously, and th,k is the observed death time at generic node h in child nodes L and R.
Each individual i depends on a vector with p covariates x>i . Let H(t | x>i ) be the cumulative
hazard for individual i. To determine this value, we traverse x>i in the tree, which falls on
a single terminal node. Therefore, the cumulative hazard function for individual i is the
Nelson–Aalen estimator for the terminal node of x>i , that is, H(t | x>i ) = Ĥh(t), for x>i ∈ h.
If, at the end, there are M terminal nodes in the tree, then there are M estimates. Observe
that all individuals within a given node have the same cumulative hazard function.

4.3. Cumulative Hazard Function for the OOB Set

Note that the cumulative hazard function described in H(t | x>i ) is derived from a
single tree. As we use bootstrap, it is coherent to consider Ii,b = 1 if i is an individual of the
OOB set for a given tree b. Otherwise, Ii,b = 0. We can define H∗b (t | x>i ) in the same way as
H(t | x>i ) for a tree grown from the bth bootstrap sample. The cumulative hazard function
for individual i of the OOB set is given by H∗∗e (t | x>i ) = ∑B

b=1 Ii,bH∗b (t | x>i )/∑B
b=1 Ii,b.

Notice that H∗∗e (t | x>i ) is an average over bootstrap samples, where i is an individual
belonging to the OOB set. In contrast to H∗∗e (t | x>i ), we have the cumulative risk function
of all individuals and not only those that belong to the OOB set, that is, H∗e (t | x>i ) =

(1/B)∑B
b=1 H∗b (t | x>i ), where B is the number of bootstrap samples.

4.4. Prediction Error and Variable Importance

To calculate the prediction error or the error rate of the OOB set, H∗∗e (t | x>i ) is used as
the cumulative hazard function for the individuals belonging to the OOB set. The prediction
error is measured using the C-index [31]. To calculate this index, we need to define the
worst predicted outcome. Let t∗1 < · · · < t∗k be k observed and ordered death times.
We say that individual q has a worse outcome than individual s if ∑k

h=1 H∗∗e (t∗h | x>q ) >

∑k
h=1 H∗∗e (t∗h | x>s ). The C-index is calculated using the steps given in [18] and summarized

in Figure 2.
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BEGIN

Consider a pair of cases over the data

The shorter survival
time is censored

or
both observations

are censored

Omit the pair

Consider the pair as permissible

For each permissible pair
Tq 6= Ts

• Count 1 if the shorter survival time has
the greatest predicted cumulative risk
function

• Count 0.5 if the predicted cumulative risk
functions are tied

• Count 1 if both cases are deaths and the
predicted results are tied; otherwise count
0.5

• Count 1 if both cases are not deaths
and the death has the worst predicted
outcome; otherwise count 0.5

All pairs have been consideredAll pairs have been considered

Calculate

C-index =
concordance
permissible

,

where “permissible” is the number of permissi-
ble pairs and “concordance” is the sum over all
permissible pairs

END

True

False

TrueFalse

TrueTrueFalse False

Figure 2. Flow diagram of the C-index computation based on [13].

We can select variables based on their importance, and using the OOB set. The proce-
dure is performed as follows: (i) drop the OOB set onto the tree; and (ii) assign a random
child node whenever a separation of the OOB set is stated. The VIMP of the OOB set is
the prediction error for the original set subtracted from that of the new set obtained using
random attributions of the OOB set. When the VIMP values are large, the variables have a
predictive capacity. In contrast, values equal to zero or negative indicate non-predictive
variables. It is incorrect to interpret the VIMP as an estimate of the change in the prediction
error for a cultivated forest with and without a given variable. VIMP measures the differ-
ence in the prediction error of a new test case if the OOB set is unavailable, given that the
original forest was cultivated using such data. However, in practice, this is often equal to
the change in the prediction error for a cultivated forest with and without the OOB set, as
the two quantities are conceptually different.

5. Application to Biomedical Data

In this section, we conduct the computational experiments with real data to illustrate
our proposal. First, an exploratory data analysis is performed. Second, the results of the
survival analysis are presented. Third, the results obtained by applying machine learning
algorithms are provided.
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5.1. Description of the Data Set and Exploratory Analysis

The data used in this study correspond to the Heart Institute, Hospital “das Clínicas”,
Faculty of Medicine, University of São Paulo, Brazil, to compare the length of stay of
n = 145 patients with heart disease undergoing cardiac surgery [45]. The considered
covariates are: age of the patient, type of protocol, race, sex, and type of patient. Let T be
the response variable corresponding to the time between the entry and exit of the patient
from the surgical ward in hours, whereas δ is an indicator variable of death or censoring.
If δ = 0, we have censoring; otherwise, we have a death. In the case of censoring, we do not
have the exact information on the length of stay of this patient within the surgical ward, and,
in the case of death, we have it exactly. Now, consider the following variables: the age of
the hospitalized patient in years (X1); the type of protocol (X2), which can be conventional
(0) or fast track (1); race (X3), which is divided in white (1), black (2), and Asian (3); sex
(X4), divided between female (0) and male (1); and the type of patient (X5) separated in
congenital (0) and coronary (1). Regarding the variables sex and race, we do not know
whether they were self-reported or designated by third parties and, concerning sex, if the
classification was based on anatomical characteristics, genitalia, or self-reported. The fast-
track protocol has, as its philosophy, a greater integration between the various teams that
assist patients in reducing their length of stay, improving recovery, and reducing costs.
Congenital heart disease was defined in [46] as a macroscopic structural abnormality of
the heart or large intrathoracic vessels with relevant or potentially relevant functional
repercussions. It is a condition that has existed since the fetal stage, appearing in the first
eight weeks of pregnancy, when the organ is being formed. Coronary heart disease is
caused by the accumulation of cholesterol in the arteries, which supplies the heart muscle.

A total of n = 145 patients were followed up on, 53 (37%) were female, 92 (63%) were
male; whereas their age varied between 3 months and 81 years; 138 (95%) were white,
4 (3%) black, and 3 (2%) Asian. Of the total number of patients, 57 (39%) were submitted to
the conventional care protocol and 88 (61%) to the fast-track one. Furthermore, 70 (48%)
have congenital heart disease and 75 (52%) have coronary heart disease. These results can
be seen in Figure 3. In Table 1, we provide some descriptive measures for the ages (in years)
of patients with both conditions and followed up in both protocols. Please note that the
age of congenital heart disease patients who were followed up in the conventional protocol
ranged from 3 months to 49 years, while, in the fast-track one, it went from 9 months to
38 years. For coronary heart disease patients, who were followed up in the protocol, it
ranged from 18 to 81 years, and in the fast-track one, it went from 38 to 79 years. These
results can be seen in Figure 4.

37%

63%

Sex

female male

(a)

39%

61%

Protocol Care

conventional fast−track

(b)

48%
52%Type patient

congenital coronary

(c)

Figure 3. Pie charts of variables: gender (a), protocol care (b), and type of patient (c).
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Table 1. Descriptive measures for the ages (in years) of patients with congenital and coronary heart
disease followed up in both protocols.

Age
Congenital Coronary

Conventional Care Fast-Track Care Conventional Care Fast-Track Care

Total (n = 145) 20 50 37 38
Mean 8.5 12.2 60.5 58.4
Standard deviation 13.4 11.1 12.9 8.8
Minimum 0.3 0.8 18.0 38.0
Median 4.0 10.0 63.0 58.0
Maximum 49.0 38.0 81.0 79.0

conventional fast−track

0

20

40

60

80

A
ge

Protocol Care

(a)

congenital coronary

0

20

40

60

80

A
ge

Type patient

(b)

Figure 4. Box plots of age by protocol care (a) and type of patient (b).

The absolute and relative sex distribution of patients with congenital and coronary
heart disease followed up in the two protocols are shown in Table 2. We noticed that among
the 53 (37%) female patients, 34 (64%) have congenital heart disease, 19 (36%) have coronary
heart disease, 24 (45%) were followed up in conventional care protocol, and 29 (55%) in the
fast-track one. Among the 92 (63%) male patients, 36 (39%) have congenital heart disease,
56 (61%) have coronary heart disease, 33 (36%) were followed up in the conventional care
protocol, and 59 (64%) in the fast-track one.

Table 2. Absolute and relative distribution for sex of patients with congenital and coronary heart
disease followed up in both protocols.

Heart Disease Care Protocol
Sex

Female % Male %

Congenital Conventional Care 13 65 7 35
Fast-track Care 21 42 29 58

Coronary Conventional Care 11 30 26 70
Fast-track Care 8 21 30 80

Total 53 37 92 63

The absolute and relative distribution by the race of patients with congenital and
coronary heart disease followed up in both protocols are shown in Table 3.
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Table 3. Absolute and relative distribution for race of patients with congenital and coronary heart
disease followed up in both protocols.

Heart Disease Care Protocol
Race

White % Black % Yellow %

Congenital Conventional Care 20 100 0 0 0 0
Fast-track Care 49 98 1 2 0 0

Coronary Conventional Care 32 87 3 8 2 5
Fast-track Care 37 97 0 0 1 3

Total 138 95 4 3 3 2

We observed that among the 138 (95%) white patients, 69 (50%) have congenital
heart disease, 69 (50%) have coronary heart disease, 52 (38%) were followed up in the
conventional care protocol, and 86 (62%) in the fast-track one. Among the 4 (3%) black
patients, 1 (20%) has congenital heart disease, 3 (80%) have coronary heart disease, 3 (75%)
were followed up in the conventional protocol, and only 1 (25%) in the fast-track one.
Furthermore, all patients of the Asian race have coronary heart disease, of which 2 (67%)
were followed up in the conventional care protocol and 1 (33%) in the fast-track one.

5.2. Survival Analysis

In Figure 5, we present the Kaplan–Meier curves for the variables sex, race, type of
patient, and type of protocol according to the length of stay (in hours) in the surgical ward.
From this figure, we can observe which curves are different. However, we need to conduct
hypothesis tests to compare whether they differ significantly. We used in this step the
log-rank test. The purpose of testing whether these curves are the same, in our case, is
equivalent to testing whether the groups (strata) have the same length of stay (in hours)
within the surgical ward. Therefore, our hypotheses areH0: “The lengths of stay of heart
disease patients in the surgical ward are the same” versusH1 being the negation ofH0.

The curves presented in Figure 5a provide evidence that the length of stay within the
surgical ward of male patients has no difference compared to that of female ones. Through
the test (p-value = 0.3), we can conclude that there is no significant difference at 5% in the
length of stay according to sex. Furthermore, from Figure 5b, we can analyze it according
to race. Using the log-rank test (p-value = 0.04), we concluded that the lengths of stay
of these groups of patients are different. We detected the difference between white and
black patients (p-value = 0.02) at the level of 5% of significance. Analyzing the curves in
Figure 5c, we noticed evidence that there is a difference in the length of stay in the surgical
ward concerning the type of patient.

Using the test (p-value < 0.0001), we could conclude that there is a significant difference
at 5% for congenital and coronary patients. Then, we also verified, through the log-rank
test (p-value = 0.001), that the curves presented in Figure 5d are significantly different
at 5%, that is, the length of stay in the surgical ward according to the type of protocol
is different. Here, we considered the Weibull regression model to verify if there is a
relationship between the length of stay in the surgical ward and some covariates. It is worth
mentioning that the exponential model was tested for this data set. However, no good fit
was obtained compared to the Weibull model. In this step, we used the likelihood ratio test
for nested models [47]. The maximum likelihood estimates, corresponding standard errors,
and p-values for the hypothesis test of the significance of the parameters are presented
in Table 4.



Biology 2023, 12, 442 12 of 22

+

+

+

+

+

+

 C−ind =  0.532

 p−val =  0.312

0.00

0.25

0.50

0.75

1.00

0 5 10 15
time (in hours) by sex

S
(t

)

+
+

Female

Male

53 24 0 0

92 58 2 0−
−

Number at risk

(a)

+

+

+

+

++

 C−ind =  0.477

 p−val =  0.044

0.00

0.25

0.50

0.75

1.00

0 5 10 15
time (in hours) of stay in the surgery center according to race

S
(t

)

+
+
+

white

black

asian

138 76 1 0

4 3 1 0

3 3 0 0−−
−

Number at risk

(b)

+

+

+
+

+

+

 C−ind =  0.727

 p−val =  0

0.00

0.25

0.50

0.75

1.00

0 5 10 15
time (in hours) of stay in the surgery center according to the type of patient

S
(t

)

+
+

congenital

coronary

70 12 0 0

75 70 2 0−
−

Number at risk

(c)

+

+

+

+

+

+

 C−ind =  0.4

 p−val =  0.001

0.00

0.25

0.50

0.75

1.00

0 5 10 15
time (in hours) of stay in the surgery center according to the protocol

S
(t

)

+
+

conventional

fast−track

57 46 2 0

88 36 0 0−
−

Number at risk

(d)

Figure 5. Kaplan–Meier curves S(t) (shading shows 95% CIs) with log-rank test, C-index, and risk
tables for the variables: gender (a), race (b), type of patient (c), and type of protocol (d).

Table 4. Weibull regression model parameter estimates (full model).

Parameter Covariates Estimate Standard Error p-Value

β0 intercept 1.6020 0.0412 <0.0001
η1 age −0.0004 0.0017 0.8110
θ2 type of protocol - fast-track care −0.2065 0.0392 <0.0001
λ2 race - black 0.3125 0.1123 0.0054
λ3 race - Asian −0.0918 0.1244 0.4606
µ2 sex - male −0.0583 0.0399 0.1433
ρ2 type of patient - coronary 0.5599 0.0931 <0.0001
τa - −1.5626 0.0637 <0.0001
σb - 0.2100 - -
γc - 4.5872 - -

where a: scale parameter logarithm, b: scale parameter, and c: shape parameter.
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The Weibull model for our study is described as

Yi = log(Ti) = β0xi0 + η1xi1 + θjxi2 + λkxi3 + µl xi4 + ρmxi5 + σνi, i ∈ {1, . . . , n},

where each Yi is the logarithm of the length of stay of patient i in the surgical ward, with
j, l, m ∈ {1, 2}, k ∈ {1, 2, 3} and νi = log(εi). As we assume a reference case parameteriza-
tion, we have the constraints θ1 = 0, λ1 = 0, µ1 = 0, and ρ1 = 0.

We consider a significance level of 5% to select which variables should be included in
the model. We noticed that the variable’s type of the protocol, race, and type of patient are
significant at 5% for the model. In Table 5, we present the maximum likelihood estimates,
corresponding standard errors, and p-values for the selected variables.

Table 5. Weibull regression model parameter estimates (after model selection).

Parameter Covariates Estimate Standard Error p-Value

β0 intercept 1.5775 0.0330 <0.0001
θ2 type of protocol - fast-track −0.2158 0.0391 <0.0001
λ2 race - black 0.2907 0.1127 0.0099
λ3 race - Asian −0.0963 0.1252 0.4414
ρ2 type of patient - coronary 0.5250 0.0382 <0.0001
τa - −1.5517 0.0634 <0.0001
σb - 0.2120 - -
γc - 4.7170 - -

where a: scale parameter logarithm, b: scale parameter, and c: shape parameter.

As in any other statistical model, evaluating the fitted model is very important.
To investigate the fit of the fitted Weibull regression model, we use residual analysis.
In Figure 6a,b, we present the Cox–Snell residuals of the Weibull regression model, ad-
justed to the data set referring to the length of stay within the surgical ward of congenital
and coronary heart disease patients submitted to cardiac surgery in the fast-track protocol
compared to the conventional one. We observed that the Weibull regression model is
acceptable for the residuals. Therefore, it presented a satisfactory fit to the data on the
length of stay. To verify the existence of potentially influential observations, we show
in Figure 6c–f the graphs of the martingale and deviance residuals against the indices of
individuals and adjusted values, respectively. As we can see in the figures mentioned
above, four observations stand out as potentially influential points, namely: #64, #101, #124,
and #144. In Figure 6b,c, we noticed a random behavior of the residuals, with an emphasis
only on points #64 and #101.
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Figure 6. Plots of Cox–Snell (a,b), martingale (c,d), and deviance (e,f) residuals of the Weibull
regression model adjusted to the data of length of stay in the surgery ward.

We can see in the graph that the points #64 and #101 are further away from the other
ones. Observing Figure 6e,f, we noticed that the patients are divided into “eight” groups
with common characteristics among themselves, that is, we have the following:

(i) Group 1: white and congenital patients in the fast-track care protocol.
(ii) Group 2: white and congenital patients in the conventional care protocol. Here,

the highlight is for patient #64, 1 year old, female, and the time spent in the surgical
ward is longer than 6.67 h; that is, the exact time is unknown. In this group, the longest
stay in the surgical ward is that of patient #68 (6.75 h), aged 0.6 (approximately
7 months), and female. The highest age for this group is 49 years, and the minimum is
0.3 (approximately 3 and a half months). The youngest is patient #58, with 4.50 h of
length of stay.

(iii) Group 3: patients in the fast-track care protocol, black, and congenital (only pa-
tient #25).

(iv) Group 4: patients in the fast-track care protocol, Asian, and coronary (only patient #87).
(v) Group 5: patients in the fast-track care protocol, white and coronary. Here, we

highlight patient #101, aged 60 years, male, and 9.92 h of length of stay. In this group,
patient #101 is the one with the longest length of stay. Patient #88 has the same
characteristics as patient #101. However, their length of stay is 7.50 h, approximately
24% less than that of patient #101.
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(vi) Group 6: patients in the conventional care protocol, Asian, and coronary (patients
#135 and #141).

(vii) Group 7: patients in the conventional care protocol, white and coronary. The highlight
here is for patient #124, aged 60 years, male, and with 10.50 h of length of stay. In this
group, patient #124 has the longest length of stay. The oldest patient in this group is
81 years old, male, with 7.33 h of length of stay.

(viii) Group 8: patients in the conventional care protocol, black, and coronary (patients
#131, #132, and #144). Patient #131 is 58 years old, male, and with 8.45 h of length of
stay; patient #132 is 47 years old, male, and with 7.92 h of length of stay; and patient
#144 is 59 years old, male, and with 14.17 h of length of stay. We must highlight that
patient #144, even with close similarities to patient #131, had a longer stay of 40% than
the latter.

To analyze the impact of the highlighted points in the parameter estimates, we per-
formed a confirmatory analysis by readjusting the model, eliminating individually and
jointly the potentially influential observations. In Table 6, we report the maximum likeli-
hood estimates and the respective p-values for the model parameters in parentheses.

Table 6. Maximum likelihood estimates and p-values in parentheses for parameters θ2, λ2, λ3, and ρ2

of the Weibull regression model after removing the points.

Removed Observation
Parameter Estimates

β0 θ2 λ2 λ3 ρ2

#64
1.5538

(<0.0001)
−0.1995
(<0.0001)

0.3046
(0.0057)

−0.0958
(0.4347)

0.5364
(<0.0001)

#101
1.5856

(<0.0001)
−0.2291
(<0.0001)

0.3053
(0.0048)

−0.0077
(0.5175)

0.5074
(<0.0001)

#124
1.5693

(<0.0001)
−0.2024
(<0.0001)

0.3085
(0.0063)

−0.0872
(0.4850)

0.5134
(<0.0001)

#144
1.5776

(<0.0001)
−0.2140
(<0.0001)

−0.0535
(0.6700)

−0.0962
(0.4300)

0.5227
(<0.0001)

{#64, #101, #124, #144}
1.5605

(<0.0001)
−0.1971
(<0.0001)

−0.0180
(0.8800)

−0.0668
(0.5600)

0.5027
(<0.0001)

Through the confirmatory analysis, we observed that the variable race is not significant
for the model at 5%. Note that when we remove point #144 and all the points together
(#64, #101, #124, and #144), considered as potentially influential, the significance of the
variable changes, that is, these influential points were masking its significance. The other
variables are still significant at 5% for the model with p-values smaller than 0.0001 (0.01%).
Therefore, we proceed with the analysis without the variable sex. Every previous process is
repeated considering only the variables type of protocol and type of patient.

In Table 7, we present the maximum likelihood estimates, corresponding standard
errors, and p-values for the model without the variable race. We noticed that all variables
are significant at the usual levels, that is, 5% and 10%.

Table 7. Weibull regression model parameter estimates.

Parameter Covariates Estimate Standard Error p-Value

β0 intercept 1.5928 0.0356 <0.001
θ2 type of protocol - fast-track care −0.2557 0.0396 <0.001
µ2 type of patient - coronary 0.5552 0.0383 <0.001
τa - −1.5010 0.0621 <0.001
σb - 0.2230 - -
γc - 4.4843 - -

where a: scale parameter logarithm, b: scale parameter, and c: shape parameter.
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We repeat the process of evaluating the refitted model; that is, we used the analysis of
the residuals. In Figure 7a,b, we present the Cox–Snell residuals of the Weibull regression
model adjusted to the data of the length of stay in the surgical ward. We observed indica-
tions that this model is acceptable for the residuals. Therefore, it presented a satisfactory
fit to these data. To verify the existence of potentially influential observations, we present
in Figure 7c–f the graphs of the martingale and deviance residuals against the indices
of individuals and adjusted values, respectively. Unlike Figure 6c–f, here we have three
observations that stand out as potentially influential points, namely: #64, #101, and #144.
They have all been previously described.

It is important to highlight that considering the final fitted model, that is, the model
that selected only the variables type of protocol and type of patient, the patients are now
divided into four groups with common characteristics among themselves. Thus, we have
the following:

(i) Group 1: congenital patients in the fast-track care protocol.
(ii) Group 2: congenital patients in the conventional care protocol.
(iii) Group 3: coronary patients in the fast-track protocol.
(iv) Group 4: coronary patients in the conventional care protocol.

This justifies the fact that the points are not dispersed in the graphs of the residuals
presented in Figure 7e,f, since within each group, the patients present similar characteristics.
Observation #64 corresponds to the individual with a longer stay in the surgical ward than
75% of the other patients (6.67 h, we do not know the exact length of stay, only that it is
greater than 6.67 h).

Using the adjusted model to predict the length of stay inside the surgical ward, this
value is approximately 4.92. Calculating the values of martingale and deviance residuals,
we have the following results: −4.93 and−3.14, respectively. Observation #101 corresponds
to the individual with the third-longest length of stay in the surgical ward (9.92 h). However,
if we use the fitted model to predict its length of stay, this value is approximately 6.63 h.
Calculating the values of the martingale and deviance residuals, we have the following
results: −5.08 and −2.56, respectively. In addition, observation #144 corresponds to the
individual with the longest length (14.17 h). Nevertheless, if we use the fitted model to
predict its length of stay, this value is approximately 8.57 h (the estimated time corresponds
to 60.47% of the observed time). Calculating the values of the martingale and deviance
residuals, we have the following results: −8.57 and −3.55, respectively.
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Figure 7. Plots of Cox–Snell (a,b), martingale (c,d), and deviance (e,f) residuals of the Weibull
regression model after model selection adjusted to the data of length of stay in the surgery ward.

We analyze the impact of observations #64, #101, and #144 on the parameter estimates,
performing a confirmatory analysis readjusting the model, eliminating individually and
jointly the observations detected as potentially influential. Table 8, reports the correspond-
ing estimates and p-values (in parentheses). By the confirmatory analysis, we observed
that the highlighted points do not change the significance of the variables selected for
the model.

Table 8. Maximum likelihood estimates (all the p-values are <0.001) for parameters β0, θ2, and ρ2 of
the Weibull regression model after removing the points.

Removed Observation
Parameter Estimates

β0 θ2 ρ2

#64 1.5720 −0.2414 0.5683
#101 1.6036 −0.2713 0.5412
#144 −1.5753 −0.2107 0.5172

{#64, #101, #144} 1.5658 −0.2103 0.5120

With the fitted model, we can interpret the estimated coefficients presented in Table 5.
The direct interpretation, as performed in linear regression, is not possible in this context
since the scale of the response was transformed to a logarithmic one. An interesting
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interpretation is the ratio of median times [48], which compares the median survival time
between groups. Therefore, we can compare the median length of stay in the surgical
ward for patients under the fast-track care protocol with those under the conventional one,
as well as the median length of stay of congenital patients with the coronary ones. Note
that the median length of stay of patients in the fast-track care protocol was reduced by
approximately 77.4% when compared to those under the conventional one. Furthermore,
the median length of stay of coronary patients within the surgical ward was approximately
1.7 times greater than that of congenital patients. To finalize the fitting of the model, we
calculated the C-index, which resulted in 0.76, implying a prediction error of 23.85%.

5.3. Analysis Using Machine Learning Algorithms

Another alternative to analyzing these data is to use the RSF method. We employed the
randomForestSRC package that has implementations of various survival cases that come
from the randomSurvivalForest package [49] for regression and classification, as well as
multivariate and unsupervised forests.

We simulated 1000 random survival trees and tested three variables for each randomly
chosen node (

√
p, with p being the number of covariates, the final value is rounded to the

next integer value). Each split was made using the log-rank separation, as discussed in
Section 4.2, and the minimum size of the selected terminal node was ten. The analysis was
realized using the R software, version 4.2.2, for the Linux operating system.

The OOB set is the error rate for the trained model, applied to data not included in
the training set of a specific tree. The model presented an error rate of 23.55% for the
training data and 20.31% for the testing data. Still, the C-index for the OOB set was 0.7644,
and 0.7969 for the training and testing data sets, respectively. In Figure 8, we present the
OOB set error rate and the VIMP measures. Note that, in Figure 8a, from 400 trees, the
error rate stabilizes around 0.235 (23.50%). In Figure 8b, we present the VIMP measures,
whose variables are the age of the patient (in years) at admission (AGE); type of protocol
(PROTOCOL); race (RACE); sex (SEX); and type of patient (PATT).

All variables have positive VIMP values, with the variables age, type of patient,
and type of protocol having higher VIMP (0.2597, 0.1822, and 0.0556, respectively), in-
dicating the predictive power of the RSF method is dependent on these variables. We
also noticed that, in the Weibull regression model, the age variable was non-significant
at 5%. Then, this variable was excluded of the model from the beginning of the analysis.
Nonetheless, in a survival forest, this variable is the most important since it has the highest
VIMP, a value of 0.2597.
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Figure 8. Plots of the OOB set error rate (a) and VIMP measure of the variable (b).
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Table 9 shows a summary of the comparative analysis between the models, considering
error rate, C-index, and the most predictive model variables.

Table 9. Summary of the comparative study between the RSF and the Weibull regression models.

Model Error Rate C-Index Most Predictive Variables

RSF (training data) 23.55% 0.76 age, type of patient, type of protocol
RSF (testing data) 20.31% 0.79 age, type of patient, type of protocol
Weibull regression 23.82% 0.76 type of patient, type of protocol

6. Discussion and Conclusions

We observed a reduction in hospital stay for patients undergoing fast-track protocol
compared to conventional protocol, resulting in decreased professional occupation time
and costs for the institution, as reported in [50]. Additionally, this approach increases bed
availability for new patients. The fast-track protocol is also being adopted in other surgeries
successfully [51].

Out of n = 145 patients, 88 were assisted by the fast-track protocol group regardless of
their heart disease, representing 61% of the patients. The longest stay in the surgical center
within this group was 9.92 h for a 60-year-old patient with coronary heart disease. In the
conventional protocol group, the longest stay was 14.17 h for a 59-year-old patient with
coronary heart disease. The shortest stay in the fast-track group was 1.92 h for a 2-year-old
patient with congenital heart disease, while in the conventional protocol group, the shortest
stay was 2.75 h for a 1-year-old patient with congenital heart disease. These statistics
reinforce one of the benefits of adopting this protocol. Moreover, the average hospital
stay for patients assisted by the fast-track protocol was shorter than for those under the
conventional protocol, with 4.773 h compared to 6.188 h, respectively. Another noteworthy
point is the age variability of patients assisted by the fast-track protocol, ranging from
8.3 months to 79 years old.

Possible limitations include the availability of this type of protocol in hospitals, as
it usually requires more infrastructure, as well as the adherence of medical teams to this
protocol, as they often prefer the conventional protocol due to their experience. Therefore,
it is essential to produce and disseminate studies that prove the efficiency and benefits
of new protocols in healthcare while not disregarding the efficacy and use of the usual
protocol. The idea is to have an additional protocol available, rather than a replacement for
the conventional one.

Random forest has limitations such as long computing time in large data sets, non-
generalizability, and difficulty in clinical interpretation. Furthermore, when using paramet-
ric models such as the Weibull regression, certain assumptions must be met, such as the
hazard rate changing over time and the absence of outliers, which can affect the accuracy
of the estimates as observed in this study.

If a practitioner also wants an interpretable model, choosing the method depends on
the specific characteristics of the data and the goals of the analysis. Random forest and
Weibull models serve different purposes, and each has its advantages and limitations. If the
practitioner values interpretability and has prior knowledge of the underlying distribution
of survival times, the Weibull model may be more suitable. Nonetheless, if the practitioner
prioritizes predictive accuracy and has no prior assumptions about the distribution of
survival times, random forest may be more appropriate. In any case, both methods are
powerful tools for predicting outcomes.

In this work, we used three criteria to carry out a comparative study between Weibull
regression and random forest models when analyzing survival data: (i) error rate, (ii) Har-
rell C-index, and (iii) selection of appropriate variables for survival analysis. In the com-
putational experiments, we employed the R software, in particular the randomForestSRC
package. The used data belong to the Heart Institute of the Hospital “das Clínicas”, in Brazil,
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and correspond to patients who underwent cardiac surgery. The models analyzed respond
in a very similar way, with only slight differences.

Although the lowest error rate was obtained with the random forest model, the Weibull
regression reached a higher C-index. Both models agree that variables type of patient and
type of protocol are the most predictive, but only the random forest model considers the
variable age. We believe that the comparative study that we propose in this study is relevant
and can be used by many medical researchers to analyze their survival data.

Survival analysis is not only important in medicine, as in biology, it has many ap-
plications. For biologists, the study of microorganisms is of particular interest. Some
microorganisms favor the life of plants, animals, and people. Nevertheless, there are
also pathogenic microorganisms. Therefore, studying the lifetime of microorganisms is
essential [52,53]. For example, it is important to study the survival of viruses and bacteria
that affect humans [54]. In the case of viruses, SARS-Cov2 has been of great interest to
researchers for the last three years [55]. In a recent investigation, a survival analysis was
performed on COVID-19 patients [56]. In [57], we can see the use of fuzzy logic and artifi-
cial intelligence techniques for the remote monitoring of cardiac arrhythmia in COVID-19
patients. In telemetry, it is important to pay more attention to those patients who fell ill
before and who are at higher risk of becoming ill again [58]. The survival study plays a
fundamental role in patient telemetry. Fungi are also entities of interest to biologists and
doctors. In [59,60], we can see research that uses survival analysis to study certain types
of fungi. All the aforementioned applications offer the opportunity to be applied to our
proposal. For this reason, in a future work, we are interested in building an R package
that facilitates the comparative study that we propose, in such a way that it can be applied
by any researcher to other data sets.
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